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Abstract
Pronoun Coreference Resolution (PCR) is the task of resolving pronominal expressions to all mentions they refer to. The
correct resolution of pronouns typically involves the complex inference over both linguistic knowledge and general world
knowledge. Recently, with the help of pre-trained language representation models, the community has made significant
progress on various PCR tasks. However, as most existing works focus on developing PCR models for specific datasets and
measuring the accuracy or F1 alone, it is still unclear whether current PCR systems are reliable in real applications. Motivated
by this, we propose PCR4ALL, a new benchmark and a toolbox that evaluates and analyzes the performance of PCR systems
from different perspectives (i.e., knowledge source, domain, data size, frequency, relevance, and polarity). Experiments
demonstrate notable performance differences when the models are examined from different angles. We hope that PCR4ALL
can motivate the community to pay more attention to solving the overall PCR problem and understand the performance
comprehensively. All data and codes are available at: https://github.com/HKUST-KnowComp/PCR4ALL.
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1. Introduction
The question of how human beings resolve pronouns
has long been of interest to both linguistic and natural
language processing (NLP) communities. The situa-
tion that a pronoun itself only has weak semantic mean-
ing brings challenges to natural language understand-
ing systems. To explore solutions for that question,
pronoun coreference resolution (PCR) (Hobbs, 1978)
was proposed1. The first and second personal pronouns
are typically not considered as they often refer to the
current speakers, which are normally out of the con-
versation or document. Conventional PCR works (Ng,
2005; Zhang et al., 2019a; Zhang et al., 2019b) mostly
focus on identifying coreference relations between pro-
nouns and noun phrases rather than relations between
pronouns. As a challenging yet vital natural language
understanding task, PCR is to find the correct refer-
ence for a given pronominal anaphor in the context
and has shown to be crucial for a series of down-
stream tasks, including machine translation (Mitkov et
al., 1995), summarization (Steinberger et al., 2007), in-
formation extraction (Edens et al., 2003), and dialog
systems (Strube and Müller, 2003).
The correct resolution of pronouns typically requires
reasoning over both linguistic knowledge (e.g., “they”
can only refer to plural objects) and commonsense
knowledge (e.g., in sentence “The fish ate the worm,

1Previous studies (Ng, 2005; Zhang et al., 2019b) mainly
focus on three kinds of pronouns: third personal pronoun
(e.g., she, her, he, him, them, they, it), possessive pronoun
(e.g., his, hers, its, their, theirs), and demonstrative pronoun
(e.g., this, that, these, those).

it was hungry”, “it” refers to “fish” because hungry
things tend to eat rather than being eaten). To inves-
tigate the possibility for machines to understand pro-
nouns, many datasets were developed. However, due
to the limitation of existing datasets, the performance
on these datasets cannot effectively reflect the reliabil-
ity of PCR systems in real applications. Current eval-
uation benchmarks mainly have four drawbacks: (1)
Existing datasets mostly focus on a specific domain
(e.g., CoNLL-2012 (Pradhan et al., 2012) for news and
I2b2 (Uzuner et al., 2012) for medical) or specific rea-
soning types (e.g., WSC (Levesque et al., 2012) for
commonsense) rather than providing an overall evalua-
tion. (2) As most existing datasets follow the traditional
machine learning setting (i.e., the training and test data
follow the same distribution), it is unclear whether the
progress on these datasets comes from understanding
pronouns or naively capturing the distribution of the
datasets. (3) With the reported accuracy on a single test
set, it remains unclear if the PCR model is reliable un-
der different circumstances, such as when the training
data is small or different to the test data. (4) Differ-
ent datasets may have different formats, which makes
it challenging to train and evaluate PCR models across
these datasets.
There is a growing body of literature that focuses on en-
hancing the model reliability through benchmark uni-
fication (Raganato et al., 2017) and measurement be-
yond accuracy (Ribeiro et al., 2020). Motivated by
these works, in this paper, to address the limitation
of existing PCR evaluation benchmarks, we propose
PCR4ALL to help researchers analyze and compare
PCR model performance under different circumstances

https://github.com/HKUST-KnowComp/PCR4ALL
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(e.g., when test cases are from other domains or with
different relevance to the training data, etc.) To en-
sure the broad coverage, we include all major PCR
datasets and standardize them into a unified format. To
be informative, we propose to evaluate PCR systems
from different perspectives rather than just the overall
performance (i.e., a single test set accuracy). Care-
fully selected large-scale training, development, and
test sets are provided to minimize the influence of ar-
tifacts. Performance of models on the standard set can
then be viewed from other perspectives using specifi-
cally designed add-up tests, including how the perfor-
mance changes when the data domain changes, data
size grows, data being infrequent or irrelevant, or data
being close to the distribution of the train set. These
tests, as an evaluation toolbox or checklist, can then be
used for further analysis or fair comparison across dif-
ferent PCR models.
Experiments demonstrate that even though we have
made great progress on multiple datasets, none of the
current systems can handle all perspectives of resolv-
ing pronouns very well. In addition, extensive model
performance reports with multiple domains and per-
spectives lead to valuable and detailed understanding of
the characteristics of various PCR models and datasets.
To summarize, the contribution of this paper is two-
fold: (1) we propose a new PCR evaluation benchmark
PCR4ALL, which unifies the format of existing PCR
datasets and provides automatically evaluation check-
list on different perspectives of a pronoun coreference
resolution model or system; (2) we conduct extensive
experiments to point out the strengths and limitations
of representative existing PCR models and systems.

