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Abstract
We present in this paper the first natural conversational corpus recorded with all modalities and neuro-physiological signals.
Five dyads (10 participants, Spanish native speakers) have been recorded three times, during three sessions (about 30
minutes each) with 4 days interval. During each session, audio and video are captured as well as the neural signal (EEG
with Emotiv-EPOC) and the electro-physiological one (with Empatica-E4). This resource is original in several respects.
Technically, it is the first one gathering all these types of data in a natural conversation situation. Moreover, the recording of
the same dyads at different periods opens the door to new longitudinal investigations such as the evolution of interlocutors’
alignment over time. The paper situates this new type of resources in the literature, presents the experimental setup and
describes different annotations enriching the corpus.
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1. Introduction: studying brain basis of
language processing in a natural

context
Studying language processing in a natural context
means that various sources of information need to be
taken into account. Many studies have been devoted
to the interaction between the different modalities, ver-
bal and non-verbal (Jewitt, 2013). They have explored
in detail how the different sources of information in-
teract in order to encode, transmit and decode infor-
mation during a natural interaction between interlocu-
tors (Pickering and Garrod, 2021). This new perspec-
tive has laid the ground for investigation of the under-
pinning mechanisms of natural interaction by analyz-
ing the neuro-physiological signals elicited by this phe-
nomenon. The aim of the present project is to study, on
the one hand, the physiological signals (electro-dermal
reaction, temperature, heart rate, breathing) and, on the
other hand, the neural correlates (in particular, neural
oscillations at different frequency bands) of language
processing. The goal when addressing this type of
question is to look for correlates between the neuro-
physiological signal and typical phenomena of human
interaction such as emotion, engagement in the dia-
logue, convergence effects, information exchange, etc.
Research in this direction has been quite limited so far
for various reasons. In particular, at the theoretical
level, we still do not have a global view on how the dif-
ferent sources of information interact during a conver-
sation in order to build and exchange meaning. More-
over, we need to explore these aspects both at a local

level (i.e., a specific moment of the interaction) and the
global one (i.e., the entire interaction). However, at this
stage there is no precise definition for the type of neuro-
physiological correlates that one should look for when
studying natural conversation. Thus, when attempting
to obtain data that fit both experimental requirements
and a more ecological, naturalistic context, it appears
to be tricky to choose what type of data to collect, the
context and methods of acquisition and the level of con-
trol that would allow researchers to obtain meaningful
data yet in a more naturalistic environment. As a con-
sequence, designing an experimental setup becomes a
challenge. We need to have a full recording of the con-
versation, making it possible to apply some level of au-
tomatic facial expression recognition, to acquire physi-
ological information and the electro-encephalographic
signal. Moreover, these different types of information
have to be synchronized. These goals raise important
methodological issues, in particular, how to do hyper-
scanning in a natural context, what type of signal to
acquire and how to gather heterogeneous information.

This paper proposes to address these different ques-
tions, and presents a new original resource for hu-
man language processing studies. In particular, below
we describe in greater detail the methodological back-
ground of data acquisition and the data pre-processing
techniques applied for corpus annotation and data anal-
ysis. The corpus we created at this occasion is the first
of this kind, bringing together all these different levels
of information.

The originality of this project lies in several aspects.
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First, we modified more traditional experimental tasks
into a real-time and active interaction experience be-
tween participants. This direction of research has been
still very limited mostly due to methodological issues
like speech artifacts in the obtained signal: a lot of re-
search that investigates human-human (verbal) interac-
tion uses experimental designs where participants are
not engaged in a natural communicative act (Park et
al., 2020). Second, we recorded various types of data,
namely, audio, video, physiological and EEG, all of
which are crucial when studying natural conversation.
It is well-known that when people interact with one an-
other, the nature of this interaction is multimodal that
includes language use, gestures and gaze, physiologi-
cal responses like heart rate and skin temperature and,
of course, their neural correlates (Pickering and Gar-
rod, 2021). Thus, looking at only some part of these
data might lead to an incomplete picture. That is the
reason why we attempted to develop a paradigm that
can allow to explore the nature of human communica-
tion at its fullest, that is, where multimodal sources of
information are recorded during an experimental ses-
sion. And the third important point is the longitudinal
design that was implemented in this project. Thanks to
the unique environment offered by the EPSN (see sec-
tion 5), we recorded the same dyads over the course of
two weeks in three different sessions. This gave us the
opportunity to see the progression and changes in how
our participants aligned over time. To our knowledge,
this is the first study of its kind, and our goal is to pro-
mote this paradigm for future projects.

