
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 5378–5387
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

5378

HateCheckHIn: Evaluating Hindi Hate Speech Detection Models

Mithun Das, Punyajoy Saha, Binny Mathew, Animesh Mukherjee
Department of Computer Science & Engineering

Indian Institute of Technology, Kharagpur
West Bengal, India – 721302

{mithundas,punyajoys,binnymathew}@iitkgp.ac.in, animeshm@cse.iitkgp.ac.in

Abstract
Due to the sheer volume of online hate, the AI and NLP communities have started building models to detect such hateful
content. Recently, multilingual hate is a major emerging challenge for automated detection where code-mixing or more than
one language have been used for conversation in social media. Typically, hate speech detection models are evaluated by
measuring their performance on the held-out test data using metrics such as accuracy and F1-score. While these metrics are
useful, it becomes difficult to identify using them where the model is failing, and how to resolve it. To enable more targeted
diagnostic insights of such multilingual hate speech models, we introduce a set of functionalities for the purpose of evaluation.
We have been inspired to design this kind of functionalities based on real-world conversation on social media. Considering
Hindi as a base language, we craft test cases for each functionality. We name our evaluation dataset HateCheckHIn. To
illustrate the utility of these functionalities , we test state-of-the-art transformer based m-BERT model and the Perspective API.

Keywords:Hate speech, evaluation, multilingual, code-mixed, test cases, functionalities

1. Introduction

Hate speech is a serious concern that is plaguing on-
line social media. With the increasing amount of hate
speech, automatic detection of such content is receiving
significant attention from the AI and NLP communities,
and models are being developed to detect hate speech
online. While earlier efforts in hate speech detection
focused mostly on English, recently researchers have
begun to developmultilingual models of hate speech de-
tection. However, even state-of-the-art models demon-
strate substantial weaknesses (Mishra et al., 2019; Vid-
gen et al., 2019).
So far, these hate speech detection models have been
primarily evaluated by measuring the model perfor-
mance on a held-out (test) hate-speech data by com-
puting matrices such as accuracy, F1 score, precision,
recall etc. at the aggregate level (Waseem and Hovy,
2016; Davidson et al., 2017; Kumar et al., 2020).
Higher values of these metrics indicate more desirable
performance. However, it is still questionable whether
model performance alone could be a good measure
and recent work (Ribeiro et al., 2020) indeed has high-
lighted the limitations of this evaluation paradigm. Al-
though these metrics help to measure the model per-
formance, they are incapable of identifying the weak-
nesses that could potentially exist in the model (Wu
et al., 2019). Further, if there exists systematic gaps
and biases in training data, models may perform decep-
tively well on corresponding held-out test sets by learn-
ing simple artifact of the data instead of understanding
the actual task for which the model is trained (Dixon
et al., 2018). Existing research has already demon-
strated the biases present in the hate speech detection
model (Sap et al., 2019). This bias may be introduced
due to the varying data sources, sampling techniques,

and annotation processes that are followed to create
such datasets (Shah et al., 2019). Hence, held-out per-
formance on current hate speech datasets is an incom-
plete and potentially misleading measure of the model
quality.
Software engineering research has many paradigms and
tools for testing complex software systems. In partic-
ular, “functional testing” (a type of black-box testing)
involves examining the various capabilities of a system
by assessing input-output behavior without any knowl-
edge of the internal working mechanism of the system.
In recent times, researchers have started applying the
knowledge of the software engineering domain to NLP
models to measure the robustness of such models.
Recently, Röttger et al. (2020) introduced HATE-
CHECK 1, a suite of functional tests to measure the
quality of hate speech detection models in English.
HATECHECK covers 29 model functionalities among
which 18 correspond to distinct expressions of hate
and the rest 11 are non-hateful contrasts to the hate-
ful cases. By using these functionalities the authors
have demonstrated the weakness present in some pop-
ular hate speech detection models. While these func-
tionalities provide a nice suite of tests for English, they
cannot be fully generalised to other languages and iden-
tify weaknesses of multilingual hate speech detection
models.
Nowadays, it is a common practice to write multilin-
gual posts using code-mixing or using more than one
language in a single conversation or utterance on social
media. In Table 1 we show an example of such a typical
post. Here in variant 1 (and 2), we observe English char-
acters (and words) are used to structure the Hindi text.
However, for variant 3, both Hindi and English words

1https://github.com/paul-rottger/hatecheck-data

5379

Actual मुȥस्लम खतरनाक होते है
Gloss Muslims are dangerous
Variant 1 Muslim khatarnak hote hai.
Variant 2 Muslim dangerous hote hai.
Variant 3 मुȥस्लम dangerous होते है

Table 1: Multilingual and code-mixed variants of a typ-
ical hateful post.

are used to form the text. Due to the growing concern
of hate speech, several (monolingual and multilingual)
datasets and models have been proposed (Mathew et al.,
2020; Das et al., 2021). Thus it is important to evaluate
the weaknesses of these models, so that further action
can be taken to improve the quality of such models.
By extending the work of Röttger et al. (2020), this
paper focuses on evaluating multilingual hate speech
detection models, by providing a new set of six mul-
tilingual functionalities, considering Hindi as a base
language. We name our evaluation dataset as Hate-
CheckHIn. Specifically, we make the following con-
tributions.

• First, we provide a new set of six multilingual
functionalities to find out weaknesses present in
a multilingual hate speech detection model.

• Second, using the existing monolingual function-
alities (Röttger et al., 2020) and multilingual func-
tionalities we craft 5.8K test cases 2.

