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Abstract
Large scale, multi-label text datasets with a high number of classes are expensive to annotate, even more so if they belong to
specific language domains. In this work, we aim to build classifiers for these datasets using Active Learning in order to reduce
the labeling effort. We outline the challenges when dealing with extreme multi-label settings and show the limitations of
existing pool-based Active Learning strategies by considering their effectiveness as well as efficiency in terms of computational
cost. In addition, we present five multi-label datasets which were compiled from hierarchical classification tasks to serve
as benchmarks in the context of extreme multi-label classification for future experiments. Finally, we provide insights into
multi-class, multi-label evaluation and present an improved classifier architecture on top of pre-trained transformer language
models.
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1. Introduction
In many fields, one could regard text classification as
a solved problem. Even before pre-trained language
models were available, common classification tasks
such as Spam/Ham sorting or Positive/Negative detec-
tion could be completed by a variety of machine learn-
ing architectures with a very high accuracy. Conse-
quently there has been a trend to move toward more
complex classification tasks. One such task is com-
monly known as Extreme Multi Label Text Classifi-
cation (XMTC) - datasets for this task contain large
numbers of distinct classes ranging from hundreds to
more than a million. We combine XMTC with Active
Learning (AL), which is a technique used to reduce an-
notation effort by strategically selecting samples from
an unlabeled set. The combination of XMTC and AL
has not been exposed to much systematic research al-
though it is relevant in many practical scenarios. Large,
domain-specific datasets are often assigned numerous,
fine-grained categories and each text can belong to
multiple of them. For example, one can easily imagine
a dataset of law texts which is annotated with several
hundred different target classes. Such datasets are also
very expensive to annotate due to requiring domain ex-
perts who will take a lot of time working through all
the classes. Therefore, AL is a particularly attractive
prospect, albeit not without its own set of challenges. In
order to be truly effective, AL uses various strategies in
order to select the most profitable samples from the un-
labeled set. However, many of these strategies are not
effective on all kinds of data or all classification mod-
els. In this work we motivate and introduce the task
of Active Learning for Extreme Multi-Label Classifica-
tion. Our goal is to gain insights into the performance
of established AL approaches on datasets with more
than 100 distinct classes. We are also interested in both
the efficiency and effectiveness of these approaches and
consider the tradeoff between increases in accuracy and

computational cost. Our work contributes the follow-
ing: 1. An investigation of AL selection strategies on
Extreme Multi Label datasets including the analysis of
the computational cost. 2. Where possible, we provide
the datasets directly. In addition we detail the steps
necessary to compile the dataset from its source. All of
our Extreme Multi-Label datasets contain hierarchical
label structures. 3. A multi-label classification evalu-
ation technique using variable thresholds. 4. A more
accurate classification network architecture that uses
a Convolutional Neural Network as the classification
head on top of BERT.

2. Related Work
Active Learning has been the subject of extensive re-
search and a number of strategies have been shown
to reduce the manual annotation effort in a variety of
supervised machine learning tasks. Past experiments
have shown that AL is effective on Text Classification
with SVMs (Tong and Koller, 2001), (Goudjil et al.,
2018) as well as with Deep Learning models perform-
ing image classification (Wang and Shang, 2014). In
recent years there have been more approaches of apply-
ing AL to Deep Models, for example for Named Entity
Recognition (Shen et al., 2017) and Text Classification
(An et al., 2018). The challenge is that traditional AL
approaches often rely on classifier confidence which
is typically very high in Deep Neural Networks and
as such, may not be a good indication of the actual
classifier accuracy (Ren et al., 2021). In our experi-
ments, we focus on pool-based AL which means that
we select one text from the unlabeled pool and anno-
tate it completely. Furthermore, we deal with the task
of Multi-Label text classification, which makes the us-
age of some AL strategies (for example prediction con-
fidence) more difficult (Wu et al., 2020), (Esuli and Se-
bastiani, 2009). Apart from the methods presented in
Section 5.1, there are noteworthy AL approaches us-
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ing Generative Adversarial Networks (Mayer and Tim-
ofte, 2020), custom loss functions with label correla-
tion (Ranganathan et al., 2018), uncertainty gradient
methods (Ash et al., 2019) or using network layers to
separate the label space (Liu et al., 2021).
Extreme Multi-Label Text Classification (XMTC) has
come up as a research topic often focusing on indus-
trial tasks such as recommender systems (Agrawal et
al., 2013), that can easily have several thousands of dis-
tinct classes. XMTC methods often find ways to reduce
or condense the label space to both save memory dur-
ing computation and build representations of the label
space (Bi and Kwok, 2013), (Prabhu and Varma, 2014).
However, with the rise of contextualized pre-trained
language models and large scale computation thanks
to powerful GPUs, XMTC has also been successfully
used with BERT (Devlin et al., 2018) or specifically
adapted architectures (Chang et al., 2020), (Chang et
al., 2019).

