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Abstract
We present VALET, a framework for rule-based information extraction written in Python. VALET departs from legacy
approaches predicated on cascading finite-state transducers, instead offering direct support for mixing heterogeneous
information—lexical, orthographic, syntactic, corpus-analytic—in a succinct syntax that supports context-free idioms. We
show how a handful of rules suffices to implement sophisticated matching, and describe a user interface that facilitates
exploration for development and maintenance of rule sets. Arguing that rule-based information extraction is an important
methodology early in the development cycle, we describe an experiment in which a VALET model is used to annotate examples
for a machine learning extraction model. While learning to emulate the extraction rules, the resulting model generalizes them,
recognizing valid extraction targets the rules failed to detect.
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1. Introduction

Under the current state of the art, achieving peak ac-
curacy in sentence-level information extraction (IE) in-
volves training supervised models on substantial quan-
tities of text annotated at the phrase level. Whether the
objective is named entity or concept recognition, re-
lation extraction, event extraction, or some slot-filling
endeavor, the basic recipe is the same: extraction ele-
ments must be identified and labeled in context, their
boundaries marked, and phrasal elements optionally
drawn into typed relations with each other. Once
enough examples have been annotated in this fash-
ion, the literature describes a large number of machine
learning models that can be trained to perform extrac-
tion at accuracies ranging from strong to adequate, e.g.,
(Ma and Hovy, 2016; Zhang et al., 2018; Wadden et
al., 2019). To the extent that an extraction problem
is nuanced, e.g. exhibits high linguistic variability or
requires supra-lexical interpretation, data requirements
are increased, necessitating the employment of a team
of annotators, often governed by detailed guidelines to
maximize annotation consistency. Thus, the IE devel-
opment process can be quite expensive, often too ex-
pensive for many applications that might benefit from
special-purpose extraction.
The models that result from this process are also chron-
ically limited. Over the decades during which IE has
been a focus of study, the field has emphasized prob-
lem formulations of broad applicability. For exam-
ple, recognizing mentions of named entities and cer-
tain concepts, such as dates or monetary amounts, is a
necessary component of many applications of text un-
derstanding. However, all such work must commit to
specific genres (e.g., newswire) and levels of granular-
ity, necessarily limiting the applicability of any result-
ing model. Generally, it is not difficult to find prac-

tical problems of text understanding for which use of
such community models is problematic, whether be-
cause the formalization assumed by the model is an
awkward fit to the problem at hand, or because the
text of interest is distinctive enough to occasion signif-
icant degradation when a model is applied. This prob-
lem is most obvious for canonical formulations such as
event extraction, where the types of extraction targets
are limited in number and exhibit strong domain de-
pendency. For example, the ACE formulation of this
problem, which defined 33 event types (LDC, 2005),
was strongly influenced by use cases relevant to na-
tional defense and intelligence analysis, and therefore
provides limited value to many other use cases involv-
ing the same genres.
The upshot of these challenges is that IE is practically
unavailable for many problems of text understanding.
While a methodology exists to produce accurate ex-
traction systems, its application is beyond the reach of
many real-world budgets. We argue that, as a practical
matter, agility in deployment is an important comple-
ment to and at least as important as the field’s long-
standing concern with accuracy. Various approaches
to IE offer different trade-offs between these two con-
cerns. In particular, rule-based approaches typically
yield higher accuracies than those involving machine
learning early in the development cycle, their relative
inferiority only becoming evident after substantial vol-
umes of annotated data have been amassed. Despite
this, research into rule-based methods has stalled with
few exceptions.
In the interest of reviving interest in these methods, we
offer the following contributions:

• We introduce VALET (Very Agile Language Ex-
traction Toolkit), an open-source framework im-
plemented in Python, with a rule syntax that
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flexibly incorporates various linguistic sources of
evidence—orthographic, lexical, corpus-analytic,
and syntactic—enabling the succinct definition of
efficient extractors. 1

• We illustrate the application of this framework to
a problem of considerable practical interest and
describe an interactive front end that greatly en-
hances the speed and convenience with which ex-
isting extraction capabilities can be maintained
and new ones implemented.

