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Abstract
In the last few years, several attempts have been made on extracting information from material science research domain.
Material Science research articles are a rich source of information about various entities related to material science such as
names of the materials used for experiments, the computational software used along with its parameters, the method used
in the experiments, etc. But the distribution of these entities is not uniform across different sections of research articles.
Most of the sentences in the research articles do not contain any entity. In this work, we first use a sentence-level classifier
to identify sentences containing at least one entity mention. Next, we apply the information extraction models only on the
filtered sentences, to extract various entities of interest. Our experiments for named entity recognition in the material sci-
ence research articles show that this additional sentence-level classification step helps to improve the F1 score by more than 4%.

Keywords: Material Science Information Extraction, Material Science Entity Detection, Material Science Research

1. Introduction

Every year, a large number of research articles are pub-
lished in the material science domain. It is very diffi-
cult to find informative entities in these articles as they
spread across the articles. Recently, researchers try to
solve this problem by using information extraction in
the material science domain. Various models are pro-
posed to extract informative entities such as the materi-
als used in the research work, simulation software used
and its parameters, the method used in the study, the
used code languages, and finally, the outcome of the
study, etc. These entities are very common in mate-
rial science articles. It is critical to extract and store
them in a structured way. But the task of information
extraction from the entire articles becomes complex as
the articles are quite long and they contain too many re-
dundant sentences. Most of the text in the articles does
not contain any such entities thus leading to erroneous
extraction. In this paper, we address this issue of iden-
tifying the text in the articles that are devoid of such
entities and the text that contains the informative enti-
ties. Successfully eliminating the text from the articles
that do not contain any entities can help to apply the
information extraction models to the entire articles.
In this work, we target five types of informative en-
tities from the material science domain such as ma-
terial names, method names, code or simulation soft-
ware names, parameters of the simulation software, and
structure type of the materials. We consider a sentence
as informative if contains any of these five types of en-
tities. First, we build deep neural network-based bi-
nary sentence classification models to identify the in-
formative sentences from the articles. Our experiments

show that separating the uninformative sentences be-
fore applying the entity extraction model significantly
improves the model performance (more than 4% F1
score). Finally, we analyze the distribution of these five
entities across different sections of the research articles
and how this distribution varies across time.

2. Related Work
With the progress of deep neural architecture in nat-
ural language processing, information extraction from
text is applied to different heterogeneous scientific do-
mains such as chemistry, biomedical, and most re-
cently material science. Chemical science entities are
among the first to be extracted from chemistry liter-
ature using information extraction approaches. OS-
CAR4 recognizer (Jessop et al., 2011) is an n-gram
based Bayesian binary classifier that classifies tokens
to ‘chemical’ or ‘non-chemical’ classes. They build
this n-gram model using a dictionary of chemical to-
kens and it often fails when tokens are out of this dic-
tionary. ChemSpot (Rocktäschel et al., 2012), tmChem
(Leaman et al., 2015), and ChemDataExtractor (Swain
and Cole, 2016) are machine learning-based tools that
can extract chemical entities from the chemistry litera-
ture. (Huang and Cole, 2020) use ChemDataExtractor
tool to create a battery database from the material sci-
ence articles related to battery materials. They extract
head and tail entities for five types of relations from the
articles to build this database. (Dragone et al., 2017)
propose a system that can evaluate chemical reactivity
and detect new reactions, rather than a predefined set
of targets. (Hakimi et al., 2020) use machine learning-
based NLP models for biomaterial text mining.
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Recently, researchers extend the idea of word embed-
dings and deep neural architectures to the material sci-
ence domain also. (Tshitoyan et al., 2019) use the idea
of Word2Vec (Mikolov et al., 2013) to obtain the word
embeddings of material science tokens and show that
the obtained embeddings can capture latent knowledge
from the text - mat2vec (material science embedding).
(Kim et al., 2017a; Kim et al., 2017b) apply informa-
tion extraction and machine learning algorithms to ex-
tract the parameters of synthesis procedures from mate-
rial science articles. Similarly, (Court and Cole, 2020)
explore machine learning to extract transition temper-
atures and phase diagrams of magnetic materials and
superconducting materials from text. (Correa-Baena et
al., 2018) study machine learning and natural language
processing to accelerate the research of novel materials
development. (Goldsmith et al., 2018) show how ma-
chine learning can be useful for aiding heterogeneous
catalyst understanding, design and discovery. (Mysore
et al., 2017) extract graph structures from material sci-
ence literature using neural network approaches. (We-
ston et al., 2019) use word embeddings for named en-
tity recognition in material science articles. They ap-
ply a long short-term memory network (Hochreiter and
Schmidhuber, 1997) and conditional random field for
this task. They consider this task as a sequence label-
ing task and use a model inspired from (Lample et al.,
2016) for the same. (Guha et al., 2021) develop tool to
generate database for material science literature1. All
the previous works consider the entire research articles
as informative and run their models on it, thus making
the end task complex. But as we describe before, the
majority of portions of an article do not contain any in-
formative information. In this paper we address this is-
sue. We distinguish the informative and uninformative
parts of the articles and then run the information ex-
traction module only on the informative part of it which
leads to better performance on the task.

