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Abstract
Noisy labels in training data present a challenging issue in classification tasks, misleading a model towards incorrect decisions
during training. In this paper, we propose the use of a linear noise model to augment pre-trained language models to account
for label noise in fine-tuning. We test our approach in a paraphrase detection task with various levels of noise and five different
languages. Our experiments demonstrate the effectiveness of the additional noise model in making the training procedures
more robust and stable. Furthermore, we show that this model can be applied without further knowledge about annotation confi-
dence and reliability of individual training examples and we analyse our results in light of data selection and sampling strategies.
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1. Introduction
Large pre-trained language models have obtained great
results in many NLP tasks in recent years by utilising
the dominant pre-training and fine-tuning paradigm.
The language models’ success on a specific down-
stream task is to a great extent dependent on the quality
and quantity of task-specific training data. A consider-
able amount of annotated, high-quality training data is
often necessary even for fine-tuning a large pre-trained
language model in order for it to perform well on a cer-
tain downstream task. Consequently, different meth-
ods are utilised to obtain sufficient amounts of training
data in a cost-effective way leading to different levels
of noise.
In this paper, we study the use of an explicit noise
model to address label noise – incorrectly classified
training samples that mislead the model during train-
ing. The noise model can be added to a neural ar-
chitecture to make the training procedures more robust
and predictable when noise enters the model. We ap-
ply the task of paraphrase detection as an example to
demonstrate the use of an additional noise layer that is
attached to a language model during fine-tuning.
Our contributions are: (1) An implementation of a
noise model that extends pre-trained language mod-
els to increase robustness when fine-tuning paraphrase
detection with noisy training data. (2) A study that
shows the effect of noise modeling with various de-
grees of noise across five different languages. (3) Ex-
periments that demonstrate the effectiveness of noise
models without explicit information about annotation
quality and label confidence.

2. Training with Label Noise
Online platforms are often utilized for the acquisition
of large quantities of annotations from non-experts.
The quality of such crowdsourced human-made anno-
tations has recently been questioned, for example, in

machine translation evaluation (see, e.g., Graham et
al. (2017); Toral et al. (2018); Läubli et al. (2020)).
Annotators seem to assign higher scores to transla-
tions that more accurately conform the sentence struc-
ture of the source sentence than to those that differ
in phrasing and structure, even if the latter would be
more natural (Freitag et al., 2020). Paraphrase de-
tection struggles with a similar problem. As classi-
fying paraphrases is about assessing degrees of simi-
larity between sequences, many instances can be dif-
ficult to classify, and the defining line between para-
phrastic and non-paraphrastic sequences can shift be-
tween annotators. Aulamo et al. (2019) have studied
inter-annotator agreement in the paraphrase domain. In
a four-scale classification task of identifying potential
paraphrases in the Opusparcus corpus (Creutz, 2018),
they found inter-annotator agreement to be as low as
59.9%. Relaxing the task into binary classification in-
creased inter-annotator agreement to 83.1% Further-
more, they hypothesize that a deeper expertise in the
topic results in more coherent categorization of para-
phrases.

Paraphrase annotation and machine translation are not
the only examples where the complexity of NLP tasks
causes annotation noise. A similar picture can be seen
in data sets for sentiment and emotion classification
(Strapparava and Mihalcea, 2010) and natural language
inference (Gururangan et al., 2018), to name a few. In
general, some level of noise is unavoidable even with
extensive annotator training (Bayerl and Paul, 2011)
and needs to be addressed in one way or another. Some-
times, automation and heuristics can help to facili-
tate (semi-)automatic annotation (Mohammad, 2012;
Araque et al., 2019) but that comes with additional
caveats.

Erroneous annotations in the training data typically ap-
pear as label noise, that is, annotations that do not cor-
respond to the true class of the training sample. The
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misclassified instances may thus lead the model to in-
correct decisions during training. For instance, label
noise can be a negative instance incorrectly labeled as
positive in a binary classification task (false positives).