• And we present the results of a study exploring the
use of VALET as a means to perform annotation
at scale in the training of robust machine learning
extractors. We maintain that the ultimate promise
of rule-based extraction is not as a replacement for
machine learning extractors, but as a component
in future hybrid frameworks that lower the cost of
entry and increase the agility of IE deployment.

2. Related Work
Lowering the cost of deploying IE through machine
learning has been and continues to be an area of active
research. Contextual language models trained on large
text collections lower the learning curve for many NLP
tasks, a benefit that extends to IE (Shi and Lin, 2019).
A range of approaches have been proposed to further
reduce training overheads, including prototype learn-
ing (Han et al., 2018; Fritzler et al., 2019; Huang et al.,
2020) and transfer learning (Wang et al., 2018; Huang
et al., 2018; Yang and Katiyar, 2020). In some cases,
these methods make it possible to achieve impressive
competence in a new task with a few training exam-
ples. But note that such approaches, inasmuch as they
often transfer extraction knowledge from known tar-
get types or from highly resourced domains to adjacent
ones, do not eliminate the need for annotation. And
it is often questionable whether the resulting models
are sufficiently performant for downstream use without
supplementation.
Much work on rule-based IE has been influenced
by the FASTUS system (Hobbs et al., 1997) and
the subsequent common pattern specification lan-
guage (CPSL) for rule-based extraction (Appelt and
Onyshkevych, 1998), which emphasized extraction
through “cascaded” finite-state transducers, an imple-
mentation commitment motivated by a desire to avoid
the expense of interpreting context-free rules. A po-
tentially negative side-effect of this commitment is an
emphasis on phased annotation; rules operate on the
annotations deposited by lower-level rules. This rule
tiering limits the flexibility of languages in this class,
while increasing the level of required expertise and
engineering overhead. Despite these disadvantages, a
number of subsequent efforts have either implemented

1github.com/SRI-AIC/valet

Type Syntax Description
import <- enables modularization
token class : defines token classes
phrase -> matches subsequences
parse ˆ matches parse segments
coordinator ˜ manipulates matches
frame $ composite extractions

Table 1: The types of statements understood by
VALET.

CPSL directly, such as in the GATE project’s JAPE sys-
tem (Thakker et al., 2009), or proposed alternative lan-
guages implementing cascaded transduction (Piskorski
et al., 2004; Chang and Manning, 2014; Kluegl et al.,
2016).
The VALET language, while offering access to the same
kinds of processing, imposes no restrictions on how
information derived from distinct forms of processing
(e.g., tagging, named entity recognition, embeddings,
etc.) should be used or combined. VALET shares this
focus on uniform access to diverse sources of evidence
with the Odin framework (Valenzuela-Escárcega et al.,
2016), though VALET rules are more modular, rely-
ing heavily on rule composition through named refer-
ence. The typical result, in our opinion, is more suc-
cinct, more intelligible rule sets. VALET also supports
context-free constructs, including recursive rules, re-
lying on the rule author to control extraction expense
through the use of selective rule components. The au-
tomated exploitation of such sources of efficiency has
been the focus of several papers (Khaitan et al., 2008;
Reiss et al., 2008), including the more recent Odinson
framework (Valenzuela-Escárcega et al., 2020), which
offers efficient search against extraction output over
large corpora.
We believe that the value of rule-based IE will ulti-
mately be maximized through its incorporation into hy-
brid systems that use rules for exploration and early de-
velopment, and statistical methods or machine learning
for robust deployment. A notable alternative to such an
approach is the use of “labeling functions,” as exem-
plified in the Snorkel framework (Ratner et al., 2017).
Rule authoring frameworks like VALET are compati-
ble with such work, offering an arguably more con-
venient means to implement labeling functions than
through code, while applying to a larger class of ex-
traction problems.