• Third, using our evaluation dataset, we evaluate a
few Hindi hate speech detection models.

We believe that by exposing such weaknesses, these
functionalities can play a key role in developing better
hate speech identification models.

2. Related works
The problem of hate speech has been studied for a long
time in the research community. The public expres-
sion of hate speech propels the devaluation of minor-
ity members (Greenberg and Pyszczynski, 1985) and
such frequent and repetitive exposure to hate speech
could increase an individual’s outgroup prejudice (So-
ral et al., 2018). Researchers have proposed several
datasets (Waseem and Hovy, 2016; Davidson et al.,
2017; de Gibert et al., 2018; Kumar et al., 2018), to
develop models to identify hateful content more pre-
cisely. While a clear majority of these datasets are
in English, several recent shared tasks (Kumar et al.,
2020; Mandl et al., 2019; Zampieri et al., 2019) have
been introduced to share new datasets for various lan-
guages such as Hindi (Modha et al., 2021; Bohra et al.,
2018), Greek (Pitenis et al., 2020), Danish (Sigurbergs-
son and Derczynski, 2020), Mexican Spanish (Aragón
et al., 2019), and Turkish (Çöltekin, 2020), etc.

2https://github.com/hate-alert/HateCheckHIn

Several models have also been created using these
datasets. The performance of these models have been
measured using a hold-out test dataset. Although these
datasets are important to the research community for
building hate speech identification models, finding out
the weaknesses of such models is still a major chal-
lenge.
Recently, Ribeiro et al. (2020) has introduced func-
tional tests in NLP as a framework formodel evaluation,
showing that their method can detect the strengths and
weaknesses of the models at a granular level that are of-
ten obscured by high-levelmetrics like accuracy and F1-
score. Palmer et al. (2020) compiled three datasets to
evaluate model performance on what they call complex
offensive language, specifically the use of reclaimed
slurs, adjective nomenclature, and linguistic distancing.
Lately, Röttger et al. (2020) adapted this framework to
build HATECHECK for evaluating hate speech detec-
tion models which covers 29 model functionalities mo-
tivated by interviewswith civil society stakeholders and
a review of previous hate speech literature. As a suite of
functional tests for evaluation, we present HateCheck-
HIn, which directly builds on previous work by Röttger
et al. (2020).

3. HateCheckHIn: Functional tests for
Hindi hate speech models

3.1. Working definition of hate speech
To begin with we first need to resort to a working defi-
nition of hate speech. We use the United Nations defi-
nition (Guterres and others, 2019) which is as follows.

“any kind of communication in speech, writ-
ing or behavior, that attacks or uses pejo-
rative or discriminatory language with refer-
ence to a person or a group on the basis of
who they are, in other words, based on their
religion, ethnicity, nationality, race, color,
descent, gender or other identity factor”

3.2. Choice of Hindi
We choose Hindi as a base language for our experi-
ments because Hindi is the third most spoken language3
in theworldwithmore than 600million speakers. Hindi
is one of the 22 official languages of India which is
the second most populous country in the world. Apart
from India, Hindi is spoken in many countries, includ-
ing Nepal, the United States and Mauritius etc.4 Be-
sides, all the authors are proficient in reading and writ-
ing Hindi.

3.3. Model functionalities
The functionality of a computer or any other machine
is defined as how useful it is or how many functions

3https://www.berlitz.com/en-uy/blog/
most-spoken-languages-world

4https://www.worldatlas.com/articles/
hindi-speaking-countries.html

https://github.com/hate-alert/HateCheckHIn
https://www.berlitz.com/en-uy/blog/most-spoken-languages-world
https://www.berlitz.com/en-uy/blog/most-spoken-languages-world
https://www.worldatlas.com/articles/hindi-speaking-countries.html
https://www.worldatlas.com/articles/hindi-speaking-countries.html

5380

it can perform. Each functionality has a set of related
test cases that share a gold-standard label. In the case
of a relevant functional test, the effectiveness of a hate
speech detection model is validated by its ability to pro-
vide a specified classification (hateful or non-hateful).
For example, when the sentence, मुझे िंहदओुं से नफरत है
(“I hate Hindus”) is passed to a hate speech detection
model, it should predict the sentence as hateful. On the
other hand मुझे एप्पल से नफरत है (“I hate apples”) should
be classified as non-hateful. The model should be able
to understand the context of the text and based on that
the correct judgment should be made.

3.4. Identifying functionalities
One of themotivating factors for introducing newmulti-
lingual functionalities is to find out further weaknesses
of a model. For example in Figure 1 we have shown an
example of hate speech, where the post is neither writ-
ten entirely in English, nor in Hindi. If we dissect the
tweet, we obtain the following language elements used
in the tweet.

Figure 1: Example of a hate speech post againstMuslim
(taken form Twitter).

• The first part of the tweet, “F**ck this trend” is
written in English.

• The second part of the post “Madarchod ke
bachche muslim” is written in Roman Hindi.

• Finally, the hashtag मुȥस्लम_िहन्द_ूभाई_भाई is
written using Hindi.

The above example suggests the prevalence of multilin-
gual elements in social media posts. We introduce six
new functionalities considering possible aspects of peo-
ple’s writing.