2. Scientific Goals
Acquiring and studying conversation in a natural con-
text remains complex in particular because of the het-
erogeneous nature of the different sources of informa-
tion to be gathered and analysed. Trying to explore
on top of that the neural and physiological correlates
of interactional mechanisms is a real challenge. One
research direction is to look for relationship between
specific phenomena during the time course of a conver-
sation and the neuro-physiological signal. For exam-
ple, several studies have explored the notion of speak-
ers’ engagement, defined on the basis of prosodic, lex-
ical and more generally audio-visual features (Huang
et al., 2016; Yu, 2015). What is interesting is that this
phenomenon has been correlated with excitement and
arousal (Voigt et al., 2014), that can directly be ob-
served at the brain level through modulations of fre-
quency bands (Balconi and Pozzoli, 2009). On their
side, different physiological features have also been
identified to be associated with emotion and arousal
(Londhe and Borse, 2018; Naeem et al., 2012; Monster
et al., 2016). We propose that other types of high level
interactional phenomena have to be studied in the same
perspective, namely, by analyzing features from dif-
ferent modalities and correlating them with brain and
physiological signals. Among them, convergence be-

tween interlocutors’ behavior occupies a central place.
Interactional theories (Pickering and Garrod, 2021) un-
derline the importance of such alignment mechanisms
(also known as linguistic entertainment phenomena
(Levitan et al., 2015)) that have been observed at the
verbal and non-verbal modalities but also more recently
at the brain level (Pérez et al., 2017), showing how
neural oscillations progressively get similar during a
conversation. Moreover, an important issue lies in the
study of the evolution of convergence phenomena not
only during a conversation, but also at a larger temporal
scale, showing how mutual knowledge influences this
mechanism. Concretely, such question requires longi-
tudinal studies, where progression of the mutual knowl-
edge between participants can be observed.
It is then necessary to acquire conversational datasets
enriched with annotations (from which feature mod-
els can be built) and bearing synchronized electro-
physiological information. The difficulty in doing that
in mainly technical. The process of acquiring multi-
modal corpora is nowadays well known, and adding
physiological data is not an issue, taking into account
the robustness and the simplicity of the equipment.
The situation, however, is not the same for the EEG
signal. The so-called second-person neuroscience ap-
proach (Schilbach et al., 2013) aims at elaborating se-
tups that make it possible to design experiments in a
natural environment where participants are equipped
with EEG headsets. However, this remains a challenge
taking into account the sensitivity of the EEG signal to
different sources of noise such as gestures and speech.
It is then necessary to find a good trade-off between sig-
nal quality and the degree of freedom that participants
can have during an experiment.
Our goal is then to build an adequate resource for
studying the neurophysiological underpinnings of con-
vergence. As explained in section 5, in this project we
successfully implemented a multimodal setup that al-
lowed us to acquire rich information of various sources
in a longitudinal way: each dyad was recorded three
times in three different days. The participants did not
know each other before the experiment and spent two
weeks in an intensive collaborative project. Their mu-
tual knowledge progressively increased over the 3 ex-
perimental sessions, offering a way to study the evolu-
tion of the type and level of convergence depending on
the participants’ proximity level.