2.1. Related Work
Machine learning practitioners use varied methods to
alleviate the effect of label noise to the model. To ob-
tain high-quality data consisting only of reliable train-
ing examples, incorrectly classified examples can be
identified and removed. However, the process of iden-
tifying and removing misclassified examples can be ex-
tremely time-consuming, and moreover, it is not al-
ways desired to remove training examples from the
data, especially if the data is of limited size to begin
with. Detailed information about approaches to train-
ing with noisy labels is presented in Frenay and Ver-
leysen (2014). Noisy training data can be augmented
with clean data for a model to learn to account for
the corrupted labels in the original data. This line of
work includes, for example, Li et al. (2017), who use
knowledge distillation from a model trained on small
and clean data to re-weight noisy labels to soft labels
in a noisy training set. Veit et al. (2017) train a net-
work with a clean sub-sample of the training data to
reduce noise in the rest of the data. Annotating a suffi-
cient number of clean training examples for training an
auxiliary network can be costly, and ready-made addi-
tional clean data is rarely available. Thus, methods for
learning models directly from data that includes noisy
labels should be analysed further.
Augmenting machine learning models with a noise pro-
cessing layer to directly transform latent labels to noisy
labels to explicitly model the effect of noise has been
studied comprehensively for image processing. Mnih
and Hinton (2012) implement a robust loss-function
that reduces the effect of noisy labels to the image clas-
sifier by treating true observations as noisy observa-
tions. Sukhbaatar et al. (2015), Jindal et al. (2016),
and Patrini et al. (2017) integrate a linear noise layer
on top of a base model’s prediction layer to transform
the output of the base model to correspond to the noisy
label distribution in the data. Jindal et al. (2019) extend
the noise layer experimentation from image process-
ing to multiple text-classification tasks. These works
train the base neural networks from scratch, whereas
we are curious to examine to what extent a strong pre-
trained language model can benefit from an additional
noise layer when the noise layer is applied into the fine-
tuning stage. We reproduce the model proposed by Jin-
dal et al. (2019) to paraphrase detection, but instead of
training a sequence classification model from scratch,
we use BERT (Devlin et al., 2019) as our base model
and exploit the noise processing layer for transforming
the outputs of an additional classification head to corre-
spond to the noisy label distribution in the training data
during fine-tuning.
Jindal et al. (2019) apply the same noise processing

layer to all training samples and assume that the noise
is instance-independent. Another strategy is to deal
with instance-dependent noise by incorporating ex-
plicit information about specific training samples into
the model reflecting the label confidence or label am-
biguity in the data (Haque et al., 2021; Berthon et al.,
2021). We implement a strategy for augmenting our
general noise model with label confidence values ex-
tracted from the training data ranking to test the impact
of such information.

2.2. Paraphrase Detection with Noisy Labels
We use five languages from Opusparcus to evaluate our
approach.1 Opusparcus is a sentential paraphrase cor-
pus consisting of data sets in six European languages.
The training sets are automatically ranked based on a
probabilistic score of two sequences being paraphrases.
As such, the data does not contain explicit annotations
but the score can be used to define cutoff points for
positive paraphrase examples. A small sample of man-
ually annotated paraphrase pairs across various ranges
of scores makes it possible to control the expected noise
level in the selected training data (Creutz, 2018), which
is useful for our experiments below. The data is de-
scribed in more detail in section 4.1.
Previous research about paraphrase detection on Opus-
parcus include Sjöblom et al. (2018) and Vahtola et al.
(2021). However, that work does not attempt to miti-
gate the effect of noisy labels directly. Instead, the ob-
jective has been in finding an optimal trade-off between
the number of training examples and noisy labels for a
deep neural network trained from scratch (Sjöblom et
al., 2018), or a proportion of noisy labels in the training
data up to which a pre-trained language model (BERT
in this case) is still capable of obtaining high accuracy
in paraphrase detection (Vahtola et al., 2021). Vahtola
et al. (2021) show that a fine-tuned BERT can per-
form with up to 20% of corrupted training data after
which the model starts collapsing. In contrast to previ-
ous work, we attempt to alleviate the effect of noise in
the data with an explicit noise model to address consid-
erably higher proportions of noisy labels and to make
it possible to handle label noise even without existing
confidence values for the labels in the training data.

3. Model Description
The baseline model implements a binary classification
layer on top of fine-tuned language models (language-
specific BERT in our case) with no explicit noise mod-
eling. In addition to that, we experiment with two noise
models: (i) a label noise model that takes as input the
output prediction from the base model’s classification
layer, and transforms the predictions to account for a
noisy label distribution in the training set, and (ii) a

1Opusparcus also includes French, which we do not in-
clude in this work due to technical difficulties in implement-
ing the noise models using FlauBERT (Le et al., 2020) as the
base model.
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Figure 1: The input signal x, consisting of a pair of sen-
tences, is fed into a fine-tuned BERT model augmented
with a classification layer, which outputs a predicted la-
bel ŷ, indicating whether the sentences are paraphrases
or not. During training, an additional noise layer trans-
forms ŷ into the observed training label y′, which is
noisy and may therefore be incorrect.

label confidence model that, in addition to transform-
ing the latent labels to noisy labels, uses auxiliary label
confidence values to further guide the transformation.
The confidence values are obtained from the scores that
are used in ranking the sentence pairs in Opusparcus.
With those two models, we want to contrast the ability
of a noise model to cope with label noise with or with-
out explicit knowledge about annotation confidence in
comparison to a general baseline model.

