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Abstract
Medical Subject Heading (MeSH) indexing refers to the problem of assigning a given biomedical document
with the most relevant labels from an extremely large set of MeSH terms. Currently, the vast number
of biomedical articles in the PubMed database are manually annotated by human curators, which is time
consuming and costly; therefore, a computational system that can assist the indexing is highly valuable.
When developing supervised MeSH indexing systems, the availability of a large-scale annotated text corpus is
desirable. A publicly available, large corpus that permits robust evaluation and comparison of various systems
is important to the research community. We release a large scale annotated MeSH indexing corpus, MeSHup,
which contains 1,342,667 full text articles in English, together with the associated MeSH labels and metadata,
authors, and publication venues that are collected from the MEDLINE database. We train an end-to-end model
that combines features from documents and their associated labels on our corpus and report the new baseline.

Keywords: MeSH Indexing, Multi-label text classification

1. Introduction

MEDLINE1 comprises 33 million (as of Nov.
2021) references to journal articles in the life
sciences with a concentration on biomedicine,
which is the National Library of Medicine’s2

(NLM) premier bibliographic database. It in-
cludes textual information (title and abstract)
and bibliographic information for articles from
academic journals covering various disciplines
of the life sciences and biomedicine. PubMed3

is a free search engine that provides free ac-
cess to the MEDLINE database. In addition
to MEDLINE, PubMed also provides access to
the PubMed Central4 (PMC) repository that
archives open-access, full-text scholarly articles
in biomedical and life sciences journals. All
records in the MEDLINE database are indexed
with Medical Subject Headings (MeSH)5 – a
controlled and hierarchically-organized vocabu-
lary produced and maintained by the NLM. As
of 2021, there are 29,369 main MeSH head-
ings, and each citation is indexed with 13 MeSH
terms on average. MeSH headings can be fur-
ther qualified by 83 subheadings (also known as
qualifiers). In addition, Supplementary Concept

1https://www.nlm.nih.gov/medline/medline_
overview.html

2https://www.nlm.nih.gov
3https://pubmed.ncbi.nlm.nih.gov/about/
4https://en.wikipedia.org/wiki/PubMed_Central
5https://www.nlm.nih.gov/mesh/meshhome.html

Records (SCRs) refer to specific chemical sub-
stances in the MEDLINE records.
MeSH indexing, a process that annotates doc-
uments with concepts from established seman-
tic taxonomies and ontologies, is important for
biomedical text classification and information
retrieval. MEDLINE citations are indexed by
human annotators who read the full text of the
article and assign the most relevant MeSH la-
bels to the articles. The manual annotation pro-
cess ensures the high quality of indexing but,
inevitably, the cost can be prohibitive. There
has been a steady and sizeable increase in
the number of citations that are added to the
MEDLINE database every year; for instance,
in 2020, 952,919 articles were added (approx-
imately 2,600 on a daily basis)6and the aver-
age cost of annotation per document is approx-
imately $9.40 (Mork et al., 2013). Faced with
the growing workload, NLM annotators remain
tasked with indexing newly published articles
efficiently and promptly. Therefore, there is a
pressing need for automatic supports to index-
ing biomedical literature.
Many state-of-the-art models have been pro-
posed to deal with MeSH indexing; however,
there is a clear drawback to these automatic in-
dexing systems because of the data used to train
them. Existing corpora for MeSH indexing only