3. Related works
Many studies have been done in the perspective of emo-
tion analysis based on corpora recording a set of modal-
ities comparable to ours (audio, video, physiological
and neural signals). In the last decade, among oth-
ers, four such annotated affective databases have been
proposed: DEAP (Koelstra et al., 2011), MAHNOB-
HCI (Soleymani et al., 2011), DREAMER (Katsigian-
nis and Ramzan, 2018) and AMIGOS (Miranda-Correa
et al., 2021). These resources have been used for train-
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ing predictive model of emotion, and more specifically
arousal and valence. They offer a set of multimodal
features (in particular, from the neuro-physiological
sources) in order to classify different types of emo-
tions, confirming experimentally and thanks to ma-
chine learning techniques the correlation between mul-
timodal signals and emotions. Note that in a recent
study, the same method has been applied to the eval-
uation of text difficulty levels in a the context of Intel-
ligent Tutoring Systems (Alqahtani et al., 2019).
The protocols proposed in these resources are compa-
rable: they record participants’ signals elicited by dif-
ferent stimuli (usually videos) with more or less canon-
ical emotions.Although these studies use a similar in-
strumental apparatus for recording their data (e.g., two
of them (DREAMER and AMIGOS) use “low-cost off-
the-shelf devices” similar to ours, namely, the Emotiv-
EPOC for recording the EEG signal), they do not in-
volve any interaction between participants or any pro-
duction at the verbal level, and this is a major difference
with our dataset.
In most of these works, the features used in the models
rely almost exclusively on EEG/ECG, showing in par-
ticular the correlation between valence and frequency
bands, negative correlation between arousal and the
theta, alpha and gamma bands, and between heart rate
and heart rate variations depending on the type of emo-
tion.
Because of the type of the stimuli (no interaction)
as well as the focus of the experiments, no features
are extracted from the verbal/gestural modalities. For
the same reason, the question of the synchronization
between the different sources is not specifically de-
scribed. The database MAHNOB-HCI constitutes an
exception by also involving facial expressions and eye-
gaze and provides a precise synchronization of the dif-
ferent modalities (eye gaze data, video, audio, neural
and physiological signals) obtained thanks to a specific
synchronization setup, providing exact temporal rela-
tions between events in the different channels.
More recently, a new dataset called K-Emocon (Park et
al., 2020) has been made available for emotion detec-
tion. It proposes the same type of experimental appa-
ratus as discussed above, but in contrast to the other
datasets that rely on passive observation, K-Emocon
records participants involved in an active interaction (a
debate on the question of the refugee crisis). All differ-
ent modalities that we mentioned above were recorded
for both participants. The apparatus also relies on
light devices (Empatica wrist and Neurosky MindWave
headset). No specific information is given as for the
synchronization of the different sources of information.
One main interest of this type of resources as for the
neural signal is that they address the question of hyper-
scanning (i.e. recording simultaneously the brain activ-
ity of two interacting participants) during a natural in-
teraction. Note that natural conversation comes under
interest in hyperscanning studies (Nam et al., 2020),

but despite the increasing focus on the ecological va-
lidity of experiments, such setups remain difficult to
analyse (no triggers) thus they are sparsely used.

4. Setup, Instruments

4.1. Material and methods
The interaction between participants is recorded on
multiple levels, from acoustic data to EEG data, in
order to be able to detect possible convergences be-
tween the participants. Convergence or alignment
could be observed by analysing the dialogue content
itself, but also the behaviour (facial expression, ges-
ture and posture), physiological parameters and cere-
bral activity of each participant. To record audio and
video, both participants were equipped with head mi-
crophones (Sennheiser AKG C520), each recorded at
44.1kHz/24 bits by a Zoom H4. Each participant was
filmed from the front by a camera located behind and
above their interlocutor.
Concerning physiological parameters, participants
were equipped with the Empatica E4 wristband, that
synchronously records several physiological signals,
namely, the blood volume pulse (BVP), the electro-
dermal response (EDA), the inter bit interval (IBI), the
heart rate (HR), the temperature (TEMP), and also be-
havioural information thanks to a 3 axis accelerometer
(ACC).
Beyond the recorded parameters, EDA provides infor-
mation on sympathetic activation, also called sympa-
thetic arousal. This activation is known to be modu-
lated by emotion. More specifically, the sympathetic
activation is said to increase in case of excitement but
stress may also increase this activation. Whereas EDA
measures the conductance of the skin innervated by the
sympathetic nervous system, HR and IBI are modu-
lated by both sympathetic and parasympathetic activa-
tions. Factors influencing sympathetic activation are
emotion, or stress, whereas parasympathetic activation
can be influenced by several factors like, for example,
a relaxing situation, or deep breathing as well as the
digestion of a big meal.
Even if the recordings of BVP, IBI, HR, EDA, TEMP
and ACC are done synchronously, the sampling rate
differs depending of the recorded parameter. The pho-
toplethysmography sensor is sampled at 64 Hz, IBI is
not strictly sampled but provided at 1/64 sec resolu-
tion. EDA, TEMP are sampled at 4 Hz while the 3
axis +/- 2g is sampled at 32Hz. From the three ac-
celerometer signals along X, Y and Z, and given the
fact that these three signals are independent, a resulting
“activity signal” is calculated with the quadratic sum
of the three X, Y, Z signals. Concerning cerebral ac-
tivity recording, each participants was equipped with
an EpocX 14 channels wireless EEG headset, sampled
at 128Hz. EEG recordings were synchronized with the
presentation script (see section 5) that sent triggers to
both EEG headsets.
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Devices Collected data Sampling rate
3-axis acceleration 32Hz
BVP 64Hz

Empatica E4 IBI n/a
Wristband Heart Rate 1Hz

EDA 4Hz
Body Temperature 4Hz

Emotiv EpocX EEG 128Hz

Table 1: Mobile devices used and data recorded.