3.5. Functionalities in HateCheckHIn
HateCheckHIn has a total of 34 functionalities out
of which 28 functionalities5 are directly taken from
Röttger et al. (2020). The other six functionalities are
specific to multilingual settings and are introduced by
us for the first time in this paper. For the ease of read-
ability, we shall discuss all the functionalities in this
section.
F1: Strong negative emotions (explicit) tests whether
or not strong negative sentiments are expressed toward
a protected group or its member.
F2: Description using very negative attributes (ex-
plicit) tests whether or not very negative attributes are
used in describing a protected group or its member.
F3: Dehumanisation (explicit) validates hatred toward
a protected group or its member expressed through ex-
plicit dehumanisation.
F4: Implicit derogation validates hatred toward a pro-
tected group or its member expressed through implicit
derogation.
F5: Direct threat tests expression of direct threat to-
ward a protected group or its member.
F6: Threat as normative statement tests expression
of threat as a normative statement toward a protected
group or its member.
F7: Hate expressed using slur validates hatred toward
a protected group or its member expressed using slur.
F8: Non hateful homonyms of slurs tests non hateful
posts represented using homonyms of slurs.
F9: Reclaimed slurs tests non hateful posts repre-
sented using reclaimed slurs.
F10: Hate expressed using profanity validates nega-
tive sentiments expressed toward a protected group or
its member using profanity.
F11: Non hateful use of profanity validates use of pro-
fanity in posts in a non hateful manner.
F12: Hate expressed through reference in subse-
quent clauses validates expressed hate through refer-
ence in subsequent clauses.
F13: Hate expressed through reference in subse-
quent sentences validates expressed hate through ref-
erence in subsequent sentences.
F14: Hate expressed using negated positive state-
ment tests negative sentiments expressed toward a pro-
tected group or its member using negated positive state-
ment.
F15: Non hate expressed using negated hateful state-
ment tests positive emotions expressed toward a pro-
tected group or its member in a non hateful context us-
ing negated hateful statement.
F16: Hate phrased as a question validates hateful
phrases directed to a protected group or its member us-
ing questions.
F17: Hate phrased as an opinion validates hatred to-
ward a protected group or its member as an opinion.

5We remove one functionality because it was not a realistic
scenario for Hindi.

5381

F18: Neutral statements using protected group iden-
tifiers validates non hateful posts toward a protected
group or its member as a neutral statement.
F19: Positive statements using protected group iden-
tifiers validates non hateful posts toward a protected
group or its member as a positive statement.
F20: Denouncements of hate that quote it tests non
hateful posts which contain denouncements of hate that
quote it to counter the hate speech.
F21: Denouncements of hate that make direct ref-
erence to it tests non hateful posts which contain de-
nouncements of hate that make direct reference to it to
counter the hate speech.
F22: Non hate expressed using negated hateful state-
ment validates negative emotions expressed towards an
objects is identified as non hate as it does not targeting
any protected group.
F23: Abuse targeted at individuals validates negative
sentiments expressed towards individuals is to be iden-
tified as non-hate.
F24: Abuse targeted at non-protected groups tests
negative emotions expressed toward non-protected
groups which are identified as non hate.
F25: Swaps of adjacent characters tests when some
adjacent characters are swapped to express hatred to-
ward a protected group, how the model performs on it
to detect the hate speech.
F26: Missing characters validates if some characters
are missing to express hatred toward a protected group,
how does the model perform on it.
F27: Missing word boundaries validates if word
boundaries are missing in a sentence to express hatred
toward a protected group, how does the model perform
on it.
F28: Added spaces between chars tests if spaces be-
tween characters are added in a sentence to express ha-
tred toward a protected group, how does the model per-
form on it.
F29: Leet speak spellings tests if some leet speak
spellings are present in a sentence to express hatred to-
ward a protected group, how does the model perform
on it.
So far we have discussed the functionalities that are ap-
plicable in a monolingual setting and most of these can
be adapted to any language. Now we will be discussing
the newly introduced multilingual functionalities also
summarized in Table 2.
MF1: Hate expressed using Roman Hindi: In this
scenario, the whole sentence is written using English
characters, but when it is read it will be understood that
it is Hindi. For example the sentence “Mujhe mahilaon
se nafrat hai.” (I hate women) is a hateful post toward
women. While the characters used to represent the sen-
tence are in English, the semantic interpretation of the
sentence requires knowledge of Hindi. This function-
ality helps to test whether the model would be able to
accurately detect such hateful posts even when Hindi
text is presented using English characters.

MF2: Slur in Hindi, rest in Roman Hindi: In this
scenario, while expressing hatred toward a protected
group, except the slur part the complete sentence is us-
ing Roman Hindi. E.g: “Tummere liye ek मालाउन jaise
ho.” (You are just aMalaun to me.) Here the derogatory
term मालाउन is written in Devanagari. This functional-
ity tests if the sentence is composed using Roman Hindi
and the slurs present in that sentence are written using
Devanagari Hindi, how does the model perform on it.

MF3: Complete sentence in Hindi except the slur:
In this setting, while expressing hatred toward a pro-
tected groups, the whole sentence is written in Hindi
except the slur part which is written in Roman Hindi.
E.g: “तुम मेरे Ǻलए एक randiजसेै हो ” (You are just a sl*t to
me.) Here the derogatory term randi is written in using
English characters. This functionality tests whether the
model would be able to accurately classify such hateful
posts, if the sentence is formed using Devanagari Hindi
and the slurs present in that sentence are written in Ro-
man Hindi.

MF4: English written using Hindi characters: In
this scenario, the whole sentence is written using Hindi
characters, but when read it will be understood that it
is in English. For example the sentence “िहन्दसु् शुड बी
डम्प्ड इन ए लैंडिफल ” (Hindus should be dumped in a
landfill.) is a hateful post toward Hindu. While the
characters use to represent the sentence is in Hindi, the
semantic interpretation has to be done in English. This
functionality examines how the model works if Hindi
characters are used to represent English language sen-
tences.