6https://www.nlm.nih.gov/bsd/medline_pubmed_
production_stats.html

https://www.nlm.nih.gov/medline/medline_overview.html
https://www.nlm.nih.gov/medline/medline_overview.html
https://www.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov/about/
https://en.wikipedia.org/wiki/PubMed_Central
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
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provide the title and abstract, while human an-
notators review full text articles. This suggests
that important information might be contained
in the full text which is available to the human
indexer, but does not appear in the title and ab-
stract that automatic indexing systems use to
make recommendations. Mork et al. (2017) fur-
ther indicated that some sections in the full text
that include very specific information, such as
the “Methods” section, help improve the perfor-
mance of automatic models. Thus, a corpus that
contains full text articles and their associated
MeSH labels is highly desirable.
In this work, we construct a new labeled full text
MeSH indexing dataset7, MeSHup, that for each
entry, is a mashup of the PMID, title, abstract,
journal, year, author list, MeSH terms, chem-
ical list, and Supplementary Concept Records
from MEDLINE and the full text introduction,
methods, results, discussion, figure captions,
and table captions that are available from BioC-
PMC (Comeau et al., 2019). To the best of our
knowledge, MeSHup is the first publicly avail-
able (and the largest) full text dataset annotated
for MeSH indexing. We also propose a multi-
channel model that incorporates extracted fea-
tures from different sections of the full text and
report its baseline results.

2. Related Work

2.1. Biomedical Corpora Related to
MeSH Terms

There are several corpora in the biomedical do-
main that contain or make use of MeSH terms.
The OSHUMED test collection (Hersh et al.,
1994) is a set of 348,566 clinically-oriented ref-
erences in the MEDLINE database which are ob-
tained from 270 medical journals in the years
1987 to 1991. For each citation, the collec-
tion contains the title, abstract, MeSH index-
ing terms, author, source, and publication type.
The OSHUMED corpus is one of the earliest
corpora that is related to the MeSH indexing
task. The GENIA corpus (Kim et al., 2003)
is a valuable resource in the biomedical litera-
ture that was created to support the develop-
ment of tools for text mining and information
retrieval and their evaluation. It contains 2,000
abstracts taken from the MEDLINE database
with a variety of entity types in the GENIA
Chemical ontology that are derived from MeSH
terms. The CHEMDNER corpus (Krallinger et
al., 2014) contains 10,000 PubMed abstracts

7https://github.com/xdwang0726/MeSHup

and 84,355 manually annotated chemical enti-
ties. CHEMDNER labels entities based on the
Chemicals and Drugs branch of the MeSH hier-
archy and the MeSH substances. The BioCre-
ative V Chemical-Disease Relation Task Corpus
(BC5CDR) (Li et al., 2015) was developed for
the BioCreative V challenge. A team of Medi-
cal Subject Headings (MeSH) indexers for dis-
ease/chemical entity annotation and Compara-
tive Toxicogenomics Database (CTD) curators
for CID relation annotation were invited to en-
sure high annotation quality and productivity.
Detailed annotation guidelines and automatic
annotation tools were provided. The resulting
corpus consists of 1500 PubMed articles with
4409 annotated chemicals, 5818 diseases and
3116 chemical-disease interactions. Each entity
annotation includes both the mention text spans
and normalized concept identifiers, using MeSH
as the controlled vocabulary. The NLM-CHEM
corpus (Islamaj et al., 2021), created for Track
2 of BioCreative VII, consists of 150 full text ar-
ticles with chemical entity annotations provided
by human experts for 5000 unique chemical
names, mapped to 2000 MeSH identifiers. This
dataset is compatible with the CHEMDNER and
BC5CDR corpora described above.

2.2. Related Full-Text Biomedical
Corpora

A number of full-text corpora have been created
in the biomedical domain. Each has been gen-
erated for specific purposes and consequently
has been annotated with that in mind. The
earliest is a small five biomedical paper corpus
(Gasperin et al., 2007) which was designed to
capture anaphora. The corpus of biomedical
articles are annotated with anaphoric links be-
tween coreferent and associative (biotype, ho-
molog, and set-member) noun phrases referring
to the biomedical entities of interest to the au-
thors. For the BioCreative I task 2 (Hirschman
et al., 2005), the training set corpus comprised
803 full text articles from four different jour-
nals that had been previously annotated for hu-
man protein function and the test set corpus
comprised 212 full text articles. The CRAFT
(The Colorado Richly Annotated Full-Text) cor-
pus (Verspoor et al., 2012) is a collection of 97
articles from the PubMed Central Open Access
subset. Each article has been manually anno-
tated along structural, coreference, and concept
dimensions. More recently, the BioC-BioGRID
corpus (Dogan et al., 2017) comprises full text
articles annotated for protein-protein and ge-
netic interactions.