3. Active Learning for Extreme Multi
Label Text Classification

We are given a labeled training set T, an unlabeled set
U and a model M which requires supervised training
on a downstream task. In AL, we start by training M
on the initial training set T. We then sample n new data
points from U after the training has completed. These
data points are then annotated and added to the training
set. This cycle continues until a stopping criterion is
fulfilled - typically until a certain accuracy threshold is
reached, the model converges or we exhaust the anno-
tation budget. The goal is to increase the accuracy of M
without the need to annotate U in its entirety which al-
lows us to achieve higher classification scores with less
annotation effort. The general scheme is illustrated in
Algorithm 1. In an experimental setting, it is a common
practice to split a fully annotated dataset into T and U
in order to simulate the AL setup. The annotation step
is then performed by simply using the original labels
of U.1 The main challenge in AL is to select texts from
U that are valuable to the classifier and thus lead to a
higher classification accuracy compared to a random
selection of the same number of texts. We refer to this
selection mechanism as sampling strategy or selection
strategy.
The goal of text classification is to automatically sort
a text into a number of predefined categories called
classes or labels. In Multi-Label classification specif-
ically, each text is assigned to a subset of all available
classes instead of just one. Compared to other clas-
sification tasks, XMTC deals with datasets that con-
tain many distinct classes from a few hundreds to more
than a million. For our purposes we consider a multi-
label dataset with at least 100 classes to fall under the
XMTC task. The datasets used in our experiments have

1This kind of simulation has been found to ignore issues
that come up when actually deploying an AL system with
human annotators (Settles, 2011).

Algorithm 1 Active Learning (AL)
1: procedure AL(labeled set T, unlabeled set U,

model M, stopping criterion c)
2: D← T
3: while criterion c not met do
4: train Mt on D
5: D∗ ← sampled n data points from U
6: fully annotate D∗

7: D ← D ∪D∗

from 100 to around 700 classes and as such, they are
relatively small compared to many of the benchmark
datasets in XMTC.2. One reason for this is that we want
to introduce new datasets that can be used in the con-
text of XMTC. However, we also require our datasets
to be easy enough for a classifier so that we can bet-
ter observe the effects of AL without training for hun-
dreds of iterations. As such, we believe that this is
an important step towards a more systematic research
approach to AL for XMTC. We are also dealing with
a multi-label classification problem which means that
each text belongs to any number of classes instead of
just one. Though Multi-label classification requires lit-
tle changes in the architecture of a Deep Classification
Model, the evaluation needs a specialized treatment in
order to be informative (see Section 5.2).

4. Resources
4.1. Datasets
For our experiments, we consider 5 extreme multi-
label datasets which we compile using publicly
available, fully annotated datasets with a hierarchical
label structure. We extract the leaf nodes of the label
hierarchy and use only those as classes. Some datasets
have additional cleaning steps which are detailed in
their respective descriptions.
EurLex. It is a subset of the EurLex57k
dataset (Chalkidis et al., 2019). This dataset deals with
European Law and is specific to the legal domain.
Starting with the original dataset, we first filter out all
classes that are not leaves in the topic hierarchy. In
addition we also remove classes that appear in less
than 50 samples. A small number of texts with no
labels are removed as well.
ArXiv. Taken originally from (kaggle, 2020)
(https://www.kaggle.com/Cornell-
University/arxiv), this dataset contains titles
and scientific abstracts from arXiv documents. The
documents are categorized using the special arXiv
hierarchy.
NYT. This is a subset of the New York Times
Annotated Corpus (Sandhaus, 2008) consisting of
manually annotated news articles that are sorted into a
fine-grained hierarchy of topics.