Table 1: Statistics of the entities in our annotated
dataset.

Entity type Example Count w.r.t. Percentage
total entities

CODE BOLTZTRAP 304 1.75%
MATERIAL EuCd2As2 9,161 52.74%
METHOD DFT (Density 4,602 26.49%

Functional Theory
PARAMETER 4*4*4 K-Point 1,387 7.98%
STRUCTURE Hexagonal 1,918 11.04%
Total 17,372 100%

3. Dataset
We collect material science articles from (Guha et al.,
2021) where total 10,500 articles2 of material science

1We have used the last three approaches as baselines.
2articles are crawled from ‘cond-mat.mtrl-sci’ category

with at least one code listed on https://psi-k.net/
software.

domain. We use spacy3 for tokenization and extract
tokens with their labels. There is a total of 47,262
sentences in the extracted dataset. Out of 10,500 arti-
cles, 214 randomly selected articles are annotated using
material science domain experts using Pdfanno4. Two
annotators annotate independently and Inter-annotator
agreement (Cohen κ) is 0.81. Any conflict is resolved
by the third annotator. Total annotation time is three
weeks. Five informative entity types are labeled by
annotators- a) material b) method c) code d) parame-
ter e) structure.
We use the inside-outside-beginning (IOB) tagging for-
mat for the five entity classes. Any token which is not
associated with these classes is marked as ‘Other’ class,
”O”. We label a sentence as “informative” if it con-
tains an entity from any of the five class; otherwise the
sentence is labeled as “uninformative”. The informa-
tive sentence is also labeled with the entity class la-
bels (code, materials, etc.). This dataset contains a to-
tal 15,699 (∼ 31.64%) informative sentences among
a total of 49,610 sentences. Among the informative
sentences, the total count (not unique) and examples
of material, method, code, parameter, structure entities
along with their percentages are shown in Table 1. In
Table 2, we include the distribution of the sentences
in different sections of the articles (abstract, introduc-
tion, experiment, conclusion and others) to the five en-
tity type categories. It should be noted here that one
sentence can belong to multiple type categories if they
contain more than one type of entity. That is why the
total row sum may be greater than 100%.

4. Evaluation Metric
We report precision, recall, F1 score, and accuracy for
our sentence identification models. Accuracy is mea-
sured for informative and uninformative sentences to-
gether. Since there is an imbalance in informative and
uninformative sentences in the dataset and only infor-
mative sentences are used for named entity recogni-
tion, we report the precision, recall, and F1 score for
the informative sentence class separately. For the en-
tity extraction models, we report precision, recall, and
F1 score. An extracted entity is assumed correct if the
entire entity is matched with a ground truth entity and
their corresponding type also matches.

5. Experiments
The task of identifying if a sentence contains any ma-
terial science entity or not can be designed as a binary
classification task. We label a sentence as ‘informative’
if it contains any informative entity, otherwise, the sen-
tence is labeled as ‘uninformative’. We explore tradi-
tional machine learning-based approaches like - Naı̈ve
Bayes (NB), Support Vector Machine (SVM), Logis-
tic Regression (LR), Random Forest (RF), Bagging

3https://spacy.io/
4https://github.com/paperai/pdfanno

https://psi-k.net/software
https://psi-k.net/software
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Table 2: Distribution of sentences in different sections of the articles to five types of entities in the annotated
dataset.