3. VALET Language
A VALET rule set consists of a sequence of statements,
each containing three elements: a name, a statement
separator, and an expression defining the behavior to
be associated with the name. The statement separator is
a bit of syntax that controls how the expression should
be evaluated.
As shown in Table 1, VALET recognizes six types of

github.com/SRI-AIC/valet
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Type Example
regex /ˆ[a-z]/i
set { a an the }i
radius { king queen }0.5
layer pos[NN NNP]
reference &myclass

Table 2: The types of atomic token class expressions
understood by VALET.

expression. For all types but import, the effect of in-
terpreting a statement is to create an extractor and as-
sociate it with the indicated name. Once defined, an
extractor may be applied to a token sequence, yield-
ing a stream of zero or more matches, each covering
some contiguous span in the input. In practice, a token
sequence is often a sentence, but VALET is agnostic
to the provenance and form of its input, and has been
fruitfully applied to non-sentential sequences, such as
those found in table cells. We now describe each of the
types in Table 1 in turn.

3.1. Imports
Import statements make the extractors defined in an
external file available in the current context. Refer-
ences to imported rules must be prefixed with the im-
port name using dot notation. For example:

ner <- ner.vrules
person -> @ner.persons

This rule sequence has the effect of loading the extrac-
tors defined in the file named ner.vrules and asso-
ciating them with the package name ner. The second
statement defines a recognizer for person names that
simply delegates to the extractor named persons in
new.vrules. (See Section 3.3 for more information
on this kind of inter-rule reference.)

3.2. Token Classes
The ability to succinctly define flexible token classes,
drawing on orthography, lexical membership, embed-
dings, and syntax, affords VALET much of its power.
A token class extractor yields matches covering indi-
vidual tokens, usually words or units of punctuation,
but also dependency labels in some contexts (see Sec-
tion 3.4).
Token classes are represented by Boolean expressions
(with operators and, or, and not, and supporting
parenthesized subexpressions), the atomic elements of
which are listed in Table 2. The regex and set expres-
sions provide match by regular expression and explicit
enumeration, respectively. The optional terminal ‘i’
qualifier in each case indicates case insensitivity. A set
expression can optionally be prefixed with ‘f’ and spec-
ify a file name to load an external token lexicon.
A radius expression uses the syntax for set with a nu-
meric suffix. Using an optionally loaded embedding,

its effect is to match any input tokens within the indi-
cated Euclidean radius of any of the words listed in the
expression.
The layer expression is used to access token-level an-
notations provided by third-party analyzers (typically,
but not necessarily, general-purpose NLP libraries).
The example in the table matches any token tagged as a
singular noun by inspecting labels collected in the pos
layer. Similarly, the expression

pname : ner[S-PER]

matches any single-token person name identified by an
underlying NER model. Note that here, as in other
cases where VALET relies on external analysis, it ac-
cesses that analysis verbatim. Thus, rules predicated on
one NLP engine may suffer degradation if another en-
gine following a discrepant annotation scheme is sub-
stituted.
As shown in the table, a previously defined token class
can be incorporated by reference, enabling the con-
struction of legible expressions of arbitrary complexity.
For example:

cap : /ˆ[A-Z/
job : { writer scientist }0.8
title : &cap and &job

3.3. Phrase Expressions
Phrase expressions employ a regular expression syn-
tax that is applied to token rather than character se-
quences. VALET recognizes the standard regular ex-
pression operators (‘?’ for optional components, ‘*’
and ‘+’ for Kleene closures, ‘|’ for alternation) and un-
derstands parenthesized subexpressions. In other re-
spects, elements of an expression are presumed to rep-
resent literal tokens, unless they are identifiers prefixed
by ‘&’ or ‘@’, in which case they refer to separately
defined token classes or arbitrary named extractors, re-
spectively. This named co-reference between phrase
expressions not only implements a context-free seman-
tics, but is also VALET’s mechanism for submatch cap-
ture (see Section 3.5).
An example will hopefully make this clear. Consider
the rules:

pname : ner[B-PER I-PER]
honor : { Dr Mr Mrs Ms }
person -> &pname+
titled -> &honor .? @person