2. Related Works
2.1. Previous PCR Datasets
Throughout the years, researchers in the NLP com-
munity have devoted great efforts to developing high-
quality coreference resolution datasets (Grishman and
Sundheim, 1996; Chinchor, 1998; Doddington et al.,
2004; Pradhan et al., 2011; Pradhan et al., 2012)2.
These general PCR datasets are mostly developed with
expert annotations and focus on the newswire domain.
Among these datasets, CoNLL-2012 (Pradhan et al.,
2012) is the most popular one as it provides clear train,
development, and test set separation as well as the offi-
cial evaluation tool.
Another important line of work is the hard PCR
datasets. Different from the general PCR task, the hard
PCR datasets eliminate the effect of all commonly used
linguistic knowledge (e.g., gender and plurality) via
careful design, and focus on evaluating how models can
understand commonsense knowledge that is required
to resolve the pronouns. The most popular dataset is

2Some datasets (e.g., CoNLL-2012 shared task (Pradhan
et al., 2012)) are originally designed for the general corefer-
ence (e.g., coreference among noun phrases) resolution task.
Nonetheless, we can easily convert them into a PCR task.

the Winograd Schema Challenge (WSC) (Levesque et
al., 2012), which contains 273 carefully selected PCR
questions3. Recently, to address the small scale prob-
lem of WSC, several similar datasets (i.e., DPR (Rah-
man and Ng, 2012), KnowRef (Emami et al., 2019),
and WinoGrande (Sakaguchi et al., 2020)) have been
proposed.
Last but not least, several other PCR datasets have
been proposed to address different scenarios or per-
spectives related to the pronoun coreference resolution.
For example, I2b2 (Uzuner et al., 2012) focuses on the
medical domain, CIC (Chen and Choi, 2016) focuses
on pronouns in multi-party dialogues, and WinoGen-
der (Rudinger et al., 2018) studies the gender bias phe-
nomenon in the process of pronoun resolution. In this
work, to achieve a comprehensive understanding of the
tested PCR systems, PCR4ALL includes all represen-
tative datasets and convert them into a unified format.

2.2. Existing PCR Models
Before the rise of deep learning, human-designed
rules (Hobbs, 1978; Raghunathan et al., 2010; Chang et
al., 2013) and features (Ng, 2005; Bengtson and Roth,
2008; Clark and Manning, 2015) dominated the gen-
eral coreference resolution and PCR tasks. However,
these features mainly reflect linguistic knowledge and
cannot handle pronouns that require the correct under-
standing of semantics and background commonsense
knowledge. To better represent the contextual seman-
tics, an end-to-end deep model (Lee et al., 2017) was
proposed and achieved surprisingly good performance
without any human-defined rules. On top of it, several
works (Lee et al., 2018; Zhang et al., 2019a; Zhang et
al., 2019b; Kantor and Globerson, 2019; Joshi et al.,
2020; Wu et al., 2020) have been proposed to address
different limitations of the original end-to-end model.
Recently, the pre-trained language models have almost
dominated all NLP tasks including the benchmarks in
PCR (Joshi et al., 2020; Sakaguchi et al., 2020). In this
work, we will evaluate both the traditional and recent
deep models with the proposed PCR4ALL benchmark
to analyze their strengths and limitations.

3. PCR4ALL
PCR4ALL is a large-scale multi-perspective PCR
benchmark with examples directly created by or
automatically transformed from human annotations.
PCR4ALL aims to evaluate the system performance on
identifying the correct candidate that the pronoun refers
to. Besides training and testing on a specific dataset, we
also expect models to demonstrate their comparative
generalizability and robustness in the multi-perspective
evaluation. On the other hand, for any new dataset

3The latest version of WSC has 284 questions, but as
most of the following works are evaluated based on the 273-
question version, we still use the 273-question version in
PCR4ALL.
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Source Context Sentence Candidate 1 Candidate 2 Label

CoNLL-2012 With their unique charm , these cartoon im-
ages once again caused Hong Kong to be a
focus of worldwide attention.

Hong Kong these cartoon
images

2

WSC style Seymour sought Johnson’s support , but
long remained silent on the campaign.