Figure 1: Setup with participant in gear - scene
recorded by one of the cameras during the experiment

5. The Experiment
5.1. Participants
The data was collected over a 12 day period in the con-
text of a preparatory workshop for the European Per-
forming Science night (EPSN) in collaboration with
the Fundació Épica Fura dels Baus in Badalona, Spain.
Over the course of two weeks, 28 performers were to
create an art performance inspired by science. The per-
formers had never met one another before the start of
the workshop. For two weeks, they rarely interacted
with anyone outside of the group, making the work-
shop a unique setting to study the joint development
of multimodal communicative behaviour. For the pur-
pose of the workshop, the performers were divided into
5 groups. Two performers from each of these groups
were selected as participants in the data collection.
Thus, the 10 participants (6 females) were grouped into
5 dyads, based on their workshop groups. The par-
ticipants’ native language was Spanish, all were right-
handed, and the dyads were matched for gender.

5.2. Tasks
The experimental session lasted for approximately 45
minutes and consisted of three tasks - two controlled
divergent thinking tasks, the Alternative Uses Test and
the Name Invention Task (Guilford, 1967; Agnoli et al.,
2016; Fink et al., 2009; Fink et al., 2007) and one free
conversation task (Koskinen et al., 2021). Each task is
described in greater detail below.

5.2.1. The Alternative Uses (AU) Test
The AU test is one of the tasks used to measure creativ-
ity. Participants were shown pictures of ordinary ob-
jects and are asked to come up with as many unusual
uses as possible. The stimuli were chosen from the
MultiPic database (Duñabeitia et al., 2019) that con-
tains 750 lexical items already normalized across six
European languages. Of the 750 words, ’number’ were
chosen to be used in our task (cf. appendix). The order
of stimuli presentation was fully randomized.

5.2.2. The Name Invention (NI) Task
The NI task was also used as a measurement of creativ-
ity, where participants are presented fictional abbrevia-
tions, for example, “K. M.”, and are asked to invent an
original name consisting of two words that should start
with the letters from the prompt, e.g., “Kissing Man-
ual”. The stimuli were created with regards to the fre-
quency of syllable onsets in Spanish (Sandoval et al.,
2008) and were loosely grouped into more and less fre-
quent letter combinations. A total of 67 abbreviations
were included in the task. The order of stimuli presen-
tation was fully randomized.

5.2.3. Free Conversation Task
The participants were given a moral dilemma to dis-
cuss during the Free Conversation task. The partici-
pants’ goal was to discuss the possible outcomes of the
dilemma and to eventually agree on a solution. The
discussion was to last for around 10 minutes. A total
of three different dilemmas was chosen, one for each
recording day.

5.2.4. Procedure
We controlled the timing of the stimulus presentation
during the AU and NI task, because we wanted to sepa-
rate the period of idea generation and the period where
the participant would articulate their ideas. The sep-
aration of the two actions was of special importance
for our EEG measurements, as the signal is very noisy
when someone speaks. During one trial, participants
first were presented with a fixation cross for five sec-
onds which served as a reference for the brain activity.
Participants were then given fifteen seconds to think,
and finally eight seconds to articulate the ideas they
thought of. The whole task included two practice trials
and thirty experimental trials. To create an interactive
environment during the controlled tasks, participants
took turns responding in the trials, so that participant
B listened to participant A responding in one trial, and
participant A listened to participant B in the next. In
the free conversation task, participants were free to talk
in a non-constrained manner.