The titled extractor in this example recognizes per-
son mentions prefixed by an honorific, incorporating a
separate phrase extractor for names by reference. Note
that unlike in standard character-level regular expres-
sions, the optional ‘.’ has no special significance and
matches period characters in the input literally.
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3.4. Parse Expressions
Parse expressions are identical in form and interpre-
tation to phrase expressions with one crucial differ-
ence: they are applied to the graph returned by de-
pendency parsing or a comparable process. A subse-
quence matches a particular parse expression if its start
and end tokens are joined by a path whose arc labels
match the expression. By default, this matching is in-
sensitive to dependency direction; the element dobj
yields matches from verbs to their direct objects and
from objects to their governing verbs. This approach is
suitable for almost all practical uses, but expression el-
ements may be prefixed by ‘\’ and ‘/‘ to restrict match-
ing to parent-child and child-parent dependencies, re-
spectively.
A simple example should illustrate how this capability
works in practice. The following expression extracts
all extents covering a verb and any of its direct objects,
assuming the annotation engine uses Universal Depen-
dencies version 2 2:

direct objects ˆ obj conj*

Note that because there is no directional restriction on
obj, this expression also generates a match from the
first direct object to its governing verb. Given this be-
havior, and more generally the misalignment between
matching over a non-linear structure and linear subse-
quence extraction, parse expressions mainly become
useful when mixed with other language elements, as
will be made clear in the next section.

3.5. Coordinators
Coordinators greatly expand the expressiveness and
utility of the Valet language, providing various trans-
formations of match streams that are difficult or im-
possible to achieve with the constructs described so far.
A coordinator accepts one or more match streams and
transforms them into an output stream through a num-
ber of available operations, such as comparison, sub-
match selection, unification, etc.
Coordinators are defined using the following syntax:

name ˜ expression

Table 3 lists the types of expressions that may occur
in this context. Where name occurs in the table, the
name of an extractor must be specified. Where strm
(for “match stream”) is indicated, an expression may
contain one of three things: ‘ ’, a special token repre-
senting a match spaning the entire input sequence (e.g.,
a whole sentence); the name of an extractor, which is
then applied to the input sequence to generate matches;
or a nested coordinator expression. The win parame-
ter calls for a non-negative integer representing a token
window. Finally, invert is an optional literal argu-
ment that has the effect of inverting the interpretation
of a coordinator in which it appears. We now briefly
describe the interpretation of these operators.

2https://universaldependencies.org/

match(name, strm)
filter(name, strm, invert?)
prefix(name, strm, invert?)
suffix(name, strm, invert?)
near(name, win, strm, invert?)
precedes(name, win, strm, invert?)
follows(name, win, strm, invert?)
contains(strm, strm)
overlaps(strm, strm)
union(strm, ...)
inter(strm, ...)
diff(strm, ...)
connects(name, strm, strm)
select(name, strm)

Table 3: Coordinator expressions available in VALET.

The match and filter have similar behavior, each
applying a named extractor to a stream of matches in-
dicated by the second argument. While match returns
any matches of the named extractor within the bounds
of some input match, filter passes through any in-
put matches that the indicated named extractor matches
(or doesn’t match if invert is specified). For exam-
ple, if pname matches fully qualified person names
and honor matches honorifics, then the following rule
matches only person names that include honorifics:

hname ˜ filter(honor, pname)