MF5: Code-mixed sentence with Hindi part in De-
vanagari: In this setting, the sentence is written us-
ing both Hindi and English words. Knowledge of both
Hindi and English are required to semantically interpret
the sentence. E.g: “I think we all should do this, जब भी
कोई िहन्दू िदखे तो तुरतं मार देना ” (I think we all should do
this, whenever a Hindu is seen, kill him immediately.)
is a hateful post toward Hindus where the initial part of
the sentence is written in English and rest of the part is
written in Hindi. This functionality evaluates whether
the model is able to accurately detect such hateful posts
when more than one languages are used to compose a
hateful sentence.

MF6: Code-mixed sentence with Hindi part in Ro-
man text: In this setting, the sentence is written us-
ing both Roman Hindi (English characters) and English
words. Once again, knowledge of both Hindi and En-
glish are required to semantically interpret the sentence.
E.g: “I totally agree with you, musalamaan samaj ke
liye parajibi hai.” (I totally agree with you, Muslims are
parasites for the society.) is a hateful post toward Mus-
lim where the initial part of the sentence is written in
English and rest of the part is written in Hindi. This
function examines how the model works when more
than one language are used to form a sentence and some
parts of the sentence are written using Roman script.

5382

Functionality Templates Target groups Cases
MF1: Hate expressed using Roman Hindi 31 10 310
MF2: Slur in Hindi, rest in Roman Hindi 16 10 160
MF3: Complete sentence in Hindi except the slur 16 10 160
MF4: English written using Hindi characters 19 10 190
MF5: Code-mixed sentence with Hindi part in Devanagari 15 10 150
MF6: Code-mixed sentence with Hindi part in Roman text 16 10 160
Total 113 1130

Table 2: Summary of the six multilingual functionalities.

3.6. Generating test cases

For each functionality in HateCheckHIn, we handcraft
sets of test cases manually. For monolingual functional-
ities we write short Hindi-language text documents that
correspond to just one gold standard label. For the mul-
tilingual functionalities, we use Hindi language repre-
sented using English characters/words to generate var-
ious forms of gold standard test cases. To reduce simi-
larity between test cases, within each functionality, we
aim to use diverse vocabulary and syntax which Zhou
et al. (2020) suggest as a likely cause of performance
instability for diagnostic datasets.
To generate test cases at scale, we use templates, where
we replace tokens for protected group identifiers. First,
each template is given an identity placeholder e.g., “मुझे
[IDENTITY] से नफरत ह.ै ” (I hate [IDENTITY]) or
a slur placeholder “तुम मेरे Ǻलए एक [SLUR] जसैी हो.
” (You are just a [SLUR] to me). Next, the test cases
which do not use template tokens have been tackled in-
dividually. HateCheckHIn covers ten protected groups:
Hindu (religion), Muslims (religion), Bangladeshi (na-
tional origin), Pakistani (national origin), eunuch (gen-
der identity), Dalit (caste based), women (gender),
lower caste (caste based), British (race), homosexual
(sexual orientation). In total, we generate 5,884 cases,
out of which 4,754 test cases are monolingual and 1,130
test cases are multilingual.

3.7. Validating test cases

To validate the quality of the generated gold-standard
labels, each test case has been annotated by two PhD
students who have prior experience on hate speech
project. Annotators were given extensive guidelines,
while crafting the test cases. Once the annotation was
done each disagreement was discussed until the anno-
tators reached a consensus on the final agreed label. If
a particular test case seemed unrealistic, we removed
it from our dataset6. To measure the inter-annotation
agreement between the annotators we have used Fleiss’
Kappa and obtained a score of 0.95, which indicates “al-
most perfect” agreement.

6We found 43 such cases and removed them from our
dataset.

Label n H-21 C-21 P

F1-29 H 3338 69.08 53.47 69.74
NH 1416 33.26 61.86 76.83

MF1-6 H 1130 13.98 44.95 30.35

Overall
H 4468 55.14 51.32 59.78
NH 1416 33.26 61.86 76.83
All 5884 49.88 53.87 63.88

Table 3: Label wise micro-averaged accuracy across
the monolingual and multilingual test cases. H: hate-
ful, NH: non hateful, n: number of data points.

4. Evaluating models with
HateCheckHIn

4.1. Base model
As a base model, we use mBERT (mBERT stands
for multilingual Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) which is pre-
trained on 104 languages with the largest Wikipedia
data using a masked language modeling (MLM) objec-
tive. It is a stack of transformer encoder layers with
12 “attention heads”, i.e., fully connected neural net-
works augmented with a self attention mechanism. The
mBERT model has been well studied in the domain of
hate speech and has already outperformed existing base-
lines and stands as a state-of-the-art model.

4.2. Datasets
In this section we describe the datasets used in this
paper. To fine-tune the mBERT model, we used
the datasets by Mandl et al. (2021) and Bhardwaj
et al. (2020), released as part of HASOC-2021 and
CONSTRAINT-2021 shared tasks. The Mandl et
al. (2021) dataset contains 6,126 tweets, annotated as ei-
ther, hateful, offensive, profane or neither. The Bhard-
waj et al. (2020) dataset comprises 8,192 tweets an-
notated as either fake news, hate speech, offensive,
defamation or non-hostile. For both the datasets, we
only use data points having either of the two labels –
hate speech and normal, while discarding the other data
points.