https://github.com/xdwang0726/MeSHup
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2.3. Automatic MeSH Indexing Based
on Title and Abstract

As discussed, there is rapid growth in the num-
ber of articles in MEDLINE, and the NLM has
developed an indexing tool, Medical Text In-
dexer (MTI), to recommend MeSH terms in au-
tomated and semi-automated modes (Aronson et
al., 2004). MTI first takes the title and abstract
of the input article and generates recommended
MeSH terms, using a ranking algorithm to de-
termine final suggestions. There are two im-
portant components in MTI: MetaMap Indexing
(MMI) and PubMed-Related Citations (PRC) (Lin
and Wilbur, 2007; Aronson and Lang, 2010).
MetaMap recommends MeSH terms based on
the mapping of biomedical concepts in the title
and abstract of the input article to the the Uni-
fied Medical Language System8 (UMLS). PRC
suggests MeSH terms by looking at similar an-
notations in MEDLINE using k-nearest neigh-
bours. Two sets of recommended MeSH terms
are combined to generate the final MeSH list.
Since 2013, BioASQ9(Tsatsaronis et al., 2015)
has organized the biomedical semantic indexing
challenge, which offers the opportunity for more
participants to get involved in the MeSH index-
ing task. BioASQ provides annotated PubMed
articles with the title and abstract only, and
participants can tune their annotation models
accordingly. Many effective indexing systems
have been proposed since then, such as MeSH-
Labeler (Liu et al., 2015), DeepMeSH (Peng
et al., 2016), AttentionMeSH (Jin et al., 2018),
MeSHProbeNet (Xun et al., 2019), and Ken-
MeSH (Wang et al., 2022). MeSHLabeler and
DeepMeSH are models based on a Learning-
to-Rank (LTR) framework. AttentionMeSH and
MeSHProbeNet both utilize deep recursive neu-
ral networks (RNNs) and attention mechanisms,
where the main difference is that the former
uses label-wise attention while the latter em-
ploys multi-view self-attentive MeSH probes.
KenMeSH combines text features and the MeSH
label hierarchy by using a dynamic knowledge-
enhanced mask to index MeSH terms.

2.4. MeSH Indexing Based on Full
Text

MeSH indexing with full texts has been studied
using relatively small sets of data or restricted
to small numbers of specific MeSH terms be-
cause of the limitation of full text access. Gay
et al. (2005) collected 500 articles in 17 jour-

8https://www.nlm.nih.gov/research/umls/
9http://bioasq.org

nal issues in the PubMed database and used the
full text as input to MTI. They found that us-
ing the full text of an article provides signifi-
cantly better (7.4%) quality of automatic index-
ing than using only abstracts and titles. Jimeno-
Yepes et al. (2012) used a collection of 1,413
biomedical articles randomly selected from the
PMC Open Access Subset. They first ran au-
tomatic summaries over the full test and then
used the generated summary as input to MTI.
The experimental results showed that incorpo-
rating full texts achieved higher (6%) recall with
a trade-off in precision compared to using the
abstracts and titles only. Demner-Fushman and
Mork (2015) collected 14,829 citations and used
a rule-based method to classify Check Tags, a
small set of MeSH terms (29 MeSH Check Tags)
that represent characteristics of the subjects.
Wang and Mercer (2019) released a full text
dataset curated from PMC with 257,590 arti-
cles and employed a multi-channel CNN-based
feature extraction model. FullMeSH (Dai et
al., 2019) and BERTMeSH (You et al., 2020)
used 1.4M full text articles, the former with an
attention-based CNN and the latter with pre-
trained contextual embeddings together with an
attention mechanism. Unfortunately, they did
not make their dataset available, which makes
it difficult for others to compare and evaluate
their work.