Johnson Seymour 1

I2b2 He was loaded with Dilantin ; serial head
CT scans were performed on this young pa-
tient.

this young
patient

serial head
CT

1

CIC Rachel Green says, Please . I haven’t heard
from her in seven months , and now she
calls me ? ... She was my best Mindy
Hunter ... she taught me how to kiss ..

Rachel
Green

Mindy
Hunter

2

WinoGender The technician told the customer that can
pay with cash.

technician customer 2

Table 1: Examples from different datasets in the unified examples. WSC style datasets include the datasets with the
same format of WSC (i.e., WSC, DPR, WinoGrande, and KnowRef). Target pronouns are in blue color. Correct
and wrong candidates are indicated with the green and red colors, respectively. For datasets that do not contain
the real pronouns, we use a pronoun place holder (i.e., “ ”) to represent the target pronoun. WinoGender dataset
evaluates if the predictions are consistent when the pronoun is “he” or “she”.

proposed in this area, we can also compare the multi-
angle performance to test if the knowledge that models
learned from this dataset can be easily transferred. The
construction details of PCR4ALL are as follows.

3.1. Dataset Creation
We first select a few PCR representative datasets as
the source of PCR4ALL before unification. We con-
sider datasets from different domains (e.g., medical re-
ports, TV series, and etc.) and formats (referred can-
didates span across a document or a sentence). In to-
tal, PCR4ALL is built from eight high-quality exist-
ing PCR datasets with details as follows: (1) CoNLL-
2012: To address the scale problem of previous corefer-
ence datasets, CoNLL-2012 (Pradhan et al., 2012) was
proposed. CoNLL-2012 focuses on the newswire do-
main and has been one of the most popular PCR bench-
marks. (2) Winograd Schema Challenge (WSC):
To investigate if current coreference models can un-
derstand the commonsense knowledge needed for re-
solving pronouns, WSC (Levesque et al., 2012) re-
moves the effect of all linguistic knowledge (e.g., gen-
der and plurality) and formalize the PCR problem as a
multiple-choice problem. The most widely used ver-
sion of WSC contains 273 such questions. The PCR
problem that only relies on commonsense knowledge is
also called the hard pronoun coreference task in some
other works. (3) Definite Pronoun Resolution (DPR):
Another hard PCR dataset is the definite pronoun reso-
lution dataset (DPR) (Rahman and Ng, 2012). Differ-
ent from WSC, DPR leveraged undergraduates rather
than experts to create the dataset. In total, DPR col-
lected 1,886 relatively simpler questions than WSC4.

4This dataset is also referred to as WSCR in some works.

(4) WinoGrande: One common problem of WSC and
DPR is their small scales. To create a larger scale data,
WinoGrande (Sakaguchi et al., 2020) was proposed.
By leveraging annotators from Amazon Mechanical
Turk, WinoGrande collected 53 thousand WSC-like
questions. (5) KnowRef: Similar to WinoGrande,
KnowRef (Emami et al., 2019) aimed at creating a
larger scale WSC dataset but with a different approach.
Instead of using a crowd-sourcing + adversarial fil-
tering framework, KnowRef tried to extract WSC-like
questions from raw sentences. As a result, KnowRef
collected 8 thousand WSC-like questions. (6) I2b2
(Uzuner et al., 2012): A dataset focuses on identify-
ing coreference relations in electronic medical records.
As a dataset in a relatively narrow domain, the usage
of domain knowledge is commonly considered as im-
portant. (7) CIC (Chen and Choi, 2016): A dataset
focuses on identifying coreference relations in multi-
party conversations. Compared with the ordinary PCR
tasks, which are mostly annotated on formal textual
data (e.g., newswire), identifying coreference relation
in conversation is more challenging since the word-
ing can be more casual. (8) WinoGender (Rudinger
et al., 2018): it is proposed to study the gender bias
phenomenon of current coreference systems in a sim-
ilar setting with WSC. Different from accuracy used
in WSC, the task requires model to report the consis-
tency of queries with pronouns representing different
genders. All the datasets mentioned above will be cat-
egorized and analyzed in the later sections.