4.3. Experimental setup
The mBERT model has been evaluated using the
train, validation, and test split shared by the authors

5383

Functionality Example test case Label n
Accuracy (%)
H-21 C-21 P

F1: Expression of strong nega-
tive emotions (explicit)

मुझे [IDENTITY] से नफरत ह.ै H 170 73.52 53.52 71.17

F2: Description using very neg-
ative attributes (explicit)

सभी [IDENTITY] प्र˃तकारक होते हैं. H 190 67.36 70.52 70.52

F3: Dehumanisation (explicit) [IDENTITY] कचरा ह.ै H 180 72.22 55.55 83.33
F4: Implicit derogation [IDENTITY] को ˃चिड़याघर में रहना

चािहए.
H 200 66.0 43.0 55.00

F5: Direct threat मैं सभी [IDENTITY] को मारना चाहता
हँू.

H 190 69.47 26.84 93.15

F6: Threat as normative state-
ment

सभी [IDENTITY] को मार देना चािहए. H 200 78.0 50.50 92.50

F7: Hate expressed using slur तुम मेरे Ǻलए एक रडंी जसैी हो. H 148 36.48 34.45 31.75
F9: Reclaimed slurs हम आिदवासी अपने हक्क के Ǻलए

लड़ते रहेंगे.
NH 60 55.0 66.66 100.0

F10: Hate expressed using pro-
fanity

तुम चू˃तये [IDENTITY] को क्या िद-
क्कत हैं?

H 200 77.5 65.00 90.00

F11: Non-hateful use of profan-
ity

वाह बहनचोद! क्या िदन था. NH 90 68.88 77.77 50.00

F12: Hate expressed through ref-
erence in subsequent clauses

मई काफɃ [IDENTITY] से िमला हँू और
मैं उनमें से हर एक से नफरत करता हँू.

H 200 70.5 54.50 82.00

F13: Hate expressed through ref-
erence in subsequent sentences

[IDENTITY] को लगता है कɃ वे ख़ास
हैं. मुझे उनसे नफ़रत ह.ै

H 200 65.5 64.50 70.50

F14: Hate expressed using
negated positive statement

मेरे मन में तुम जसेै [IDENTITY] के
Ǻलए कोई दया नहीं हैं.

H 200 67.0 60.00 67.00

F15: Non-hate expressed using
negated hateful statement

मुझे स्पष्ट करने दो: मैं [IDENTITY] से
नफरत नहीं करता.

NH 250 19.6 37.6 86.40

F16: Hate phrased as a question क्या यह स्पष्ट नहीं है कɃ मुझे
[IDENTITY] से नफरत ह?ै

H 200 81.0 72.00 78.50

F17: Hate phrased as an opinion मुझे सभी [IDENTITY] बेकार लगते हैं. H 200 63.0 36.50 91.50
F18: Neutral statements using
protected group identifiers

मैं दो [IDENTITY] के साथ रहता हँू. NH 210 26.19 81.42 96.66

F19: Positive statements using
protected group identifiers

मुझे [IDENTITY] से प्यार हैं. NH 300 27.33 69.00 96.33

F20: Denouncements of hate
that quote it

यिद आप कहते हैं ``मैं [IDENTITY] से
नफरत करता हँू", तो आप मूखर् हैं!

NH 150 14.66 44.66 30.00

F21: Denouncements of hate
that make direct reference to it

यह कहना िक आप [IDENTITY] से
नफरत करते हैं, यह दशार्ता है िक आप
िकतने गुमराह हैं।

NH 180 15.55 43.33 58.88

F22: Abuse targeted at objects मुझे मानगो से नफरत ह.ै NH 50 80.00 94.00 92.00
F23: Abuse targeted at individ-
uals (not as member of a prot.
group)

मई अपरा˃धयों कɃ िंनदा करता हँू. NH 51 80.39 58.82 60.78

F24: Abuse targeted at nonpro-
tected groups (e.g. professions)

मई आȺटस्ट कɃ िंनदा करता हँू. NH 75 78.66 96.00 62.66

F25: Swaps of adjacent charac-
ters

मुझे [IDENTITY] से नरफत ह.ै H 170 73.52 44.11 43.52

F26: Missing characters सभी [IDENTITY] प्र˃तकक होते हैं. H 190 65.26 67.89 42.10
F27: Missing word boundaries [IDENTITY] कचराह.ै H 190 58.94 48.94 65.26
F28: Added spaces between
chars

मुझे [IDENTITY] से न फ र त ह.ै H 160 77.50 55.62 56.25

F29: Leet speak spellings मुझे [IDENTITY] से नफ्2त ह.ै H 150 76.66 53.33 50.66

Table 4: Accuracy across HateCheckHIn’s 28 monolingual functionalities. Best performance on each functional
test is in boldface. Performance below 50% is highlighted in red. H: hateful, NH: non hateful, n: number of data
points.

of the above datasets. We fine-tune the mBERT
model with the following hyper-parameters: Adam op-
timizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 2e-5, number of tokens = 256, and num-
ber of epochs = 10. We save the model corresponding
to the best validation macro F1 score.

In the following, we denote mBERT fine-tuned on bi-

naryMandl et al. (2021) data byH-21 and mBERT fine-
tuned on binary Bhardwaj et al. (2020) data byC-21. To
deal with class imbalances, we use class weights em-
phasising the minority (usually hateful) class (He and
Garcia, 2009).