Inclusion of the optional invert argument would
yield names lacking honorifics. Both prefix and
suffix have the same signature as filter, but re-
quire that the named extractor generate a match that
immediately precedes or follows (rather than contains)
an input match, respectively.
The operators near, precedes, and follows are
proximity tests, passing through any matches on the
input stream occurring in the proximity of the named
extractor, the degree of proximity controlled by win.
When invert is indicated, non-proximal matches
are instead passed through. The contains and
overlaps operators yield any matches in their first
argument that enclose or overlap matches in their sec-
ond argument.
The operators union, inter, and diff perform the
union, intersection, and set difference, respectively, on
one or more input streams. For these operators, element
equality corresponds to match extent: two matches
are equal if they have the same input sequence and
the same start and end tokens. Thus, inter and
diff essentially pass through any matches in the first
stream that have the same extent as matches found in
all of (none of, respectively) the subsequent streams.
When union and inter encounter distinct matches
of equal extent, only the first of the two compared
matches is passed through, but the resulting record

https://universaldependencies.org/
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maintains a pointer to the other match, so that it can
be subsequently selected (see below).
The connects operator yields any matches of the ex-
tractor named in its first argument that connects two
matches from each of its input streams. A connection
is observed if the extractor matches a sequence starting
within the extent of a match in the first stream and end-
ing within the extent of a match in the second stream.
Although this operator is agnostic to the type of the
named extractor, it is most useful when applying parse
extractors, especially in combination with the select
operator, described next. Please refer to Section 5 for a
typical combination of connects and select.
As matches are generated by potentially deep cascades
of named extrators, VALET tracks the contributions that
lead to the generation of a given match. Applied to the
stream of matches in its second argument, the select
operator yields a stream of contributing submatches
made by the named extractor. An example should make
clear the value of this capability. Suppose we have de-
fined a token class called hire (e.g., using a radius ex-
pression), a parse expression called dobj that connects
transitive verbs to their objects, and a phrase extractor
for person names called name built on top of the ner
layer. Consider the expression:

hire whom ˜ select(name,
connects(dobj, hire, name))

This expression generates a stream of names in an ob-
ject relation to a hiring verb.

3.6. Frames
Finally, the frame operator generates composite ob-
jects suitable for downstream applications. Its use is
perhaps best illustrated by extending the previous ex-
ample. Suppose nsubj is a parse extractor matching
subject-verb dependencies. A typical frame usage is
the following:

hsubj ˜ select(hire,
connects(nsubj, name, hire))

hobj ˜ select(hire,
connects(dobj, hire, name))

hiring ˜ union(hsubj, hobj)
hframe $ frame(hiring,
employer=hsubj name,
employee=hobj name)

As this example suggests, the frame operator uses
a previously named extractor as an anchor, then ap-
plies submatch selection to associate contributing sub-
matches with arbitrarily named fields. Here, the
union operator is used to unify instances of hiring
that include both a hirer and a hiree. The frame then
selects the respective submatches, treating each of the
two slots as optional. Note that this submatch selec-
tion takes the form of a space-separated list of named
extractors, representing a kind of submatch selection
path. In this example, to populate the employer field,

we select first any contributing hsubj phrase (which
covers any name in a subject relation to a verb of hir-
ing), then select the implicated name match.

4. User Interface and Instrumentation
A critical piece of the VALET framework is its user
interface (UI), depitcted in Figure 1, which supports
exploration and interactive rule authoring. The inter-
face is divided into three panes arranged vertically—
from top to bottom the rules, text, and control panes.
At invocation time, the user posits a rules file and cor-
pus, individual documents from which are displayed in
the text pane. When the name of an extractor in the
rules pane is clicked on, the system highlights the cor-
responding matches in the text pane, to develop rule
sets incrementally. The buttons on the lower left enable
the user to move through the corpus, either sequentially
or by scanning forward to the next match of a selected
rule.
The VALET UI provides additional features that make
access to some of the relatively opaque functions more
convenient. When the user clicks on a word in the text
pane, the UI displays information about that word from
the underlying NLP stack3, such as the part of speech,
lemma, and NER tag. Similarly, when the user drags
over two words in a sentence, the system to reports
the labels on the dependency path between the two
words. Through a separate process that precedes UI in-
vocation, the user can generate lexical embeddings and
compute a distance matrix between words, persisted in
a format that VALET understands. If such information
is present, the user can summon a list of similar words
by shift-clicking on a word in the text pane. To create
a custom token class from this list, the user simply se-
lects those entries in this list that are suitable and clicks
a button to paste the corresponding token class defini-
tion into the rules pane.
VALET understands a number of common corpus per-
sistence formats, such as directory of plain text files,
single file with one document per line, CSV, CoNLL,
etc., all represented as subclasses of a class that pro-
vides corpus iteration, document segmentation, and to-
kenization. The size of this API is quite small, making
it straightforward to assimilate new corpus formats.