3.2. Format Unification
In PCR4ALL, we convert all selected datasets into the
same formulation such that we can easily and fairly
evaluate different PCR models. As the research focus
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of PCR is coreference resolution rather than mention
detection (Zhang et al., 2020), we adopt the problem
formulation of WSC (i.e., the setting of DPR, Wino-
Grande, KnowRef, and WinoGender): Given a text
span, which contains a target pronoun and two candi-
date noun phrases, the task is to figure out which can-
didate does the target pronoun refers to. Converted ex-
amples in the unified format from different datasets are
presented in Table 1. Although we conduct this pio-
neer research in English, all conversion rules can also
be used for other languages.
For CoNLL-2012 and I2b2, each document contains
several segments (one or two sentences) and the anno-
tated co-referred mentions in different clusters. Since
we focus on the pronoun coreference task, we only se-
lect the clusters that contain both pronouns and noun
phrases. We then retrieve the segments that contain
these pronouns as the target sentence and use the noun
phrase as the positive example. We finally select the
negative examples from other clusters and randomly
assign the order of options of two candidates.
For CIC, for each scene in the TV show, we divide
it into several sentence segments. For each segment,
we conduct two kinds of formatting: (1) easy: we find
the segments with pronouns as the annotated mentions.
We mask the pronoun and use its referred character as
the answer. Then, in the same sentence, we extract the
noun phrases that are not referred to as negative exam-
ples; (2) hard: we generate questions with both options
as character names. We extract the segments that con-
tain two characters (e.g., A and B). We find the sen-
tence where A is the speaker and B is referred to by
both a pronoun and a noun phrase. We then replace the
noun phase mention with character B’s name, use “A
says” as the prefix, and generate a question that distin-
guishes the pronoun coreference from the speaker (A)
and the character (B).

3.3. Evaluation Toolbox
As aforementioned, a critical limitation of previous
PCR benchmarks is that they only produce an overall
performance (e.g., accuracy or F1) on a limited test
set.To address this issue, in PCR4ALL, besides the
overall performance, we also produce detailed evalu-
ation results based on different perspectives (knowl-
edge source, domain, data size, frequency, relevance,
and polarity) of the PCR problem.
As a starting point, for each selected question, we will
label it with one or several categories by the knowledge
sources and domains (perspectives may not be mutually
exclusive). When we report the performance from one
perspective, we will only evaluate based on the corre-
sponding questions. The detailed definition and how
we select the questions are as follows: (1) Linguistic
Knowledge: First of all, it is crucial to know how well
PCR models can understand linguistic knowledge such
as “he” normally can only refer to male and “they” to
plural nouns. For each question, if only one candidate

fits the linguistic requirement of the target pronoun, we
will select this question. For the annotation, we design
a rule-based system to automatically annotate if some
linguistic requirements exist in the question. (2) World
Knowledge: Based on the lower bound of a semantic
theory (Katz and Fodor, 1963), language understanding
needs the “speakers’ knowledge of the language” and
“his knowledge about the world”. If linguistic knowl-
edge is not a constraint, the understanding of language
will depend on the world knowledge5. Thus, ques-
tions with both candidates fit linguistic requirements
can be grouped into this category. (3) Formal Lan-
guage: To evaluate how well models can handle formal
language situations, where grammar errors or typos ap-
pear rarely (e.g., newswire, medical reports, and expert
reviewed documents), this category contains all expert-
annotated datasets. Questions are annotated to this cat-
egory if their sources are expert-annotated datasets. (4)
Casual Language: Besides the formal language, ca-
sual language is more popular in real applications (e.g.,
daily dialogue or online platforms). An important chal-
lenge of casual language are the potential typos, gram-
mar errors, and incomplete sentences. To study how
well PCR models can handle these cases, we select
questions from dialogues (i.e., CIC) and crowd-sourced
questions (i.e., WinoGrande) for the casual language
category. (5) Medical: To study how well PCR models
can handle corpus that requires domain-specific knowl-
edge. We use the medical domain as an example and re-
port based on the questions from the I2b2 dataset. (6)
Gender Bias: Besides the accuracy, fairness is also a
critical evaluation metric for current AI systems, and
the PCR model should not be an exception. Motivated
by this, we include questions from WinoGender (Zhao
et al., 2018) to evaluate how well models can treat dif-
ferent gender fairly.
Besides the domain separation, we also regard other
perspectives (data size, frequency, relevance, and polar-
ity) as important measurements to help researchers un-
derstand the model robustness in different settings and
conduct a fair and controlled comparison. Since paired
identical sentences are evaluated in WinoGender, the
gender bias issue is not evaluated for the perspectives
below (except for data size). Included perspectives are
defined as follows: (1) Data Size: To evaluate how the
training data size influences the final performance, we
set 6 thresholds on the randomly shuffled overall train-
ing data: 1, 10, 1,000, 10,000, 50,000, and 100,000
to reveal the expected performance on data with dif-
ferent sizes. (2) Frequency: To evaluate how perfor-
mance differs on frequent and infrequent candidates,
we break down the test set into subsets by the candi-
date frequency which is defined as the sum of token
occurrences in the train set (excluding the stop words).
(3) Relevance: As indicated by (Emami et al., 2020),

5World Knowledge is a bigger term than the common-
sense knowledge because it also includes fact knowledge like
“Obama was the president of US”.
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Train Dev Test Overall