2An overview of XMTC datasets can be found
here: http://manikvarma.org/downloads/XC/
XMLRepository.html#metrics (Bhatia et al., 2016)

https://www.kaggle.com/Cornell-University/arxiv
https://www.kaggle.com/Cornell-University/arxiv
http://manikvarma.org/downloads/XC/XMLRepository.html##metrics
http://manikvarma.org/downloads/XC/XMLRepository.html##metrics
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size number of classes per texts average class
train test dev classes text (avg) per class (avg) co-occurence

EurLex 44,689 5,954 5,963 739 4.38 265.32 1.88
arXiv 239,347 29,174 26,309 113 1.68 4385.46 42.85
NYT 22,991 10,941 2,554 303 2.62 315.52 3.03

RCV1 20,816 781,265 2,333 100 1.53 12321.26 116.72
Yelp 100,911 48,272 11,287 580 2.3 401.68 2.33

AGNews 112,400 7,600 7,600 4 0.75 28115.0 0
Toxic 102,124 25,532 31,915 6 0.22 3702.83 2065.47

Table 1: Sizes and class statistics for all datasets. Classes per text and texts per class are averaged over all
texts of the respective dataset. Average class occurrence is calculated for each class individually and then
averaged.
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Figure 1: Class distribution of extreme multi-label datasets. Class frequencies on all datasets are highly
unbalanced, containing many rare classes and few very frequent classes.

RCV1. The Reuters Corpus Volume 1 dataset (Lewis
et al., 2004) consists of manually categorized newswire
articles.
Yelp. This datasets consists of reviews taken from
Yelps database (https://www.yelp.com/
dataset) annotated with fine grained topics con-
cerning the subject of the review.
In addition, we also run experiments for two datasets
with fewer classes - one single-label and another
multi-label dataset. These datasets are used without
any additional modifications and do not contain a
hierarchical label structure.
AGNews. This is a collection of News Articles
grouped into 4 broad categories: World, Sports,
Business and Tech. Taken directly from kaggle:
https://www.kaggle.com/amananandrai/
ag-news-classification-dataset. This is
a multi-class, single label dataset.
Toxic. It is a mutli-Label dataset, which is
a collection of comments from online con-
versations annotated with 6 different aspects
of negative behaviour. Available on kaggle:
https://www.kaggle.com/c/jigsaw-

toxic-comment-classification-
challenge/overview
The descriptive statistics in Table 1 indicate the distinct
characteristics of the datasets included in our collec-
tion. We expect the individual sampling strategies to
respond differently to the properties of the datasets.
ArXiv and RCV1 have the fewest number of classes,
least classes per text and most occurrences of each
class (texts per class) compared to the other 3 Extreme
Multi-Label datasets. We also calculate average
class co-occurrence by counting how often each class
appears together with another class and then average
over all classes. Intuitively, this gives us an idea of
how correlated the classes are in a dataset. We see that
arXiv and RCV1 have a relatively high co-occurrence
compared to the other 3 Extreme Multi-Label datasets.
For the two datasets AGNews and Toxic, we see that
both datasets can have zero labels as average classes
per text is below 1. Toxic has a high class co-occurence
while the classes on AGNews are mutually exclusive,
as it is a single-label dataset. AGNews and Toxic are
not consider XMTC datasets. We include them to show
AL performance on more standard NLP datasets. As

https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://www.kaggle.com/amananandrai/ag-news-classification-dataset
https://www.kaggle.com/amananandrai/ag-news-classification-dataset
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview
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can be seen in Figure 1, all five Extreme Multi-Label
datasets are unbalanced.

5. Experiment
5.1. AL Sampling Strategies
We implement three state-of-the-art sampling strategies
for multi-label AL:
ALPS (Active Learning by Processing Surprisal)
(Yuan et al., 2020) calculates surprisal embeddings
with the Masked-Language-Modeling objective of the
underlying BERT transformer network. In essence, the
less certain the language model is about the words in
the text, the higher the loss in the surprisal embeddings.
In order to improve generalisation, the surprisal em-
beddings are then clustered and samples are selected
closest to the the cluster centroids. ALPS is a similar
approach to BADGE (Ash et al., 2019), which embeds
unlabeled texts using the classifier loss instead of the
language model objective. The disadvantage is, that
BADGE relies on the classifier accuracy directly which
might be extremely low especially in early AL stages.
The authors show that ALPS is the more effective ap-
proach on a variety of datasets which is why we do not
use BADGE.
DAL The Discriminative Active Learning (Gissin and
Shalev-Shwartz, 2019) approach operates on the idea
to bring the distributions of labeled and unlabeled set
closer together. They train a classifier that learns to dis-
tinguish between texts that come from the labeled set
and those that come from the unlabeled set. The more
certain this discriminator is that the text came from the
unlabeled distribution, the higher it is ranked for the se-
lection.
CVIRS (Reyes et al., 2018) combine category vector
inconsistency (CVI), i.e. how different the classifier
predictions on the unlabeled set are compared to the la-
bel set with a ranking of uncertainty scores (RS) taken
directly from the classifier predictions. This is the only
strategy that uses the classifier probabilities for sample
selection.
In addition, we also test a simple sampling strategy of
our own that relies on the tokenization of pre-trained
language model and is easy to compute.
Subword approach processes all words in a text with
the sentence-piece tokenizer of the transformer lan-
guage model used for classification. Words unknown
to the language model are split into subword-units. We
assume that a higher ratio of subword-units in a text
means that it contains more rare words and thus is more
interesting to the classifier. We rank the texts by the av-
erage amount of subword-units per word.
All these strategies are compared against random selec-
tion to test their effectiveness.