5. A Sample Model
To illustrate how the features described in Section 3
combine to support the implementation of sophis-
ticated extraction capabilities, we present a walk-
through of a sample rule set. Table 4 shows a short
set of rules from a project on procedural language. In
many domains (e.g., food recipes), texts that contain
instructions are dominated by imperative constructions

3VALET is integrated with two third-party stacks that
can be used interchangeably: Spacy (https://spacy.
io) and Stanza (https://stanfordnlp.github.
io/stanza/). We are currently integrating the SRL model
from AllenNLP (https://allennlp.org).

https://spacy.io
https://spacy.io
https://stanfordnlp.github.io/stanza/
https://stanfordnlp.github.io/stanza/
https://allennlp.org
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Figure 1: The VALET user interface.

(e.g., “Chop the onions”). The rules in the table aim to
identify these constructions and extract the verbs and
their corresponding objects, as a step toward extracting
the entire procedure.
The statement in Line 1 imports a built-in rule set in-
tended to provide convenient access to various syntac-
tic features. Invocations of rules defined in this module
can be easily identified in the rest of the listing by look-
ing for identifies containing the syntax prefix. An ex-
ample reference can be seen in Line 5, which has the ef-
fect of renaming a token class defined in syntax. The
preceding statement (Line 4) is more selective, match-
ing verbs in an infinitive inflection.
The two coordinator expressions and Lines 8 and 11
each match verbs based on their syntactic neighbor-
hood as defined by the dependency structure in which
they participate. The first expression relies on the built-
in ROOT extractor, which matches the head word of the
dependency parse, selecting those head words that are
uninflected verbs. The second identifies verbs with di-
rect objects by selecting the verb component (using the
select coordinator) of verb-object relations (identi-
fied using the connects coordinator). Note that the
corresponding objects remain accessible to rules built
on this expression (e.g., in the expression at Line 19).
The statement on Line 16 takes the intersection of the
streams the previous two statements generate, yield-
ing only uninflected clausal head verbs with objects.
Finally, in Line 19, the verbs and their objects are
picked out from this stream and given names for the
convenience of downstream code. Note that if a verb

has multiple objects, the rule syntax.objects,
and correspondingly verb object, generates mul-
tiple matches for a single verb. The frame operator
collapses such matches into a single frame with a list-
valued object slot.

6. Valet for Accelerated Annotation
For simple extraction problems, problems of limited
scope exhibiting low linguistic variability, the frame-
work we have described makes it possible to deploy
competetent information extraction sufficient for many
downstream uses. Perhaps more important, initial de-
velopment of such capabilities almost always involves
lower overhead than under a conventional regime of
systematic annotation and training of machine learn-
ing models. Using the features that VALET provides,
a trained practitioner often can achieve F1 scores in
hours that would take days or weeks under conven-
tional model development. Of course, for many non-
trivial problems, rule authoring eventually hits a point
of diminishing returns, particularly when “edge cases”
start to dominate the set of legitimate targets that the
rules do not yet sanction. A supervised model trained
on sufficient data then often yields more robust detec-
tion.
This complementarity in strengths—the speed of rule
deployment and the robustness of supervised models—
suggests a hybrid approach to extractor development.
Specifically, is it possible to avoid some of the over-
head of model development by using extraction rules
for annotation and training of extractors? Here, we pro-
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1 s y n t a x <− s y n t a x . v r u l e s
2

3 # Some u s e f u l c l a s s e s
4 i n f v e r b : pos [VB]
5 a n y v e r b : &s y n t a x . ve rb
6