5.3. Data Collection
Each dyad was tested three times – on days 3, 6 and
9 of the EPSN event. Due to scheduling issues, dyad
5 was tested on Day 10 instead of Day 9. The ex-
periment took place in a room isolated from outside
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noise. Participants were seated at a table facing each
other. Two laptops were placed back to back on the
table, one in front of each participant (see Fig.1). Stim-
uli were visually displayed on the laptops’ screen us-
ing an in-house Python script. Two cameras were
placed on two walls opposite each other, each one fac-
ing one participant. Once the participants were com-
fortably seated, wearable-devices were placed around
each participant’s wrist (Empatica E4 wristband, MIT,
Cambrdige), recording participants’ physiological re-
sponses. Then, in order to record participants’ brain
activity, the portable 14 channel EEG system EMO-
TIV EPOC (San Francisco, U.S.A.) was placed on their
heads. Finally, a head-mounted microphone was placed
on them, taking care to not impede the EEG signal, to
record their speech during the experiment.
Before the experiment started, instructions were pre-
sented to participants on the laptops’ screens. Par-
ticipants were informed that they would start with a
creativity-related task (AU or NI) and do the free con-
versation task after a break. Three dyads completed the
AU task on the first and third session while they did the
NI task during the second session. The remaining two
dyads did the opposite and started with the NI task on
the first session. Participants were presented with dif-
ferent items during the second time they did a particular
task. The tasks were randomized to avoid order effects.
Participants were also asked to minimize unnecessary
movements to avoid recording artifacts.
A practice trial was implemented before the creativity-
related task while the experimenters stayed in the room,
to ensure that the participants understood the task. The
real experiment started once participants confirmed
they understood the instructions and the experimenters
left the room. At the end of the creativity-related task,
the experimenters came back to the room and explained
the free-speech task to participants in greater detail.
The scenario of the dilemma was presented to the par-
ticipants and the experimenters left the room once par-
ticipants confirmed they understood the scenario. Par-
ticipants had ten minutes to discuss and agree on a com-
mon answer to the dilemma.

6. Data Pre-processing
The corpus is a record of 5 dyads in interaction over
three sessions that represents a total of 12:30 hours of
multimodal data.

6.1. Annotations
To lay the ground for future analyses, we gener-
ated common audio-video features for our recordings.
Conversations were first automatically transcribed and
aligned using the BAS Web Services from Ludwig-
Maximilians University Munich1. The pipeline
”ASR G2P CHUNKER MAUS” (Schiel, 1999; Schiel,
2015; Reichel, 2012; Poerner and Schiel, 2018; Kisler

1https://clarin.phonetik.uni-muenchen.
de/BASWebServices/interface

et al., 2017) was used with default parameters except
for the ASR which was done using Google Speech
Cloud ASR2. Generated TextGrid files contain one tier
for automatic transcription with loose temporal bound-
aries and four tiers with transcription alignment on the
audio signal: two tiers with word-level alignment, one
tier with words grapheme-to-phoneme analysis, and
one tier with phoneme-level alignment (see Figure 2).

Figure 2: Automatic transcription and annotations
from BASWebServices (Kisler et al., 2017)

Transcription are to be checked and corrected manu-
ally, then realigned using SPPAS (Bigi, 2012) to obtain
the corrected word and phoneme levels of alignment.
Part of Speech Tagging will finally be applied.
Video analysis pipelines such as FeatureExtraction
from OpenFace (Baltrusaitis et al., 2018) is also used
to make the most of our multimodal design and gener-
ate features from head movements and gaze (see Fig-
ure 3). The generated coordinates for facial landmarks
and actions units are then fed into the HMAD (Rauzy
and Goujon, 2018) R library for extraction of nods and
smile annotations.

Figure 3: Facial landmarks and gaze tracking using
OpenFace (Baltrusaitis et al., 2018)

6.2. Synchronization
Synchronization represents an important issue for such
a rich multimodal signal. Different simple techniques
can be used, based on claps or synchronization signals.

2https://cloud.google.com/
speech-to-text

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
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As described above, in order to capture the best au-
dio quality, separate recordings for audio and videos
have been done. The first step consists then in post-
synchronizing these signals. An an audio-video clap
determines the onsets, which are technically aligned
using ELAN (Brugman and Russel, 2004).

The video signal can then be used to synchronize
the physiological signal recorded with the EMPATICA
wristband. Starting a recording with this material is
indicated by a specific LED signal. At the beginning
of each session, the device is switched on facing the
camera, generating a visual signal (playing the role of
a clap) recorded by the cameras. In this case, the video
is the common reference.

The EEG signal synchronization concerns two levels:
synchronization of the two brain signals from the 2
participants (a classical problem in hyperscanning) and
synchronization with the audio-video signal. The diffi-
culty when recording natural conversation is that there
is no specific trigger (e.g., a key press) associated to the
signal. We solved this problem by generating triggers
associated with EEG using the Lab Streaming Layer
(LSL) (Kothe, 2014). LSL allows the exchange of
time series between devices, programs and comput-
ers. It is based on clock offset measurements to han-
dle event information and timing. Synchronization can
then be done between devices capable of delivering a
data stream output. We automatically generated the
triggers at regular intervals by means of a Python script,
such triggers being integrated with the EEG signal with
LSL.