5.2. Variable Threshold and Evaluation
In our experiments, we focus on multi-class multi-label
datasets. This means, that there are more than two dif-
ferent classes and each data point can belong to any

number of those classes. Given a data point x and a
set of classes C = (c1, ..., cn), a neural network M re-
turns its predictions as log-probabilities for each class:
M(x) = (p1, p2, ..., pn). In a single-label setting we
get the prediction y∗ by simply taking the class with
highest pi. In a multi-label setting however, it is not
immediately clear which of the probabilities signify a
positive prediction. Therefore, we define a threshold
τ . All pi that are greater then τ are considered to in-
dicate positive predictions. Formally, the prediction y∗

is determined as such: y∗ = {ci|pi > τ}. Rather than
fixing τ to a single number, we design it to be variable
by selecting it from the development set. When cal-
culating the classification accuracy on the development
set, we test a wide range of manually defined values for
τ and select the one that gives the best F1-score (In our
experiments, we optimize τ with regards to Macro-F1.
See also Section 6). The τ that was used to evaluate the
best trained model is then also used to calculate F1 on
the test set. When no development set is available, τ
can also be estimated on the training set. In that case, τ
is set so that y∗ matches the average number of classes
per text of the training set. In practice, τ can also be
adjusted post-hoc once enough data has been labeled.
The evaluation is done using the F1, calculated as fol-
lows:

F1(y, y∗) = 2 ∗ precision ∗ recall
precision+ recall

(1)

micro-precision(y, y∗) =
tp

tp+ fp
(2)

micro-recall(y, y∗) =
tp

tp+ fn
(3)

macro-precision(y, y∗) =
1

|C|
∑
cϵC

tpc
tpc + fpc

(4)

macro-precision(y, y∗) =
1

|C|
∑
cϵC

tpc
tpc + fnc

(5)

where y are the annotated classes, and y∗ are the pre-
dictions from the classifier. tp, fp and fn stand for the
error types true positive, false positve and false nega-
tive between y and y∗. Due to the multi-class setting,
we consider Macro and Micro precision and recall. For
the macro scores, we calculate precision and recall per
class and average over all classes as illustrated in equa-
tion (4) and (5). For the micro scores we sum up tp, fp
and fn over the whole dataset, ignoring the class bound-
aries. This is shown in Equation (2) and (3). Macro-F1
and Micro-F1 are then calculated by using the respec-
tive Micro/Macro precision and recall. A more detailed
discussion on the difference between the two is found
in Section 6.2.



4601

single output layer CNN output
micro-F1 macro-F1 micro-F1 macro-F1

EurLex 0.62 0.47 0.78* 0.69*
arXiv 0.52 0.42 0.64* 0.58*
NYT 0.58 0.32 0.65* 0.51*

RCV1 0.78 0.54 0.81* 0.64*
Yelp 0.38 0.26 0.58* 0.52*

AGNews 0.91 0.91 0.94* 0.94*
Toxic 0.75 0.62 0.79* 0.68*

Table 2: Macro and Micro F1 classification scores
on the full datasets (without using Active Learn-
ing). Experiments were run with a BERT trans-
former using a single output layer in the left two
columns and a CNN (Convolutional Neural Net-
work) instead in the right two columns. Best results
marked in bold. *significance tested with unpaired
t-test p < 0.05.