7 # U n i n f l e c t e d main v e r b s
8 m a i n i n f v e r b ˜ i n t e r (ROOT, i n f v e r b )
9

10 # A verb−o b j e c t r e l a t i o n
11 v e r b o b j e c t ˜ s e l e c t ( any ve rb ,
12 c o n n e c t s ( s y n t a x . o b j e c t s , any ve rb ,
13 s y n t a x . b a s e n o u n p h r a s e ) )
14

15 # I m p e r a t i v e s w i t h o b j e c t s
16 i m p v e r b o b j ˜ i n t e r ( m a i n i n f v e r b , v e r b o b j e c t )
17

18 # F i n a l f rame
19 i m p e r a t i v e t u p l e $ f rame ( i m p v e r b o b j ,
20 o b j e c t = v e r b o b j e c t s y n t a x . b a s e n o u n p h r a s e ,
21 p r e d i c a t e = i m p v e r b o b j ) )

Table 4: A sample rule set for extracting imperative verbs and their objects.

vide anecdotal evidence that this is a viable approach,
particularly that models trained in this fashion learn
to extract accurately and generalize effectively, detect-
ing valid extraction targets that the “seed” rules don’t
cover.
Prior work provides evidence that this approach is
promising, though the specific conditions under which
it adds value remain to be investigated. The state of the
art in open information extraction (Open IE) involves
a supervised model (Cui et al., 2018) trained on sen-
tences annotated by earlier pattern-based approaches
to the problem (Mausam, 2016), yielding more robust
performance. Of course, because the scope of Open IE
is extremely broad, it remains to be demonstrated that
narrower extraction problems can be addressed in this
fashion.

6.1. Extracting Scientific Claims
As part of a project seeking to document scientific
progress in research on solar materials, we imple-
mented a set of VALET rules to extract “claims” from a
large collection of abstracts from the Web of Science4,
a corpus consisting of about 160K abstracts on solar
energy research from 1968 to 2014. In our framing, a
claim is a sentence-level relation between a quantita-
tive measurement (consisting of a numeric value and
a unit of measurement) and a metric, the quantity be-

4https://clarivate.com/
webofsciencegroup/solutions/
web-of-science/

ing measured. In the snippet, “The overall light-to-
electric energy conversion yield is 7.1-7.9 percent in
simulated solar light,” the value, unit, and metric are
“7.1-7.9”, “percent”, and “light-to-electric energy con-
version yield”, respectively. Note that this definition
does not take into account the epistemic status of the
statement, which would be required to distinguish true
claims from, say, known facts.
In the context of that effort, we implemented and re-
fined a set of rules for this problem (some 19 phrasal
extraction rules and a few large synonym sets for rela-
tion elements such as units of measure). This extraction
model was then used to harvest claims at scale and to
plot progress on key metrics over the years covered by
the corpus.

6.2. Experiments
In a fashion typical of many practical applications of
information extraction, this effort proceeded without
a formal definition of the extraction target, and the
resulting model was evaluated by inspection. As it
approached its final form, it was applied to increas-
ingly large subsets of the corpus and its extractions re-
viewed for accuracy, with some ad hoc spot checking
to increase confidence that no important claims were
missed. The usual result of such a process is a precise
extractor that is limited in recall to an uncertain degree.
Of interest, therefore, are approaches that can build on
this model, yielding improved recall without degrada-
tion in precision.

https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
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P R F1