3. Dataset Construction
In this subsection, we introduce how to con-
struct the dataset based on the PubMed Cen-
tral Open Access in BioC format10 (BioC-
PMC) (Comeau et al., 2019) and the MED-
LINE/PubMed Annual Baseline Repository11

(MBR). We download the entire BioC-PMC sub-
set (as of Nov. 2021) and obtain 3,601,092 full
text articles. We also download the entire
MBR collection (as of Nov. 2021) and obtain
31,850,051 citations with metadata in the MED-
LINE database. In order to reduce bias, we
only consider articles indexed by human anno-
tators (i.e., articles in the MEDLINE database
with modes marked as ‘curated’ (MeSH terms
were provided algorithmically and were human
reviewed) or ‘auto’ (MeSH terms were provided
algorithmically) are not considered)12, and we
only focus on articles written in English (i.e.,

10https://www.ncbi.nlm.nih.gov/research/bionlp/
APIs/BioC-PMC/

11https://lhncbc.nlm.nih.gov/ii/information/MBR.
html

12https://www.nlm.nih.gov/bsd/licensee/elements_
descriptions.html

https://www.nlm.nih.gov/research/umls/
http://bioasq.org
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC/
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC/
https://lhncbc.nlm.nih.gov/ii/information/MBR.html
https://lhncbc.nlm.nih.gov/ii/information/MBR.html
https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
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only articles annotated as ‘eng’ are considered)
in the MEDLINE database. We then match
BioC-PMC articles with MBR citations using the
PubMed ID (PMID) and obtain a set of 1,342,667
biomedical documents.

Information extracted from BioC-PMC.
Each article in the BioC-PMC subset is struc-
tured in a single XML file. The original pub-
lished articles are formatted in various ways de-
pending on the publisher. With the BioC format
(Comeau et al., 2019), an article’s textual in-
formation is preserved and each article is orga-
nized in a unified structure. We parse the tags in
the BioC formatted XML files to get the section
names and their corresponding texts. We then
divide and normalize all full text articles into
eight BioC sections: title, abstract, introduc-
tion, methods, results, discussion, figure cap-
tions, and table captions. Table 1 summarizes
the statistical information for the described sec-
tions.

Sections number of articles average length
Title 1,342,667 16

Abstract 1,342,667 258
Introduction 1,279,276 991

Methods 1,135,757 1446
Results 1,090,981 1640
Discuss 1,042,379 1249

Figure Captions 1,155,208 560
Table Captions 520,780 123

Table 1: Statistics of the generated dataset for
each of the eight sections

Information extracted from the MED-
LINE/PubMed Annual Baseline (MBR).
Starting in 2002, MBR has provided access to
all MEDLINE citations and it updates and adds
new citations every year. Each year’s baseline
contains textual information (title and abstract)
of the citations as well as various types of meta-
data, such as their authors, publishing venues,
and references. Metadata can be regarded as
strong indicators for the semantic indexing task
as they include latent information of research
topics. We therefore extract the metadata of
each article from MBR; the detailed metadata
and their descriptions are stated in Table 2.

We combine the information extracted from
BioC-PMC and MBR to form MeSHup, a new
large-scale, full-text biomedical semantic index-
ing dataset. Specifically, each article in the
dataset contains the full textual information and
the metadata associated with it. The keys (sec-
tion descriptors) from MeSHup are shown in

Metadata Descriptions

PMID
The PubMed (NLM database that
incorporates MEDLINE) unique identifier.

Authors
Personal and collective (corporate)
author names published with the article.

Journal The journal that the article is published in.
Year The year in which the article is published.
DOI Digital Object Identifiers.

MeSH Terms
NLM controlled vocabulary,
Medical Subject Headings (MeSH).

Supply MeSH Supplementary Concept Record (SCR) terms.
Chemical List A list of chemical substances and enzymes.