5384

Functionality Example test case Label n
Accuracy (%)
H-21 C-21 P

MF1: Hate expressed using Ro-
man Hindi

Mujhe [IDENTITY] se nafrat hai. H 310 0.0 59.03 25.48

MF2: Slur represented in Hindi,
rest in Roman Hindi

Tum mere liye ek रेंडी jaise ho. H 160 0.0 58.75 9.37

MF3: Complete sentence is in
Hindi except slur

तुम मेरे Ǻलए एक randi जसेै हो H 160 32.5 34.37 19.37

MF4: English written using
Hindi characters

आई वांट टू िकल आल [IDENTITY] H 190 12.63 1.05 23.68

MF5: Code-mixed sentence
with Hindi part in Devanagari

I totally agree with you,
[IDENTITY] समाज के Ǻलए परजीवी
हैं

H 150 49.33 46.66 66.00

MF6: Code-mixed sentence
with Hindi part in Roman text

I totally agree with you,
[IDENTITY] samaj ke liye
parajibi hai.

H 160 5.0 65.00 46.25

Table 5: Accuracy across HateCheckHIn’s 6 multilingual functionalities. Best performance on each functional test
is in boldface. Performance below 50% is highlighted in red. H: hateful, n: number of data points.

4.4. Commercial model
We also examine the perspectiveapi7 model, developed
by Jigsaw and Google’s Counter Abuse Technology
team as a tool for content moderation. For a given input
text, Perspective provides a percentage score across var-
ious perspectives such as “toxicity” and “insult”. We
use the “toxicity” score predicted by the model. We
convert the percentage scores to a binary labels using
a cutoff of 50%. We name the perspective model as P.
Though, it is not clear which model architecture P uses
or which data it is trained on, but the developers state
that the model is “regularly updated”8. We evaluated P
in December 2021.

4.5. Results
First we present the overall accuracy of the three mod-
els on the chosen datasets. Next we present the results
on the HateCheckHIn test cases from four different as-
pects – (a) overall performance (b) performance across
functional tests (c) performance across labels, and (d)
performance across targets.

4.5.1. Overall performance
In Table 3 we show the overall performance in terms
of accuracy. We observe P outperforms the other two
models for both the hate and the non-hate class.

4.5.2. Performance across functional tests
We evaluate the model performance on HateCheckHIn
using accuracy, i.e., the % of the test cases correctly
classified on each functionality. We report the perfor-
mance of the monolingual functionalities in Table 4 and
the performance of the multilingual functionalities in
Table 5. We highlight the best performance across the
models using boldface and highlight performance be-
low a random choice baseline, i.e., 50% for our binary
task, in red. Evaluating the models across these func-
tional tests reveal specific model weaknesses.

7https://www.perspectiveapi.com/
8https://support.perspectiveapi.com/s/

about-the-api-faqs

• For monolingual functionalities we observe that
the performance of H-21 is less than 50% for 6
out of 28 functionalities. For themultilingual func-
tionalities, themodel performance is less than 50%
for 6 out of 6 functionalities. Among the monolin-
gual functionalities, in particular, the model mis-
classifies most of the non hateful cases, when
the target community name is present in a sen-
tence (F18: 26.19% correct F19: 27.33% correct)
or the functionality is related to counter speech
(F20: 14.66% correct, F21: 15.55% correct). For
the multilingual functionalities, the worst perfor-
mance for this model is for MF1, MF2 followed
byMF6. Note that these numbers are way below
what is observed for any monolingual functional-
ity.

• For monolingual functionalities we observe that
C-21 is less than 50% accurate for 9 out of 28
functionalities. For the multilingual functionali-
ties, the model is less than 50% accurate for 3 out
of 6 functionalities. For the non hateful classes,
the model mostly misclassifies test cases related
to counter speech (F20: 44.66% correct, F21:
43.33 % correct). For the multilingual functional-
ities,MF4 is the worst and is the lowest recorded
performance among all functionalities (monolin-
gual+multilingual). Overall, the performance of
this model is slightly better than H-21.

• P performs better compared to the other models at
least on the monolingual functionalities. In case of
monolingual functionalities we observe P is less
than 50% accurate for 3 out of 28 functionalities.
However for multilingual functionalities the situa-
tion is no better; out of the 6, 5 functionalities are
less than 50% withMF2 recording the least accu-
racy of 9.37%.

4.5.3. Performance across labels
In Table 3 we report the accuracy values as per the
class labels micro-averaged separately over the mono-
lingual and multilingual functionalities. All the models

https://support.perspectiveapi.com/s/about-the-api-faqs
https://support.perspectiveapi.com/s/about-the-api-faqs

5385

Target n H-21 C-21 P
Hindu 532 60.15 71.61 63.15
Muslim 582 64.15 71.18 70.49
Bangladeshi 532 24.43 46.61 62.21
Pakistani 571 45.35 62.34 68.82
Eunuch 532 28.94 38.72 69.36
Dalit 583 61.92 56.60 53.68
Women 653 47.16 41.19 63.39
Lower caste 646 52.32 40.86 58.51
British 493 55.17 53.75 51.11
Homosexual 494 44.12 43.92 79.55

Table 6: Target wise performance on the generated test
cases.

exhibit low accuracy values on the HateCheckHIn test
cases. For the monolingual functionalities, P is rela-
tively more accurate compared to H-21 and C-21. For
the multilingual functionalities, though all the models
perform quite poorly in predicting the hateful posts, C-
21 performs moderately better compared to other mod-
els. Further while comparing with overall accuracy val-
ues we observe that for H-21, (almost) the entire drop
in this accuracy can be attributed to multilingual inputs
(as confirmed by the performance onMF1-6 test cases).
For the C-21 model, the drop can be largely attributed
to multilingual inputs followed by the monolingual in-
puts to a slight extent. For the P model, once again the
drop in the performance seems to be almost fully con-
tributed by the multilingual inputs. This shows that the
multilingual functionalities proposed by us are indeed
very effective in identifying the nuanced weaknesses of
the classification models.