Section Inf Code Mat Meth Param Struct
abstract 40.45 1.77 62.32 38.63 5.85 4.78
introduction 31.93 0.97 61.76 45.30 0.80 9.03
experiment 39.95 2.81 58.04 41.62 3.82 8.90
conclusion 28.46 0.57 61.60 39.38 6.34 7.97
other 31.51 3.65 48.30 40.87 10.82 10.95

Table 3: Precision (P), Recall (R), F1 score for infor-
mative sentences and overall Accuracy (A) [in %] with
respective standard deviations (SD) of the models on
the binary informative sentence identification task from
entire articles.

Model P, SD(P) R, SD(R) F1, SD(F1) A, SD(A)
NB 74.08, 0.92 78.1, 0.92 76.03, 0.91 85.11, 0.42
SVM 61.17, 0.8 55.91, 0.56 58.42, 0.56 75.93, 0.39
LR 91.19, 0.78 77.61, 1.39 83.85, 0.89 91.16, 0.45
RF 92.75, 0.35 77.71, 0.92 84.56, 0.66 91.42, 0.33
Bg 92.06, 0.88 69.04, 1.9 78.91, 1.02 88.83, 0.39
BiLSTM (M2V) 85.61, 0.33 86.4, 0.35 86.01, 0.18 87.8, 0.06
CNN (Sci) 91.27, 1.56 92.76, 0.64 92.01, 0.84 92.10, 1.01
BERT 98.69, 0.24 97.67, 0.22 98.18, 0.13 98.84, 0.08
SciBERT 90.16, 2.72 91.45, 0.29 90.81, 1.43 92.03, 1.16
DistilBERT 98.54, 0.17 97.29, 0.33 97.92, 0.11 98.75, 0.06

(Bg), and deep neural network-based models - Long
Short Term Memory (LSTM), Convolutional Neural
Network (CNN) and different embeddings to solve this
classification task.
We can broadly classify identified features into four
categories - (i) Parts of speech (POS) tag-based fea-
tures: We use Stanford POS tagger (Manning et al.,
2014) to find the number of nouns, verbs, adjectives,
presence of adverbs, etc. (ii) Tf-Idf based features:
n-gram (one, two etc.) based features. (iii) Depen-
dency parse based features (using Stanford Depen-
dency parser (De Marneffe and Manning, 2008)): dobj
(direct object), amod (adjective modifier), acomp (ad-
jectival complement) etc. (iv) Others: no. of charac-
ters, presence of wh-words, numbers, strong, weak ad-
jectives, words specific to particular categories. Based
on all these features, we classify the sentences and
report precision, recall, F1 score for informative sen-
tences and overall accuracy along with respective stan-
dard deviations corresponding to five models - Naı̈ve
Bayes (NB), Support Vector Machine (SVM), Logistic
Regression (LR), Random Forest (RF), Bagging (Bg)
as shown in Table 3. Among all the features, bi-gram,
amod, acomp, number of nouns, adjectives have the
highest information gain.
We explore several deep neural network models (BiL-
STM, CNN) on top of different embeddings - material
science domain specific mat2vec (m2v) vectors (Tshi-
toyan et al., 2019) and scientific text embedding SciB-
ERT (Beltagy et al., 2019). Each word is converted
to a vector using the embedding model and these vec-
tors are sequentially passed into an BiLSTM or CNN