Table 2: Meta-data extracted from MBR and
their descriptions

{"articles":[
{"PMID": ,
"TITLE": ,
"ABSTRACT": ,
"INTRO": ,
"METHODS": ,
"RESULTS": ,
"DISCUSS": ,
"FIG_CAPTIONS": ,
"TABLE_CAPTIONS": ,
"JOURNAL": ,
"YEAR": ,
"DOI": ,
"AUTHORS": ,
"MeSH": ,
"CHEMICALS": ,
"SUPPLMeSH":
},
{
...
},
...

]}

Figure 1: The section descriptors given as JSON
keys.

JSON format in Fig. 1, and an abbreviated ver-
sion of the dataset is provided in the Appendix.
Our goal in releasing MeSHup is to promote
large-scale ontological classification of biomedi-
cal documents, using full texts, across the com-
munity. With MeSHup, researchers can explore
and test state-of-the-art indexing systems with a
common standard.

4. Experiments

Given the full text of a biomedical article, MeSH
indexing can be regarded as a multi-label text
classification problem. The learning framework
is defined as follows. X = {x1, x2, ..., xn} is a set
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of biomedical documents and Y = {y1, y2, ..., yL}
is the set of MeSH terms. Multi-label classifica-
tion studies the learning function f : X → [0, 1]Y

using the training set D = {(xi, Yi), i = 1, ..., n},
where n is the number of documents in the set,
and Yi ⊂ Y is the set of MeSH labels for docu-
ment xi. The objective of MeSH indexing is to
predict the correct MeSH labels for any unseen
article xk, where xk is not in X .

4.1. Baseline Model

In general, traditional MeSH indexing systems
focus on the document features only, thereby
suffering from a lack of information about the
MeSH hierarchy. To handle this, we present a
hybrid document-label feature method, which is
composed of a multi-channel document repre-
sentation module, a label feature representation
module, and a classifier. The overall model ar-
chitecture is shown is Figure 2.

Figure 2: Model Architecture - There are three
main components in our method. First, a multi-
channel document representation module oper-
ates on each section of an input article. Sec-
ond, a 2-layer GCN creates label vectors. Lastly,
a label-wise attention component calculates the
label-specific attention vectors that are used for
predictions.

4.1.1. Multi-channel Document
Representation Module

The multi-channel document representation
module has five input channels: the title and
abstract channel, the introduction channel, the
methods channel, the results channel, and the
discussion channel. Texts in each channel are
represented by the embedding matrices, namely
EC ∈ Rd, where d represents the dimension of
the word embeddings.
Instead of a recurrent model which poses com-
putational and technical issues, we apply a
multi-level dilated convolutional neural network

(DCNN) to each channel in order to get the
distant effect memory from a CNN model. To
be specific, our DCNN is a three-layer, one-
dimensional convolutional neural net (CNN)
with dilated convolution kernels, which ob-
tain high-level semantic representations of texts
without increasing the computation. The con-
cept of dilated convolution has been popular
in semantic segmentation in computer vision in
recent years (Yu and Koltun, 2016; Li et al.,
2018), and it has been introduced to sequential
data (Bai et al., 2018), specially to the field of
NLP in neural machine translation (Kalchbren-
ner et al., 2017) and text classification (Lin et
al., 2018). Dilated convolution enables exponen-
tially large receptive fields over the embedding
metric, which captures long-term dependencies
over the input texts.

We apply a multi-level DCNN with different di-
lation rates on top of the embedding metric
on each channel. Larger dilations represent a
wider range of inputs that can capture sentence-
level information, whereas small dilations cap-
ture word-level information. The semantic fea-
tures returned by DCNN for each channel is de-
noted as DC ∈ R(l−s+1)×2d, where l is the se-
quence length in channel C and s is the width of
the convolution kernels.