4.5.4. Performance across target groups
HateCheckHIn can test whether models exhibit ‘unin-
tended biases’ (Dixon et al., 2018) by comparing their
performances on cases which target different groups. In
Table 6, we show the target wise performance of all the
models in terms of accuracy. H-21 shows poor perfor-
mance across most of the target groups; among these it
misclassifies test cases targeting Bangladeshi and Eu-
nuch the most. C-21 performs relatively better than
H-21 and misclassifies test cases targeting Eunuch. In
contrast, P is consistently around 60% accurate across
most of the target groups.

5. Discussion
HateCheckHIn reveals critical functional weaknesses
in all the three models that we test. One of the main ob-
servations is that not all models fail at a particular func-
tionality. For instance, among the monolingual func-
tionalities, when the hatred is formedwith ‘direct threat’
(F5), C-21 performs the worst. On the other hand, for
counter speech (F20 and F21) related functionalities,
H-21 performs the worst. This indicates that themodels
do not understand some context when predicting them
as hateful or non hateful. Thismay be due to theway the
data has been collected and sampled for the annotation.

P performs relatively better compared to other twomod-
els for monolingual functionalities, but its performance
for the multilingual functionality is not as good. We
also notice how certain models are biased toward cer-
tain target communities. For instance, H-21 and C-21
are biased in their target communities, classifying hate
directed against certain protected groups (e.g., Eunuch)
less accurately than equivalent cases directed at other
targets. To reduce the effect of bias on the model, vari-
ous data augmentation (Gardner et al., 2020) strategies
can be applied while training the model to achieve fair
performance across all the target communities.
All models perform very poorly for multilingual func-
tionalities, although among these C-21 performs rela-
tively better. Since people’s choice of writing is no
longer limited to a single language, there is a need to
improve the performance of the model for these func-
tionalities. To improve the performance of these multi-
lingual hate speech detection models one needs to col-
lect more diverse datasets and if needed a human-in-the-
loop approach may be explored, where expert annota-
tors can synthetically generate datasets which can be
used to fine-tune a model.
Deploying these models in the wild for hate speech clas-
sification would still be a great challenge. Although it
is not expected that these models will work perfectly
due to the nature of the problem, but still certain kind
of errors are not acceptable in the wild. Counter narra-
tives are now becoming popular to reduce the spread of
hate speech. However, if the model misclassifies them
as hateful and based on that decisions are being made,
injustice would be served to these counter speech users.

6. Conclusion
In this paper, we introduced a set of multilingual func-
tionalities. By combining the existing monolingual and
multilingual functionalities, we present HateCheckHIn,
a suite of functional tests for Hindi hate speech detec-
tion models. HateCheckHIn has 34 functionalities out
of which 28 functionalities are monolingual, taken from
Röttger et al. (2020) and the remaining 6 are multi-
lingual introduced by us in this paper. We use Hindi
as a base language to craft all the test cases, but these
multilingual functionalities can be easily generalised to
craft test cases for other (Indic) languages as well to
detect potential weaknesses present in the multilingual
hate speech detection models.
In particular, we observed that all models work very
poorly for multilingual test cases. In addition, we no-
ticed that these models show bias toward specific tar-
get communities. We hope that the new additions of
our multilingual functionalities will further strengthen
hate speech detection models by fixing the weaknesses
present. In future we would like to extend this work to
other languages.

7. Bibliographical References
Aragón, M. E., Carmona, M. A. A., Montes-y Gómez,
M., Escalante, H. J., Pineda, L. V., and Moctezuma,

5386

D. (2019). Overview of mex-a3t at iberlef 2019:
Authorship and aggressiveness analysis in mexican
spanish tweets. In IberLEF@ SEPLN, pages 478–
494.

Bhardwaj, M., Akhtar, M. S., Ekbal, A., Das, A., and
Chakraborty, T. (2020). Hostility detection dataset
in hindi. arXiv preprint arXiv:2011.03588.

Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., and Shri-
vastava, M. (2018). A dataset of hindi-english code-
mixed social media text for hate speech detection.
In Proceedings of the second workshop on compu-
tational modeling of people’s opinions, personality,
and emotions in social media, pages 36–41.

Çöltekin, Ç. (2020). A corpus of turkish offensive
language on social media. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 6174–6184.

Das, M., Banerjee, S., and Saha, P. (2021). Abu-
sive and threatening language detection in urdu using
boosting based and bert based models: A compara-
tive approach. arXiv preprint arXiv:2111.14830.

Davidson, T., Warmsley, D., Macy, M., and Weber,
I. (2017). Automated hate speech detection and the
problem of offensive language. InProceedings of the
International AAAI Conference on Web and Social
Media, volume 11.

de Gibert, O., Perez, N., Garcıa-Pablos, A., and
Cuadros, M. (2018). Hate speech dataset from a
white supremacy forum. EMNLP 2018, page 11.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Dixon, L., Li, J., Sorensen, J., Thain, N., and Vasser-
man, L. (2018). Measuring and mitigating unin-
tended bias in text classification. In Proceedings of
the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pages 67–73.

Gardner, M., Artzi, Y., Basmova, V., Berant, J., Bo-
gin, B., Chen, S., Dasigi, P., Dua, D., Elazar, Y.,
Gottumukkala, A., et al. (2020). Evaluating mod-
els’ local decision boundaries via contrast sets. arXiv
preprint arXiv:2004.02709.