5.3. Experimental Setup
We use a pre-trained BERT transformer3 for the clas-
sification task, truncating the input to the maximum
size of 512 tokens. Usually, classification models with
BERT are built by adding a single output layer on top of
the transformer network. In our experiments instead of
the feed-forward layer we add a simple convolutional
neural network (CNN) which was implemented in py-
torch. We find that the CNN greatly increases the clas-
sification performance on the full datasets (see Table
2). We train for a maximum of 15 epochs with early
stopping and evaluate the classification F1 on a held-
out development set after each epoch using a variable
threshold as explained in Section 5.2. The criterion for
early stopping is also the F1 on the development set.
After the final epoch the best model (according to dev
F1) is used to calculate the F1 on the test set which we
report in Section 5.4. We train with a batch size of 16
on a NVIDIA RTX A6000 using Adam optimizer with
a starting learning rate of 5e−5. For the AL, we set an
annotation budget of 2000 texts and add 100 texts in
each iteration. Each experiment is run three times with
different random seeds in order to increase the robust-
ness of the results.

5.4. Experimental Results
We give a short summary of our results illustrated in
Figure 2, which shows the micro F1 and Figure 3,
which shows the Macro F1 on all datasets. Looking at
Figure 2, we see that random selection is on par with or
better than all strategies on the arXiv, RCV1, AGNews
and Toxic datasets. For the AGNews dataset, micro F1
is very high at at 0.8 to 0.9 even at 100 texts leaving
little room for improvements as the upper bound
(Table 2) is 0.94 micro F1. DAL and subword perform
slightly worse, while the other approaches are on par
with random selection. Similarly, no strategy can
significantly improve upon random selection on the

3Using the huggingface library with the ’bert-base-
uncased’ model available from https://huggingface.
co

Toxic dataset. On the arXiv dataset, random selection
consistently outperforms all selection strategies by a
margin of up to 0.15 except for ALPS which is only
slightly worse by a margin of around 0.01. The RCV1
dataset benefits most from the subword strategy for
up to 500 texts, though the improvements are non
significant. Starting at 500 texts which point random
selection is on par with the both subword and ALPS.
Here DAL performs worse by margin of around 0.2
micro F1 compared to the random selection.
On the EurLex dataset, ALPS and subword score
the best micro F1 with an improvement of up to
0.154 compared to random selection. The CVIRS and
DAL strategies perform similar or worse than random
selection by a margin of up to 0.1 micro F1. CVIRS
in particular starts learning much later than the other
approaches. The rise in micro F1 can be observed
starting from 1000 texts while this happens at around
400 to 500 texts for the other strategies.
ALPS is also the most powerful strategy on the NYT
dataset, outperforming all other approaches signifi-
cantly with an increase of around 0.1 compared to
the second best approach CVIRS and around 0.25
compared to random selection4. Subword and DAL
perform overall perform worse or similarly to the
random selection.
On the Yelp dataset both DAL and ALPS achieve
improvements over random selection though with a
margin of around 0.1 micro F1 though the improve-
ments are not significant. CVIRS and subword achieve
very similar scores to random selection.
Compared to the micro F1 results, the results on the
5 extreme multi-label datasets as well as the Toxic
dataset for the macro F1 scores in Figure 3 are lower
overall, which is expected since the macro F1 score
is generally harder to increase. Otherwise, the results
on most datasets behave very similarly to the micro
F1 scores though the margins of improvement do
not generally exceed 0.1 of macro F1. On the eurlex
dataset, ALPS and subword improve upon random
selection by a small but significant4 margin of 0.05.
One big difference to Figure 2 can be observed for the
Toxic dataset, which benefits significantly from the
CVIRS strategy yielding an improvement of around
0.15 compared to all other strategies and random
selection. We offer further analysis and interpretation
of the results in Section 5.5 and 6.

5.5. Additional Analysis on EurLex Dataset
We are interested in the high performance of ALPS and
subword on the domain-specific EurLex dataset. We
first investigate, if the AL approaches sample similar
unlabeled texts to random selection. We find that there
is a small overlap of around 70 samples on of selected
texts between each AL strategy and random selection
on the EurLex dataset while there is little to no over-

4 significance tested with unpaired t-test p < 0.05

https://huggingface.co
https://huggingface.co
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Figure 2: Micro F1 results across all datasets. The x-axis describes the number of texts used to train the
classifier while the y-axis shows the resulting micro F1.

lap between the high scoring strategies compared to the
lower scoring strategies. ALPS and subword do show
an overlap of 122 texts out of 2000 which happens most
likely because both methods leverage the information
from the pre-trained language model. We assume given
the class distributions (Figure 1), that improving Mi-
cro and Macro F1 is dependent on learning the large
amounts of rare classes. We check how many classes
the classifier sees in each AL iteration and find, that
DAL generally covers around 70% of all classes while
all other methods, including random selection cover
from 80% up to 94% of all classes. This might be a
reason why DAL achieves the overall worst Macro F1
on EurLex.