4.1.2. Label Feature Representation
Module

Graph convolutional neural networks (GCNs)
(Kipf and Welling, 2017) have attracted wide at-
tention recently. They have been effective in
tasks that have rich relational structures, as
GCNs preserve global information within the
graph. Traditional multi-label text classification
mainly focuses on local consecutive word se-
quences; for instance, two deep networks com-
monly used in building text representations af-
ter learning word embeddings are convolutional
(CNNs) and recurrent neural networks (RNNs)
(Kim, 2014; Tai et al., 2015). Some recent stud-
ies explored GCN for text classification, where
they either viewed a document or a sentence as
a graph of word nodes (Peng et al., 2018; Yao et
al., 2019). MeSH labels are arrayed hierarchi-
cally, an example of which is shown in Figure 3.
We take advantage of the structured knowledge
we have over the parent and child relationships
in the MeSH label space by using a GCN. In the
label graph setting, we formulate each MeSH la-
bel in Y as a node in the graph. The edges rep-
resent parent and child relationships among the
MeSH terms. The edge types of a node contain
edges from itself, from its parent, and from its
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Figure 3: An example of the MeSH hierarchy
(retrieved Nov. 2021). For example, under Body
Regions, there are specific body regions under
the MeSH tree.

children. We first take the average of the word
embeddings of the words in the MeSH label de-
scriptor as the initial label embedding vi ∈ Rd:

vi =
1

mi

mi∑
j=1

wj , i = 1, 2, ..., L, (1)

where mi is the number of words in the descrip-
tor of label i, wj is the word embedding of word
j, and L is the number of labels. The GCN lay-
ers capture information about immediate neigh-
bours with one layer of convolution, and infor-
mation from a larger neighbourhood can be in-
tegrated by using a multi-layer stack. We use
a two-layer GCN to incorporate the hierarchical
information among MeSH terms. At each GCN
layer, we aggregate the parent and child nodes
for the ith label to form the new label embedding
for the next layer:

hl+1 = σ(A · hl ·W l), (2)

where hl and hl+1 ∈ RL×d indicate the node pre-
sentations of the lth and (l + 1)th layers, σ(·) de-
notes an activation function, A is the adjacency
matrix of the MeSH hierarchical graph, and W l

is a layer-specific trainable weight matrix. Next,
we sum both the averaged description vector
from Equation 1 with the GCN output to form:

Hlabel = v + hl+1, (3)

where Hlabel ∈ RL×d is the final label matrix.

4.1.3. Classifier
For large multi-label text classification tasks,
relevant information for each label might be
scattered in various locations of the article. In

order to match documents to their correspond-
ing label vectors, we employ label-wise atten-
tion following Mullenbach et al. (2018). We
generate label-specific representations for each
channel:

αC = Softmax(DC ·Hlabel)

contentC = αT
C ·DC,

(4)

where contentC ∈ RL×d. We then sum up the
label-specific content representation for each
channel to form the final document representa-
tion for each article:

D =
∑

contentC (5)

We then generate the predicted score for each
MeSH label via:

ŷi = σ(D ⊙Hlabel), i = 1, 2, ..., L, (6)

where σ(·) denotes the sigmoid function. Train-
ing our proposed method uses binary cross-
entropy as the loss function:

L =

L∑
i=1

[−yi · log(ŷi)− (1− yi) · log(1− ŷi))], (7)

where yi ∈ [0, 1] is the ground truth of label i,
and ŷi ∈ [0, 1] denotes the prediction of label i
obtained from the proposed model.

4.2. Evaluation Metrics

We evaluate performance of MeSH indexing
systems using two groups of measurements:
bipartition-based evaluation and ranking-based
evaluation. Bipartition evaluation is further di-
vided into example-based and label-based met-
rics. Example-based measures, computed per
data point, compute the harmonic mean of stan-
dard precision (EBP) and recall (EBR) for each
data point. The metrics are defined as:

EBF =
2× EBR × EBP

EBR + EBP
, (8)

where

EBP =
1

N

N∑
i=1

|yi ∩ ŷi|
|ŷi|

, (9)