Linguistic K. 12,422 1,537 1,514 15,473
World K. 90,918 11,381 11,404 113,703
Formal 50,118 6,221 6,392 62,731
Casual 53,222 6,697 6,526 66,445
Medical 15,270 1,887 1,986 19,143
Gender Bias - - 480 480

Overall 103,340 12,918 13,398 129,656

Table 2: PCR4ALL statistics. Number of training, de-
velopment, and test set for each types are reported. K.
denotes knowledge.

the relevance between train and test data will largely
influence the PCR model performance. Following their
work, we use BM25 (Amati, 2009) to score the dataset
overlap. BM25 is a bag-of-words based approach to
represent the document and score the relevance be-
tween a query and the document with weighted token
coverage. In this metric, a lower score means less rel-
evance. We break down the test set into subsets with
similar sizes by the BM25 scores for each example. (4)
Polarity: Ensuring the models are not simply remem-
bering the train set is another important factor to reveal-
ing the model robustness. Motivated by this, we further
compute the correlation between the candidates’ polar-
ity and model prediction. We define the candidate po-
larity as the sum of token probabilities of appearing in
the correct candidates in the train set.

3.4. Statistics and Evaluation
We randomly split all collected questions, except those
from WinoGender, into the training, development, and
testing set based on the standard 8:1:1 separation. For
WinoGender, we follow the original paper and use the
whole dataset as the test set. Statistics of resulted
PCR4ALL are presented in Table 2. For all evalua-
tion perspectives except gender bias, examples evenly
distribute over the train, development, and test sets.
All examples are formalized as binary choice problems.
Since (Sakaguchi et al., 2020) has reached over 90%
accuracy in a similar setting through fine-tuning pre-
trained language models, we report error rate (instead
of accuracy) to ensure clearer performance demonstra-
tion. For gender bias evaluation, we follow WinoGen-
der that evaluates how genders affect prediction by the
consistency of model predictions regarding different
gender pronouns. For each question, we replace the
pronoun with “he” and “she”, test if the models give
the same prediction, and report the consistency.

4. Experiments
Through the years, many approaches such as rule-based
or feature-based systems (Hobbs, 1978; Raghunathan
et al., 2010; Chang et al., 2013; Ng, 2005; Bengt-
son and Roth, 2008; Clark and Manning, 2015) have
been proposed to resolve pronouns. Besides those

PCR-oriented approaches, fine-tuned pre-trained lan-
guage models also serve as important baselines to solve
coreference resolution (Lee et al., 2018; Kantor and
Globerson, 2019; Joshi et al., 2020; Wu et al., 2020).
An important reason for its success is that rich se-
mantic and world knowledge is learned via the pre-
training (Petroni et al., 2019) and with the task-specific
fine-tuning, the model can then learn how to use the
acquired knowledge for the target task. Notice that
(Joshi et al., 2020) is not compared as a baseline since
it mainly focuses on improving mention detection, in-
stead of pronoun coreference resolution. To clearly
show the effect of both steps, we conduct experiments
on both the vanilla language representation models and
the fine-tuned ones with PCR4ALL. The details are as
follows.

4.1. Existing Coreference systems
As the beginning of the evaluation, we test how the
existing pronoun coreference systems perform on the
dataset. The selected systems are as follows: (1) Stan-
ford CoreNLP (Clark and Manning, 2016a; Clark and
Manning, 2016b): Stanford CoreNLP group has pro-
vided a neural coreference system with reinforcement
learning and entity-level distributed representations;
(2) SpaCy (Honnibal et al., 2020): The SpaCy team
adopts the hugginface’s6 implementation of a corefer-
ence resolution module with SpaCy parser and neu-
ral net scoring model based on (Clark and Manning,
2016a); (3) AllenNLP7: AllenNLP team implements
another coreference resolution model with an end-to-
end manner based on (Lee et al., 2017). All of these
systems described above take a text span as input and
output the identified clusters of text spans that refer
to the same entity. To apply these systems to the
PCR4ALL questions, we set the criterion of a success-
ful identification as: both the pronoun and the correct
candidate are in the same cluster. We report the error
rate as the final results.

4.2. Vanilla LM
Recently, pre-trained contextualized language repre-
sentation models have shown significant improvement
over multiple NLP tasks including the mentioned PCR
tasks. Besides the existing models, we also evalu-
ate if these pre-trained models can also identify the
more plausible options in the candidates. Following
and adapted from (Sakaguchi et al., 2020), we utilize
the representation models as multiple-choice solvers
with two candidates as the options. We treat the can-
didates as options and add these options as apposition
of the pronouns (e.g., replace “it” with “it, candidate,
”). Then we treat the option with the highest plausibil-
ity as the answer.
The covered models are as follows: (1) BERT (De-
vlin et al., 2019): as a powerful contextualized lan-