Metric 0.940 0.970 0.955
Measurement 0.932 0.963 0.947

Table 5: Precision, recall, and F1 on the test set

Here, we report on experiments conducted well after
the project that motivated this model (the reference
model) had ended. We seek to answer two questions:
Taking the reference model as authoritative5, can we
use it to train a model that exhibits comparable pre-
cision? And does this trained model make useful er-
rors of commission, finding legitimate claim expres-
sions not sanctioned by the reference model?
To answer these questions, we applied VALET to the
entire set of abstracts that were the focus of earlier rule
development (some 160K abstracts—more than a mil-
lion sentences—divided into 60% train, 20% valida-
tion, and 20% test) using its predictions to train a se-
quence labeler for metrics and measurements.
Our model was developed with the FLAIR toolkit,
which enables experimentation with various embed-
ding types and sequence tagging architectures (Akbik
et al., 2018). We used the GloVE embeddings sup-
ported by the framework, which have 100 dimensions
and a vocabulary of 400K. Our architecture followed
default settings; we used bidirectional LSTMs with
word-wise dropout rate of 0.05, a locked dropout rate
of 0.5 and a hidden size of 256. The output of the
LSTM is fed into a CRF layer which predicted BIO
tags for the claim metrics and values (Lafferty et al.,
2001). Training included learning rate scheduling tar-
geting loss on the development set with a patience fac-
tor of 3 epochs and an annealing factor of 0.5. We used
a batch size of 512 and stopped after 77 epochs. The
model which performed the best on the development
set was selected.
The results are displayed in Table 5. We can see that the
model achieves strong performance on this task, though
recall exceeds prediction. As noted before, this effect is
potentially useful, inasmuch as rule-based methods are
typically recall limited. In this case, precision errors
are extractions that the rules do not sanction, but they
may in fact correspond to legitimate “claims” that the
rules miss.
To arrive at some qualitative insights into this matter,
we performed a small post-hoc analysis. Selecting 30
false positives at random, we tabulated the number that
fit our definition of claim, counting 17 in this category.
Admittedly, this kind of analysis is vulnerable to inves-
tigator bias, but the result does reinforce the impres-
sion that useful generalization can be derived through
this approach. Errors in this data are often due to over-
generalization of the metric entity to include other qual-

5In other words, the only data “annotation” is provided
by applying the reference model, and any divergence of the
learner from the reference model is measured as error.

ifying expressions attached to the measurement (e.g.,
“frequency range of 0.58-2.52 THz at room tempera-
ture,” measurement and metric displayed in green and
blue, respectively).
On the other hand, useful generalization takes some in-
teresting forms. We find that our corpus is “contam-
inated” with articles from biology and clinical chem-
istry. A non-trivial fraction of the false positives come
from these domains (e.g., “an average SAR of 0.26
W/kg”). The model also admits metric expressions con-
taining editorial qualifiers (e.g., “a promising power
conversion efficiency of 2.4%). Finally, it exhibits
greater inclusiveness in the processing of the text found
between the two claim elements and greater flexibility
with respect to order, as in “the epitaxial layer thick-
ness becomes less than 200 nm” and “2.5% (electrical
power/incident light power)”.

7. Conclusion
Machine learning has largely eclipsed rule-based meth-
ods in academic work on information extraction. While
this trend is easy to explain—machine learning models
are typically more robust in the limit and offer certain
methodological advantages—we argue that this devel-
opment has had negative consequences, such as a fo-
cus on “popular” problems and a paucity of options
for practitioners on a fixed budget. In compensation,
we offer VALET, a framework that makes it possible to
stand up competent sentence-level extraction for a wide
range of problems at minimal expense.
We have argued that the early-development superiority
of rule-based methods points in the direction of hybrid
methodologies, in which the time to deployment of ac-
curate machine learning extractors is greatly reduced
through rule-driven annotation. We have presented ev-
idence that such an approach is viable. Much work re-
mains in this area, including careful quantification of
accuracy as a function of effort. More interestingly, we
believe that the authoring of rules can and should re-
sult from mixed initiative, that machine learning can
be used to facilitate the many small actions and deci-
sions a rule author takes in producing an effective rule
set. In its current form, effective use of VALET or any
comparable rule interpretation framework requires not
only a working knowledge of rule language constructs,
but also a certain level of NLP sophistication. We be-
lieve that the right incorporation of machine learning as
a facilitator, rather than as the sole predictor, will ulti-
mately make it possible to deploy non-trivial extraction
for new problems in the course of an afternoon.
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