EBR =
1

N

N∑
i=1

|yi ∩ ŷi|
|yi|

, (10)

where yi is the true label set and ŷi is the pre-
dicted label set for instance i, and N represents
the total number of instances.
We perform label-based evaluation for each la-
bel in the label set. The measurements include
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Micro-average F-measure (MiF) and Macro-
average F-measure (MaF). MiF aggregates the
global contributions of all MeSH labels and then
calculates the harmonic mean of micro-average
precision (MiP) and micro-average recall (MiR),
which are heavily influenced by frequent MeSH
terms. MaF computes the macro-average preci-
sion (MaP) and macro-average recall (MaR) for
each label and then averages them, which pro-
vides equal weight to each MeSH term. There-
fore frequent MeSH terms and infrequent ones
are equally important. The aforementioned met-
rics are defined as follows:

MiF =
2× MiR × MiP

MiR + MiP
, (11)

where

MiP =

∑L
j=1 TPj∑L

j=1 TPj +
∑L

j=1 FPj

, (12)

MiR =

∑L
j=1 TPj∑L

j=1 TPj +
∑L

j=1 FNj

, (13)

MaF =
2× MaR × MaP

MaR + MaP
, (14)

where

MaP =
1

L

L∑
j=1

TPj

TPj + FPj
, (15)

MaR =
1

L

L∑
j=1

TPj

TPj + FNj
, (16)

where TPj , FPj and FNj are the true positives,
false positives, and false negatives, respectively,
for each label lj in the set of all labels L.

Ranking-based evaluation includes precision at
k (P@k ) and recall at k (R@k ). P@k shows
the number of relevant MeSH terms that are
suggested in the top-k recommendations of the
MeSH indexing system, and R@k indicates the
proportion of relevant items that are suggested
in the top-k recommendations. The metrics are
defined as follows:

P@k =
1

k

∑
l∈rk(ŷ)

yl, (17)

R@k =
1

|yi|
∑

l∈rk(ŷ)

yl, (18)

where rk returns the top-k recommended items.

Thresholds greatly impact the bipartition-based
evaluation metrics. We therefore tuned the

threshold τi for predicting the i-th label, and se-
lected the predicted MeSH term (MeSH i) whose
predicted probability is greater than τi:

MeSHi =

{
ŷi ≥ τi, 1

ŷi < τi, 0
(19)

We used the micro-F optimization algorithm pro-
posed by Pal et al. (2020) to tune the thresholds:

τi = argmax
T

MiF(T ), (20)

where T represents all possible threshold val-
ues for label i.

4.3. Experiment Settings

We implement our model using PyTorch (Paszke
et al., 2019). We use 200-dimensional word em-
beddings (BioWordVec) that are pretrained on
PubMed article titles and abstracts (Zhang et
al., 2019). For the model’s DCNN component,
we use a 1-dimension convolution with kernel
size 3 and a three-level dilated convolution with
dilation rates [1,2,3]. The number of hidden
units in both components of our model is set to
200. We use the Adam optimizer (Kingma and
Ba, 2015) with a minibatch size of 8 and an ini-
tial learning rate of 0.0003 with a decay rate of
0.9 in every epoch. To avoid overfitting, we ap-
ply dropout directly after the embedding layer
with a rate of 0.2 and use early stopping strate-
gies (Yao et al., 2007). Our model is trained on a
single NVIDIA A100 GPU. It takes approximately
five to seven days to train the full model.

4.4. Experimental Results

In the baseline model, we are interested in the
articles that have all six sections, i.e., title, ab-
stract, introduction, method, results, and dis-
cuss. We extract the 957,426 articles from
MeSHup that meet these criteria. We use strat-
ified sampling over publication year to split
our dataset into training, validation and test-
ing. We use 80% of the documents for training
(765,920), 10% for validation (95,737), and 10%
for testing (95,769).
We first conduct our experiments with titles
and abstracts only, and then we do our experi-
ments on the full texts. From this experiment,
we would like to see how integrating full text
information affects the indexing performance
compared with using the titles and abstracts
only. Table 3 summarizes the results of bipar-
tition evaluation and Table 4 shows the results
of ranking-based measures. We can see sub-
stantial improvements on all evaluation metrics
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Bipartition evaluation Methods
Titles and Abstracts Full Texts