Greenberg, J. and Pyszczynski, T. (1985). The effect of
an overheard ethnic slur on evaluations of the target:
How to spread a social disease. Journal of Experi-
mental Social Psychology, 21(1):61–72.

Guterres, A. et al. (2019). United nations strategy and
plan of action on hate speech. no. May, pages 1–5.

He, H. and Garcia, E. A. (2009). Learning from im-
balanced data. IEEE Transactions on knowledge and
data engineering, 21(9):1263–1284.

Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M.
(2018). Benchmarking aggression identification in
social media. In Proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying (TRAC-
2018), pages 1–11.

Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M.

(2020). Evaluating aggression identification in so-
cial media. In Proceedings of the Second Workshop
on Trolling, Aggression and Cyberbullying, pages 1–
5.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization.

Mandl, T., Modha, S., Majumder, P., Patel, D., Dave,
M., Mandlia, C., and Patel, A. (2019). Overview
of the hasoc track at fire 2019: Hate speech and of-
fensive content identification in indo-european lan-
guages. In Proceedings of the 11th forum for infor-
mation retrieval evaluation, pages 14–17.

Mandl, T., Modha, S., Shahi, G. K., Madhu, H., Sata-
para, S., Majumder, P., Schaefer, J., Ranasinghe, T.,
Zampieri, M., Nandini, D., et al. (2021). Overview
of the hasoc subtrack at fire 2021: Hate speech and
offensive content identification in english and indo-
aryan languages. arXiv preprint arXiv:2112.09301.

Mathew, B., Saha, P., Yimam, S. M., Biemann, C.,
Goyal, P., and Mukherjee, A. (2020). Hatexplain:
A benchmark dataset for explainable hate speech de-
tection. arXiv preprint arXiv:2012.10289.

Mishra, P., Yannakoudakis, H., and Shutova, E.
(2019). Tackling online abuse: A survey of au-
tomated abuse detection methods. arXiv preprint
arXiv:1908.06024.

Modha, S., Mandl, T., Shahi, G., Madhu, H., Sata-
para, S., Ranasinghe, T., and Zampieri, M. (2021).
Overview of the hasoc subtrack at fire 2021: Hate
speech and offensive content identification in english
and indo-aryan languages and conversational hate
speech. In FIRE 2021: Forum for Information Re-
trieval Evaluation, Virtual Event, 13th-17th Decem-
ber 2021.

Palmer, A., Carr, C., Robinson, M., and Sanders,
J. (2020). Cold: Annotation scheme and evalua-
tion data set for complex offensive language in en-
glish. Journal for Language Technology and Com-
putational Linguistics, 34(1):1–28.

Pitenis, Z., Zampieri, M., and Ranasinghe, T. (2020).
Offensive language identification in greek. In Pro-
ceedings of the 12th Language Resources and Evalu-
ation Conference, pages 5113–5119.

Ribeiro, M. T., Wu, T., Guestrin, C., and Singh,
S. (2020). Beyond accuracy: Behavioral test-
ing of nlp models with checklist. arXiv preprint
arXiv:2005.04118.

Röttger, P., Vidgen, B., Nguyen, D., Waseem, Z., Mar-
getts, H., and Pierrehumbert, J. (2020). Hatecheck:
Functional tests for hate speech detection models.
arXiv preprint arXiv:2012.15606.

Sap, M., Card, D., Gabriel, S., Choi, Y., and Smith,
N. A. (2019). The risk of racial bias in hate speech
detection. In Proceedings of the 57th annual meet-
ing of the association for computational linguistics,
pages 1668–1678.

Shah, D., Schwartz, H. A., and Hovy, D. (2019). Pre-
dictive biases in natural language processing mod-

5387

els: A conceptual framework and overview. arXiv
preprint arXiv:1912.11078.

Sigurbergsson, G. I. and Derczynski, L. (2020). Offen-
sive language and hate speech detection for danish.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 3498–3508.

Soral, W., Bilewicz, M., and Winiewski, M. (2018).
Exposure to hate speech increases prejudice through
desensitization. Aggressive behavior, 44(2):136–
146.

Vidgen, B., Harris, A., Nguyen, D., Tromble, R., Hale,
S., and Margetts, H. (2019). Challenges and fron-
tiers in abusive content detection. In Proceedings
of the third workshop on abusive language online,
pages 80–93.

Waseem, Z. and Hovy, D. (2016). Hateful symbols or
hateful people? predictive features for hate speech
detection on twitter. In Proceedings of the NAACL
student research workshop, pages 88–93.

Wu, T., Ribeiro, M. T., Heer, J., andWeld, D. S. (2019).
Errudite: Scalable, reproducible, and testable error
analysis. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 747–763.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S.,
Farra, N., and Kumar, R. (2019). Semeval-2019
task 6: Identifying and categorizing offensive lan-
guage in social media (offenseval). arXiv preprint
arXiv:1903.08983.

Zhou, X., Nie, Y., Tan, H., and Bansal, M. (2020).
The curse of performance instability in analysis
datasets: Consequences, source, and suggestions.
arXiv preprint arXiv:2004.13606.

	Introduction
	Related works
	HateCheckHIn: Functional tests for Hindi hate speech models
	Working definition of hate speech
	Choice of Hindi
	Model functionalities
	Identifying functionalities
	Functionalities in HateCheckHIn
	Generating test cases
	Validating test cases

	Evaluating models with HateCheckHIn
	Base model
	Datasets
	Experimental setup
	Commercial model
	Results
	Overall performance
	Performance across functional tests
	Performance across labels
	Performance across target groups

	Discussion
	Conclusion
	Bibliographical References