5.6. Efficiency Analysis
For each sampling strategy, we analyse the runtime to
process 100 texts averaged over all datasets. It needs to
be noted that whenever a strategy requires a pass over
the unlabeled set, we do so in batches with a batch size
of 16 which is the maximum size the memory of the
GPU can handle in our setup (see Section 5.3). When
using a smaller batch size we find that one can gener-
ally assume that the computation will take proportion-
ally longer, i.e. with a batch size of 1, the computation
will take around 16 times as long. All results can be

strategy computation time for
100 batches (in seconds)

subword 3.80 (computed once)
ALPS 50
DAL 56

CVIRS 123

Table 3: Runtime Analysis of AL sampling strate-
gies. Computation time is measured for 100 batches
of size 16 (1600 texts), averaged over all 5 extreme
multi-label datasets and reported in seconds. Ran-
dom sampling has negligible computational cost.

found in Table 3
Subword requires only a single tokenization pass over
the unlabeled dataset and can be finished in a couple of
minutes on most datasets. The main advantage is that
subword calculates its scores only once instead of every
AL iteration making it by far the cheapest approach.
ALPS requires masked language modeling on the unla-
beled set as well as a clustering and sorting step of the
resulting embeddings. In our implementation, complet-
ing 100 batches takes 50 seconds, which means that on
most of the datasets a single pass of ALPS can be com-
pleted in around half an hour to an hour.
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Figure 3: Macro F1 results across all datasets. The x-axis describes the number of texts used to train the
classifier while the y-axis shows the resulting Macro F1.

DAL requires training of a separate model which we
implement as a simple feed forward network and train
for 2 epochs as suggested by the authors (Gissin and
Shalev-Shwartz, 2019). All in all, DAL is slightly
slower than ALPS but a single pass over the unlabeled
data can be computed at similar speeds.
Finally, CVIRS is the most expensive approach. For the
computation, CVIRS requires an inference pass over the
unlabeled data, which is expensive with a transformer
network and then calculates multiple similarity mea-
sures that each require more passes over the unlabeled
data. Depending on the dataset, a single calculation of
CVIRS can take several hours to complete in our imple-
mentation.

6. Discussion
6.1. Interpretation of Results
Concerning the overall results in Section 5.4 we find,
that AL improves the classifier on datasets which have
low label co-occurence: EurLex, NYT and Yelp. This
might be an indication that the selection strategies
struggle to find correlated labels. While the approaches
detailed in Section 5.1 all use different information
from the classifier, they all try to find rare or uncer-
tain data points. It might well be, that when labels are

highly correlated, the rare classes are assigned to data
points which are not very different from the rest and as
such, are harder to identify with the proposed methods.
We also find that on AGNews and Toxic, CVIRS per-
forms well especially compared to the other dataset. A
possible reason for this is, that the classifier F1 is higher
on these two datasets for small training sets (especially
the Macro F1) and as such, the selection strategy can
properly make use of the classifier confidence. Another
interesting observation is, that the subword approach
performs well on the EurLex dataset but is among the
worst AL strategies for most of the other datasets. A
possible explanation for this is, that on EurLex, rare
words also indicate rare classes as they describe de-
tailed legal concepts. In addition, since EurLex has a
low class co-occurrence, we know that the labels are
fairly singular and spaced out across the dataset. The
only other dataset which is similar in both the num-
ber of classes and average class co-occurence is Yelp.
However, the Yelp dataset contains mostly simple, ev-
eryday language that a pre-trained language model will
be very familiar with. While we find, that the aver-
age number of subword-units is similar across datasets,
we expect the split words in a common domain dataset
such as Yelp to be less indicative of the class.
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6.2. Micro and Macro F1
As already mentioned in Section 5.2, evaluating multi-
class, multi-label classification requires some finesse.
In the experiments, we choose to evaluate both mi-
cro F1 and macro F1 as the information they pro-
vide about the performance of the classifier is actually
quite different. There is an argument that micro F1 is
the more representative metric, as the distributions of
classes in the datasets are imbalanced. Even if we as-
sume that our classifier has few errors overall, it can
still score a low Macro F1 if the errors are concen-
trated in many, low frequency classes. As such, macro
F1 is much harder to increase for an imbalanced set of
classes. This is even more true in our AL setting where
we might not even find all the classes present in the test
set in our small training set. Consequently, micro F1
offers a way to ignore the class boundaries and count
error types over the whole dataset instead which can be
considered a more accurate representation of the clas-
sification capabilities of our system. However, espe-
cially when we are dealing with imbalanced datasets in
practice, the rare classes are often the ones that are par-
ticularly interesting. While a classifier with high micro
F1 might make fewer errors on the whole dataset, it
is possible that it really only learns to predict the few
majority classes. This effect is again magnified when
dealing with AL. One could argue that one of our goals
in AL is to cover all the classes of the dataset quickly.
Micro F1 however will continue to increase even if
only the predictions on a few classes or even a single
frequent class continue to improve. In essence, while
it is true that Micro F1 is a better description of how
many mistakes our classifier makes overall we should
keep in mind that Macro F1 reflects how many of the
classes our system is able to discriminate. We conclude
that while Micro F1 is important to judge the overall
accuracy of the classifier, we should pay equal, if not
more attention to Macro F1 since we want to observe
how many classes our classifier learns to cover over the
course of AL.