Example based
EBF 0.183 0.259
EBP 0.503 0.588
EBR 0.112 0.166

Micro-averaged
MiF 0.177 0.259
MiP 0.473 0.604
MiR 0.110 0.164

Macro-averaged
MaF 0.362 0.367
MaP 0.798 0.810
MaR 0.234 0.237

Table 3: Comparison using only titles and ab-
stracts and full texts across bipartition evalua-
tion. Bold: best scores in each row.

Ranking Based
Methods

Measure
Titles and Abstracts Full Texts

P@k

P@1 0.699 0.801
P@3 0.462 0.609
P@5 0.372 0.496
P@10 0.260 0.341
P@15 0.205 0.267

R@k

R@1 0.051 0.077
R@3 0.098 0.128
R@5 0.131 0.171
R@10 0.180 0.232
R@15 0.214 0.272

Table 4: Comparison using only titles and ab-
stracts and full texts across ranking-based mea-
sures. Bold: best scores in each row.

when involving full texts, which indicates that
full texts are more informative compared to the
titles and abstracts. The baseline model pre-
forms fairly well on precisions, but with a trade
off in recalls. The reason for this could be that
the frequency of each MeSH label is quite bi-
ased, some labels might have very few training
examples so that the baseline model is very hard
to predict those rare labels.

5. Conclusion and Future Work

We present MeSHup, a new, publicly available
full text dataset annotated for MeSH indexing.
It is a mashup of full-text information from BioC-
PMC and associated metadata collected from
the MEDLINE database. This is the first large
dataset that contains the full text information
that allows the research community to incor-
porate more textual information other than the
title and abstract in building MeSH indexing
systems. We also train an end-to-end model
that comprises features extracted from the doc-
ument itself and features obtained from labels.
We think that the MeSHup dataset could be a
valuable resource not only for MeSH indexing
but also for full text mining and retrieval. Since

our analysis covers several but not all sections
of the full text articles, it is likely that other
parts of the article together with metadata may
also have impacts on future outcomes. In future,
we plan to involve more sections of the textual
information and metadata to improve the auto-
matic indexing system.
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Appendix: A Complete Version of A
Data Sample in the Dataset

{"articles":[
{"PMID":"27976717",
"TITLE":"Temporal pairwise spike

correlations fully capture
single-neuron information",

"ABSTRACT":"To crack the neural
code and read out the
information neural spikes
convey, [...]",

"INTRO":"Throughout the central
nervous system of a mammalian
brain [...]",

"METHODS":"Deriving the correlation
theory of neural information [
...]",

"RESULTS":"We are interested in the
information contained in a
spike train r(t) about a
stimulus s(t)[...]",

"DISCUSS":"The list of spike timing
features that have been
implicated in neural coding
includes [...]",

"FIG_CAPTIONS":"Dimensionality of
neural information coding [...]
",

"TABLE_CAPTIONS":"Parameter sets
across neuron models. [...]",

13https://www.computeontario.ca
14https://www.computecanada.ca
15https://www.vectorinstitute.ai/partners

https://www.computeontario.ca
https://www.computecanada.ca
https://www.vectorinstitute.ai/partners
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"JOURNAL":"Nature communications",
"YEAR":"2016",
"DOI":"10.1038/ncomms13805",
"AUTHORS":[

"Amadeus,Dettner",
"Sabrina,Munzberg",
"Tatjana,Tchumatchenko"],

"MeSH": {
"D000200":"Action Potentials",
"D008959":"Models, Neurological",
"D009474":"Neurons",
"D059010":"Single-Cell Analysis"

},
"CHEMICALS":"None",
"SUPPLMeSH":"None"
},
{
...
},
...

]}
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