6https://github.com/huggingface/neuralcoref
7https://demo.allennlp.org/coreference-resolution

https://github.com/huggingface/neuralcoref
https://demo.allennlp.org/coreference-resolution
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Model
Linguistic K World K Formal Casual Medical Gender Bias
(Error Rate↓) (Error Rate↓) (Error Rate↓) (Error Rate↓) (Error Rate↓) (Consistency↑)

CoreNLP 63.29% 80.97% 61.28% 96.58% 82.43% 94.58%
SpaCy 51.61% 73.10% 46.30% 94.92% 61.58% 79.58%
AllenNLP 44.83% 65.53% 32.97% 93.24% 46.68% 84.58%

BERT 61.96% 57.15% 64.98% 50.46% 56.19% 94.58%
RoBERTa 47.13% 48.07% 47.31% 48.61% 50.40% 91.67%

Table 3: Overall Performance (error rate and consistency) of existing systems and vanilla language models.
CoreNLP denotes the Stanford CoreNLP package. ↓ / ↑ indicates that a lower/higher score in this metric means
better performance. The best-performing entries for each category are marked in bold.

Model Train set
Linguistic K World K Formal Casual Medical Gender Bias
(Error Rate↓) (Error Rate↓) (Error Rate↓) (Error Rate↓) (Error Rate↓) (Consistency↑)

BERT

All Data 2.10% 5.72% 2.77% 8.02% 0.55% 91.67%
Linguistic 2.59% 30.06% 14.09% 39.81% 10.78% 72.08%
World 2.59% 6.16% 2.91% 8.59% 0.60% 85.42%
Formal 11.19% 22.99% 3.63% 39.58% 0.70% 88.33%
Casual 10.48% 30.45% 33.02% 23.45% 36.81% 87.92%
Medical 20.56% 27.90% 8.08% 45.94% 0.76% 85.83%

RoBERTa

All Data 1.68% 4.06% 2.57% 5.00% 0.55% 94.58%
Linguistic 1.75% 24.47% 9.36% 34.42% 6.65% 81.25%
World 2.73% 3.57% 2.33% 4.62% 0.60% 95.42%
Formal 10.28% 12.86% 2.40% 22.63% 0.60% 92.50%
Casual 6.01% 9.27% 13.65% 4.20% 10.78% 90.42%
Medical 15.03% 22.69% 5.17% 38.38% 0.40% 85.42%

Table 4: Performance in the inter-/intra-domain setting. ↓ / ↑ indicates that a lower/higher score in this metric
means better performance. The best-performing entries for each category are marked in bold.

guage representation model, BERT-based models have
become the state-of-the-art for many downstream NLP
tasks. (2) RoBERTa (Liu et al., 2019): RoBERTa is
an improved version of BERT with larger amount of
training data and other techniques including dynamic
masking. We use the large versions of both models.

4.3. Finetuned LMs

Besides the unsupervised vanilla models, fine-tuning is
also an important technique to boost the performance,
as indicated by (Kocijan et al., 2019). We also fine-
tune the language representation models with differ-
ent training data from different domains (e.g., linguis-
tic knowledge, world knowledge, and etc.) and test
on the test data from all domains. Notice that since
we perform train-test split over the whole PCR4ALL
dataset, train/test sets are mutually exclusive. We de-
note the model trained on all the training data as the
practical upper bound for each language representation
model. However, since in the real applications, test
data might be from completely different domains than
the training data, we produce both the intra-domain and
inter-domain fine-tuning experiments as more detailed
and generalizable analysis on how good the models can
transfer learned knowledge among domains. For all the
experiments, we use learning rate 1× 10−5, batch size
16, and epoch 3. With 4 GTX 1080 Ti GPUs, training

on the whole PCR4ALL typically takes 24 hours. We
perform uniform sampling to select the hyperparame-
ters from 5 trials and final choices will be reported in
the project code.

5. Performances and Analysis
5.1. Existing Systems
Table 3 presents the performance of existing systems
on PCR4ALL. We can observe that current models that
are not fine-tuned on the perspectives cannot solve the
task well. Despite the good consistency on gender bias
data, existing coreference systems surpass 50% error
rate for most domains, especially for casual language
data. One explanation is that these systems are mainly
trained on formal documents (CoNLL-2012), which
leads to relatively poor generalizability to casual con-
versations from TV series. LMs that are pre-trained
to predict the plausibility of the sentences still can not
distinguish the correct candidates that pronouns refer
to without fine-tuning.