Finally, the synchronisation of this various data (audio,
video, physiological and cerebral activities) is done
achieved via the video: as described above, a led of
the Empatica wristband lights up when the start button
is pressed, the video records the screen activity of each
participant (in this way, changes in the activity can be
dated), which also permits to synchronize EEG records
thanks to a trigger sent in the EEG data via the Python
scripted that sequenced the experiment.

Figure 4: Audio/Video synchronization

7. Conclusion
New investigations addressing the brain and physiolog-
ical basis of language processing now require that the
natural context of language be taken into account: con-
versations. In this paper, we have presented the first
dataset offering a rich set of sources of information (au-
dio, video, physiological and neural signals), recorded
in a natural environment. This first multimodal conver-
sational corpus including neuro-physiological data for
spontaneous speech has been enriched in different ways
(transcription, alignment) also on the way to be com-
pleted (e.g., facial expressions, nods, morpho-syntactic
annotations, prosody and phonological annotations). It
is being made available through the Ortolang repository
(https://www.ortolang.fr/workspaces/badalona-epsn).
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A. Stimuli

Spanish English
peine comb guitarra
guitar
pipa pipe
caña fishing rod
regla ruler
escoba broom
bufanda scarf
linterna torch
embudo funnel
cinturón belt
saxofón saxophone
moneda coin
guante gloves

Number Letters
1 L.Z.
2 R.Q.
3 G.Z.
4 Q.P.
5 R.Z.
6 F.N.
7 F.J.
8 B.Q.
9 Q.C.
10 C.Q.
11 F.D.
12 P.Q.

Table 2: The left table presents examples of words used
in the Alternative Use task. The name of the image
and their English translation are those of the MultiPic
database (https://www.bcbl.eu/databases/multipic/).
The rightmost table presents example of pairs of letters
used in the Name Invention task. Letters are present in
more or less frequency

B. Raw data

B.1. Physiological data

Figure 5: Visualisation of the data collected by the Em-
patica E4 Wristband placed on one participant during
the first session. From top to bottom: 3-axis acceler-
ation, BVP, EDA, Heart Rate and body temperature.
x-axis is in seconds since the start of the watch. Red
horizontal lines represent times at which the button is
pressed on the watch.

B.2. Transcription

Excerpt of the automatic transcription of a free conver-
sation:

⟨0⟩ Vale pues
⟨0⟩ yo te dirı́a que en primer lugar pensarı́a en la
profesora de primaria embarazada
⟨0⟩ porque como no saben tampoco cómo van a llegar
al ⟨0⟩ o sea
⟨0⟩ Aunque no salte aunque ella se quedase quizás se
estrella más el globo
⟨0⟩ y puede ser que esté dañado y dañar a su a
sombrı́on con lo cual puede ser que les esté salvando
pero que al final no lo esté salvando porque quizás se
hace daño y pierde el crio entonces
⟨0⟩ teniendo un cientı́fico que pueda aportar un
tratamiento revolucionario o sea que puede salvar
muchas vidas
⟨0⟩ Pues quizás
⟨0⟩ bueno estoy entre la profesora y el marido
⟨1⟩ pero el marido es el piloto
⟨0⟩ si el marido es el piloto
⟨1⟩ Entiendo que no puede saltar porque si salta el
piloto y nadie sabe pilotar se mueren todos
⟨1⟩ Eso es mi entendimiento
⟨1⟩ sabes? que luego hubiera el tı́pico truco de no hay
piloto automático, entonces pues woaw
⟨1⟩ sabes lo que harı́a?
⟨0⟩ si
⟨1⟩ Bueno, sacarı́a el piloto por cuestión de super-
vivencia porque si muere el piloto mueren todos y
preguntarı́a a ellos quien quiere morirse
⟨1⟩ porque yo no sé
⟨1⟩ ser cientı́fico con la investigación revolucionaria
⟨1⟩ tiene 75 años por ejemplo y la investigación nunca
es una persona sola
⟨1⟩ sea ese puede morir pero su equipo de trabajo va a
seguir y su legado va a estar
⟨1⟩ claro pero esto
⟨1⟩ está muy bien pensado

B.3. EEG

Figure 6: Visualisation of brain activity using the Emo-
tivPRO app - raw EEG data tab. Left, the color indi-
cates the quality of the signal for each electrode.
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