network to compute the vector for the entire sentence.
Final softmax layer predicts the class probability. We
run the experiments with different batch sizes (16, 32,
64), epochs (10-50) and learning rates (5e-4, 1e-4, 5e-
5, 1e-5, 5e-6, 1e-6), and other hyper-parameters5. Ta-
ble 3 shows best results for BiLSTM and CNN (for
best embedding). We also use the fine tuned version of
BERT (Devlin et al., 2018) (uncased with linear model
and base), SciBERT (Beltagy et al., 2019) and Distil-
BERT (Sanh et al., 2019) for classification (using CLS
embedding). We perform 5-fold cross-validation test
on the dataset for various approaches and include the
precision (P), recall (R), F1 score for identifying sen-
tences with at least one entity and overall classification
accuracy (A) along with their respective standard devi-
ations (SD) in Table 3. We randomly select 5% data as
validation set for parameter tuning also. For the pro-
posed task, an ideal classifier would be one with very
good recall with decent precision. A lower precision
would simply amount to indexing of some extra sen-
tences, which may never be used. We observe that the
best recall, with good precision, F1 and overall accu-
racy are obtained with BERT embeddings and the best
result is provided by fine tuned BERT model. We also
see that deep neural network-based models outperform
the traditional machine learning models.
We hypothesize that identifying the informative and
uninformative sentences can improve performance on
the information extraction tasks. We choose named en-
tity recognition (NER) of the mentioned entity classes
as the end task. We use different models for NER
task: SciBERT, BERT, DistilBERT and Bi-LSTM-CRF
Elmo model. In addition to tho above methods, we use
several baseline approaches - (i) DCNN (Diluted CNN)
and Bi-LSTM-CRF model by (Mysore et al., 2017) (ii)
BiLSTM named entity recognizer for specific material
science articles by (Weston et al., 2019). (iii) Bi-LSTM
CRF with noise (Mimicking Model) by (Guha et al.,
2021). The above NER models are trained on infor-
mative sentences identified by the BERT model. We
also explore different joint approaches for entity extrac-
tions. Multi-Granularity model (MGM) (Da San Mar-
tino et al., 2019) and SC-NER (Wang et al., 2019) joint
models are experimented to extract entities.
We randomly select 20% data as test set, 5% data as

5Due to space shortage only the best results are shown for
the model. We also explore LSTM, RNN and other combina-
tions but results are poor comparatively.
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Table 4: Precision, Recall, F1 score [in %] of different NERs for entity extraction from all sentences and only
informative sentences in the articles.

Precision Recall F1
Method All Inf All Inf All Inf
Sci-BERT (Beltagy et al., 2019) 77.32 81.93 70.24 71.21 73.61 76.19
BERT (Devlin et al., 2018) 74.08 76.45 70.72 72.86 72.36 74.61
DistilBERT (Sanh et al., 2019) 71.87 72.69 69.48 70.59 70.66 71.62
DCNN (Mysore et al., 2017) 79.43 83.02 78.89 79.53 79.15 81.24
BiLSTM-CRF (Mysore et al., 2017) 81.56 84.29 79.37 80.52 80.45 82.36
BiLSTM (Weston et al., 2019) 79.61 82.53 73.82 75.98 76.60 79.12
MGM (Da San Martino et al., 2019) 74.33 - 70.91 - 72.58 -
SC-NER (Wang et al., 2019) 75.64 - 79.12 - 77.34 -
Mimicking (Guha et al., 2021) 82.08 85.93 83.72 86.08 82.89 86.01
BiLSTM-CRF Elmo 87.35 91.71 82.19 86.09 84.57 88.76

Table 5: Entity-wise Precision, Recall, F1 score [in
%] of BiLSTM-CRF ELMO NER for entity extraction
from all sentences and only informative sentences.

Precision Recall F1
Entity type All Inf All Inf All Inf
MATERIAL 85.49 91.66 88.44 90.08 86.94 90.86
METHOD 95.53 96.03 82.80 86.72 88.71 91.13
STRUCTURE 95.92 96.71 89.81 93.87 92.76 95.27
PARAMETER 73.27 81.76 62.51 70.31 67.46 75.60
CODE 86.54 92.39 87.38 89.47 86.96 90.91
Overall 87.35 91.71 82.19 86.09 84.57 88.76