5.2. Influence of Domains
Table 4 presents the multi-perspective performance of
different LMs trained on training data from different
domains. The All data rows can be considered as both
a reference for the model performances and a standard
machine learning evaluation setting with a train test
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Figure 1: Performances on different perspectives with
different sizes of the overall train set when finetuning
RoBERTa. Lines with different colors indicate differ-
ent subsets of the test data for different domains.

split. From the results, we can make following obser-
vations:
(1) In general, the consistency for gender bias data is
similarly good across models. However, in many cases,
fine-tuning leads to less consistency than the vanilla
language models demonstrated in Table 4. For exam-
ple, the consistency decreases significantly (-23.34%
and -14.17% for BERT and RoBERTa, respectively,
comparing with the best-performing model) with mod-
els trained on linguistic data, which suggests the impor-
tance of designing unbiased dataset that does not rely
on gender heuristics.
(2) Models trained from different training data usually
perform the best in their own domain. However, there
are different levels of hardness for knowledge learned
from different domains to be transferred to some other
domains. Comparing the rows in the table, we can
observe that training from World knowledge acquires
the best domain transfer performance. In contrast,
knowledge learned the Linguistics domain is harder
to be transferred to others. For example, training the
RoBERTa model with linguistic domain data, the error
rates are around four to seven times larger than train-
ing with all data. Another interesting finding is that
there exist a few domain pairs that lead to bad transfer
learning performance (e.g., training on Formal and test
on Casual, and vice versa). which further suggests the
significance of the division of domains.
(3) On the other hand, some domains are harder than
others to be solved by the knowledge learned from
other domains. Comparing different columns of Ta-
ble 4, taking results from RoBERTa as an example, we
can observe that Casual test data is extremely hard to
be solved in a transfer learning setting. Models fine-
tuned from Linguistic and Medical data report 34.42%
and 38.38% error rates on this test case, which is close
to the majority votes. Considering that casual conver-
sations can likely become the use case for a real-world
PCR model, above results suggest the importance of in-
volving test data from different domains, especially for
those that are less tested in previous literature.

Model Test Data Error Rate ↓

BERT

All 5.40%
MFC 4.44%
LFC 5.93%
Zero-Shot 8.92%

RoBERTa

All 3.79%
MFC 2.94%
LFC 4.28%
Zero-Shot 5.84%

Table 5: Performance over subsets with different can-
didate frequencies. MFC and LFC denote the test sen-
tences with the more frequent or less frequent candi-
dates, respectively. Zero-shot denotes the sentences
with the candidates that have never appeared in the
training data.

5.3. Influence of Training Data Size
Figure 1 presents how the performance changes with
the increasing size of training data used. We can ob-
serve that the general performance on gender consis-
tency does not vary much with the increase of training
data. Although in general the error rates from all the
domains diminish quickly as the training data size in-
creases, test data from these domains still show differ-
ent levels of sensitivity towards the size change. For
example, error rate on test data from medical domain
(purple line in Figure 1) drops much faster than data
from casual domain. There is a long flat curve for data
from casual domain when the training data is small.
One possible explanation is that, while medical reports
have similar patterns and terms, daily conversations
have much more abundance in word use and sentence
structuring. Models are required to learn more data to
capture the coreference pattern in daily conversations
in the casual data domain. This observation suggests
that when the training data is small, the innate domain
characteristics of the test data can result in unclear per-
formance comparison between domains. Uniformed
large-scale training data is crucial if viewing the per-
formance from different perspectives is expected.
For the future use of PCR4ALL benchmark, models
can be tested on different size of the training data with
the same order in this experiment. Then the perfor-
mance can be compared with the data points provided
to acquire a detailed understanding of how likely the
model will work with different amount of data over dif-
ferent domains.

5.4. Influence of Frequency
To further analyze the performance, we divide the test
set into more frequent candidates (MFC), less frequent
candidates (LFC), and unseen candidates (Zero-Shot)
subsets by the mean candidate frequency of both can-
didates in each question.
Table 5 presents how the test set performance changes
with the candidate frequency. In general, we can ob-
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Figure 2: Performances on different perspectives with
test subsets divided by their word frequency when fine-
tuning RoBERTa with all training data.

serve that both models perform better on the examples
with candidates that appear more often during training.
In addition, while the performance gain from an im-
proved pre-trained model (RoBERTa) is not restricted
to a single subset (RoBERTa reduces the error rate by
a large margin for both MFC and Zero-shot), it also
slightly relieves the performance drop for unseen can-
didates, where the error rate gap between MFC and
Zero-shot drops from 4.48% to 2.90%.
Furthermore, as a detailed study, Figure 2 presents how
the performance against candidate frequency varies
from different data domains, where the x-axis is a nor-
malized indicator of the frequency (larger means higher
frequency). The data points are grouped into batches,
for example, examples with frequency 0 to 0.5 (right
exclusive) will be considered as the group with fre-
quency 0. In general, for most domains, the error rate
drops quickly with the increase of examples’ candidate
frequency.