6.3. Tradeoff between effectiveness and
efficiency

We see that subword is the cheapest method and that
it is very effective on the EurLex dataset and yields
slight improvements on the RCV1 dataset. While the
performance depends heavily on the dataset, given
the low cost of the approach we conclude that the
approach is worth trying, especially when dealing with
domain-specific data that contains many rare words.
In general though, the effectiveness across datasets
seems too low to be practical. ALPS is expensive to
compute compared to random selection but it achieves
consistent improvements on 3 out of the 5 extreme
multi-label datasets which makes it the most effective
strategy across the datasets. However, the results for
the remaining datasets are often worse than random
selection. Overall, ALPS appears to be the most ap-

propriate approach in our work but the performance is
sub par on the Arxiv and RCV1 datasets. Interestingly,
these two datasets have a relatively low number of
classes and high class co-occurrence(see Table 1)
which might explain the good performance of random
selection, especially for Macro F1 since any random
text is more likely to include several classes.
DAL appears to be the weakest strategy overall. It is the
best approach for the Yelp dataset in terms of Macro F1
from 500 to 1500 texts but even there the differences
compared to ALPS are marginal. On all other datasets,
DAL is among the worst performing approaches.
Given that it is also fairly expensive to compute, we
do not recommend its usage for Extreme Multi-Label
AL. Finally, CVIRS is only effective on the NYT
and Toxic datasets. For both datasets it significantly
improves macro F1 in particular. However, at least
with a transformer-based classifier it is very expensive
to compute. CVIRS needs to be calculated from scratch
each AL iteration and each computation can take
several hours in our implementation depending on
the amount of unlabeled data. For some datasets this
increased the total computation time of the experiment
to more than a week, which is extremely impractical
especially in an applied AL setting where an annotator
would need to check in regularly to label the selected
texts.

7. Conclusion
Overall, we conclude that none of the selection strate-
gies investigated in our experiments manage to consis-
tently improve the AL scheme across all the datasets.
In addition, we show that a much less computation-
intensive approach based on the pre-trained language
model can be just as effective on certain types of
datasets. Consequently, we demonstrate the need for
more effective AL selection strategies that also keep
the computational requirements in mind. Our work of-
fers an empirical basis for future experimentd by mak-
ing the data available or possible to compile and giving
a detailed description of computing F1 with a variable
threshold. A next step to continue our initial investi-
gation of this task is to extend our hypotheses to es-
tablished XMTC benchmarks with thousands of labels.
Undoubtedly this will generate the need for larger ini-
tial training sets in order to even have a chance of cov-
ering a significant part of the label space. In addition,
we expect that specialised XMTC models (see Section
2) will make a difference. We encourage experimenting
with more AL selection strategies that are based on the
pre-trained language model and do not require repeated
inference passes over the entire unlabeled dataset. Fi-
nally, we are looking into ways of combining multi-
ple different sampling strategies in a single combines
approach. The combined approach that leverages the
strengths of multiple selection strategies has the chance
of being effective on a wide range of datasets.
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