validation set and rest of the data are considered for
model training. We include the overall macro aver-
age percentage of Precision, Recall and F1 score of all
models for testing on all sentences (“All”) and only in-
formative sentences (“Inf”) in Table 4. Precision , Re-
call and F1-score are reported on test data. Thus, in the
test dataset, if a span is present in the training dataset
with a class annotation, it is given that particular label.
We use pre-trained Elmo (Peters et al., 2018) embed-
ding 6 for material science articles. The input to the
Bi-LSTM-CRF model is thus a concatenation of pre-
trained Word2Vec embedding (Mikolov et al., 2013),
character embedding, and pre-trained ELMO embed-
ding (Peters et al., 2018) along with the IOB tags as
the target of each word. We fine-tune the model with
Adam optimizer, dropout of 0.5, hidden dimension of
200, number of epochs at 120, and a batch size of 8
to get the overall optimum (for all entities together) F1
score. The trained model is tested on ‘all’ sentences
as well as only the identified ‘informative’ sentences.
Joint models (MGM (Da San Martino et al., 2019) and
SC-NER (Wang et al., 2019)) are applied on all sen-
tences directly. From table 4, we see that precision,
recall and F1 score improve for all the NER models
when we apply it on informative sentences compared to
applying on all sentences. BiLSTM-CRF Elmo model
performs the best in terms of precision, recall and F1-
score and also achieves 4% higher F1 score in this setup
(BERT based informative sentence identification and
Bi-LSTM-CRF Elmo NER model). It also outperforms

6https://figshare.com/s/ec677e7db3cf2b7db4bf

joint models. Mimicking model (Guha et al., 2021)
also performs well but may be due to the added noise,
former method outperforms it. In Table 5, we include
the performance of BiLSTM-CRF Elmo model on dif-
ferent entity type classes. We see that precision, recall
and F1 score improve across all different entity classes.
We train models on 2 NVidia Tesla P100 GPUs (12GB
and 16GB RAM) with 3584 CUDA cores.

5.1. Analysis
For analysis of our models on a larger set of material
science articles (unannotated dataset), we randomly se-
lect another set of 7,798 articles from the rest crawled
dataset. We use the BERT (uncased) based classifier to
analyze this unannotated dataset. In the first step, we
identify the informative sentences in this dataset. This
dataset (7798 articles) contains a total of ∼ 1.9 mil-
lion sentences, out of which ∼ 0.675 million (35.5%)
sentences are found to be informative. We analyze
the distribution of informative sentences and different
entity classes across various sections (abstract, intro-
duction, experiment, conclusion, and others) of the re-
search articles by the Bi-LSTM-CRF Elmo model. Ta-
ble 6 shows that our two-stage model predicts 1/3 of the
sentences as informative ones across all major sections
and material (Mat) and method (Meth) entity types are
having a very large percentage. Parameter (Param) and
Structure (Struct) entity types have the lesser portions
in the articles. Code entity is having the minimum
share in the dataset. We see that the distribution of sen-
tences in different sections of articles to the five entity
type categories in the unannotated dataset is following
the actual distribution in the annotated dataset.

Table 6: Distribution of the sentences (in %) in differ-
ent sections of the articles from the unannotated dataset
to five types of entities predicted by 2-stage model.

Section Inf Code Mat Meth Param Struct
abstract 36.12 0.15 66.87 35.29 4.48 2.97
introduction 37.41 0.17 59.42 40.71 9.56 3.42
experiment 35.01 1.87 65.41 23.51 12.41 4.26
conclusion 34.75 0.56 63.97 38.65 7.60 3.11
other 30.99 1.18 65.75 28.09 12.61 3.22

There are multiple entity types present in one sen-
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tence - method and material types have the most over-
lap (10.95%), parameter and method types have the
second-highest overlap (4.06%), whereas code and
structure types have the least overlap (0.001%).
We show the yearly distribution of average informative
sentences in the material science articles from 1996 to
2021 in Figure 1 (in the bucket of five years). It shows
the gradual increment of informative sentences from
1996 to 2021 across the entire article which signifies
that nowadays, people are interested in writing articles
with more domain-oriented informative entities in ma-
terial science literature.

Figure 1: Yearly distribution [in %] of informative sen-
tences as predicted by the BERT model on the unanno-
tated dataset.

6. Conclusion
In this work, we address the issue of identifying in-
formative sentences and extract entities in the mate-
rial science research articles. We propose deep neural
network-based models to classify sentences into these
two classes concerning five types of entities such as
material, method, code, parameter, and structure. Our
experiments show that the two-stage framework (iden-
tify informative sentences and then extract entity) leads
to significant improvement in the performance of the
end task of extracting these five types of entities from
the articles than direct extraction of entities from all
sentences. Our fine tuned BiLSTM-CRF Elmo model
performs the best. We also analyze in detail the distri-
bution of these entities in the articles. In the future, we
would like to extend this work to include more types of
entities and to other domains of scientific articles.
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