5.5. Influence of Relevance
With the aforementioned BM25 scores (details in Sec-
tion 3.3), we empirically divide the test set into four
batches with similar sizes (the score thresholds for
splitting these batches are 47, 71, and 120; the rele-
vance increases as the score increase).
Table 6 presents the influence of the relevance between
train and test data. We can observe that for both the
overall test data and most of its perspectives, the in-
crease of BM25 scores will lead to a large decrease in
the error rate. The significant effect of relevance sug-
gests the importance of including the relevance view
for a fair comparison between datasets.
Figure 3 presents the detailed analysis on different do-
mains for the relevance perspective. We could observe
that, though the performances on subsets from differ-
ent perspectives generally increases as the relevance
increases, Linguistic perspective examples are partic-
ularly sensitive. The reason behind can be that unseen
linguistic patterns can be hard for the models.
We could also observe that there are some small peaks

Model Test Data Error Rate ↓

BERT

All 5.40%
BM25 ∈ [0, 47] 10.16%
BM25 ∈ (47, 71] 7.56%
BM25 ∈ (71, 120] 2.98%
BM25 ∈ (120, +∞) 0.75%

RoBERTa

All 3.79%
BM25 ∈ [0, 47] 6.11%
BM25 ∈ (47, 71] 5.56%
BM25 ∈ (71, 120] 2.55%
BM25 ∈ (120, +∞) 0.88%

Table 6: Performance over subsets with different rele-
vance. Lower BM25 score indicates lower relevance.

Figure 3: Performances on test subsets that have differ-
ent levels of relevance to the training data when fine-
tuning RoBERTa with all training data. The relevance
level is indicated by aforementioned BM25.

with high relevance. The reason can be that the mod-
els predicted the “remebered” label for a similar test
example with a flipped label, which we can commonly
observe in WSC-style datasets.

5.6. Influence of Polarity
Table 7 demonstrates how the candidate polarity corre-
lates with the model predictions. We can observe that
positive correlation commonly exists on all models and
most domains, which suggests that the label distribu-
tion of each word captured during training correlates
with the model prediction during testing. Also, the dif-
ferences in correlation mainly come from the change of
test data domain, instead of the used model.
Medical data show larger correlation than data from
other domains. One possible explanation is that many
patterns occur in the training data can also appear often
in the test data as the medical reports are highly for-
matted. In detail, there are two types of co-references
in the original annotations of I2b2, where one is the
ordinary pairs such as “he” refers to “the patient” and
the other is about the syndromes or other terms such as
“the syndrome” refers to “COPD” (Chronic Obstruc-
tive Pulmonary Disease). Tokens from the first type re-
occur much more often than the second among all doc-
uments, which leads to higher polarity for tokens like
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Test Data
BERT RoBERTa
(Correlation) (Correlation)

All 0.18138 (<.001) 0.18144 (<.001)
Linguistic K 0.14861 (<.001) 0.14719 (<.001)
World K 0.18677 (<.001) 0.18691 (<.001)
Formal 0.25789 (<.001) 0.25805 (<.001)
Casual 0.08343 (<.001) 0.08272 (<.001)
Medical 0.50276 (<.001) 0.50245 (<.001)

Table 7: The correlation between the candidate polar-
ity and model predictions with Spearman’s correlation
(and two-tailed p-values).

“patient”. Since the score for the model based on LMs
could be viewed as which candidate occurs to be a bet-
ter substitute for the pronoun in the sentence, LMs nat-
urally assign higher probability to the common tokens
instead of the rare ones (e.g., patient vs. vancomycin).
Then the correlation between polarity and predictions
is higher than other datasets.
We could also observe that questions CIC (from TV
drama, Friends) achieves the lowest correlation, where
the candidates are usually from the same pool of names
and has no above-mentioned issue in I2b2. For evalua-
tion, we only need to compare the polarity across mod-
els as part of the correlation comes from characteristics
of datasets.

6. Conclusion

In this paper, we propose PCR4ALL, a unified large-
scale benchmark for pronoun coreference resolution
task that evaluates PCR systems from multiple per-
spectives, including knowledge source, domain, data
size, frequency, relevance, and polarity. Multi-angle
experiments included in the benchmark are bundled as
a comprehensive evaluation toolbox to allow deep un-
derstanding of the performance and applicability of the
systems beyond the overall accuracy or F1 score alone.
We also further point out the strengths and limitations
of current models through extensive experiments, such
as the gap for zero-shot examples and the reliance on
the data relevance.
PCR4LL provides a unified easy-to-use benchmark
through careful split and labeling on the overall dataset.
The unification allows fair and detailed comparison
over newly proposed models or datasets. More im-
portantly, the unification method and toolbox can be
easily applied to other uncovered PCR tasks to extend
PCR4ALL collaboratively. We hope that this bench-
mark can inspire the community to improve the eval-
uation of the robustness and real-world-applicability
of PCR models. One potential future direction is
to further extend the binary-choice problem to candi-
date ranking problem to further challenge current PCR
methods.
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