3.1. Label Noise Model
Our implementation of the additional noise model layer
is based on the noise absorbing layer proposed by Jin-
dal et al. (2019). In contrast to Jindal et al. (2019), we
augment a pre-trained language model (BERT) with an
auxiliary linear transformation layer Q that learns the
transformation from the unnormalized base model out-
put ŷ to the noisy label distribution y′ such that

p(y′|x) = softmax(Q× ŷ) (1)

The noise layer Q is initialized as an n × n identity
matrix, where n corresponds to the number of discrete
labels. Figure 1 illustrates the additional noise layer on
top of BERT.
We train the model to minimize the cross-entropy loss
as follows:

L(y, y′) = −
N∑
i=1

yi log(y
′
i) (2)

As the cross-entropy is minimized over the noisy train-
ing data, the values in the noise matrix Q are updated
during error backpropagation to account for a noisy la-
bel distribution. Last, we apply L2-regularization to the
noise layer independently of the rest of the model.

3.2. Label Confidence Model
To take into account a confidence value associated with
each training sample, we propose a noise layer whose

weight matrix Q is a linear combination of two matri-
ces Q1 and Q2. Similarly to the label noise model de-
scribed above, the matrices Q1 and Q2 are initialized
to identity matrices. Given the two matrices, the noise
model output is calculated as follows:

Q = (cQ1 + (1− c)Q2) (3)
p(y′|x) = softmax(Q× ŷ) (4)

where c is a confidence value in [0, 1] for each training
sample x.
For training samples with high label confidence, that
is, confidence values close to 1, the weight matrix Q1

contributes more to the layer weights. Conversely, for
samples with low confidence, the weight matrix Q2

contributes more. Intuitively, during training, the ma-
trix Q1 can stay close to the identity matrix while Q2

can learn more of the noise distribution so that the base
model outputs for samples with high confidence are not
transformed as much as the outputs for samples with
low confidence.
We calculate the confidence value c for each training
sample by normalizing the scores used to rank the para-
phrase candidates in Opusparcus. We normalize the
scores so that the highest ranking sample in our final
training set has a confidence value of 1 and the last
sample has a confidence value of 0.

4. Experiments
We perform systematic experimentation of the pro-
posed noise layer augmented models to evaluate their
robustness to increasing proportions of noisy labels in
the training data. The noise layer is implemented on a
BERT model for sequence classification using the Hug-
ging Face transformers library (Wolf et al., 2020). The
pre-trained models we use are: Devlin et al. (2019) for
English, German BERT by deepset2 for German, Vir-
tanen et al. (2019) for Finnish, Kuratov and Arkhipov
(2019) for Russian, and Malmsten et al. (2020) for
Swedish.
All BERT models, with or without the added noise
layers, are fine-tuned using an early stopping criterion
with patience of 10. The learning rate is set to 1e-5,
and the models are regularized with a weight decay of
0.1. In the training of all noise models, we addition-
ally regularize the noise layer with a weight decay of
0.01. Because the negative instances in our data are not
noisy (see Section 4.2), we train the additional noise
layers using only the positive instances. For the nega-
tive instances we use the base model output both during
training and inference.

4.1. Data
We use five languages – German, English, Finnish,
Russian and Swedish – from the Opusparcus para-
phrase corpus to evaluate the proposed noise models.

2https://www.deepset.ai/german-bert
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Index Sentence 1 Sentence 2 Ranking score
8 It was a difficult and long delivery . The delivery was difficult and long . 77.5163
2 501 He doesn ’t know what he ’s doing . He has no idea what he ’s doing . 60.5163
520 103 None of your business . That was none of your damn business . 26.9842
1 000 589 He liked it . She liked it . 22.1814
1 300 948 What ’s this all about ? Why do you need him ? 20.0698

Table 1: Examples from the Opusparcus English training data illustrating label noise. The first column indicates
the location of a sentence pair in the data, after all sentence pairs have been sorted according to a PMI-based
score shown in the fourth column. The higher the score, the more likely the sentences are paraphrases. Therefore,
the most likely paraphrastic sentence pairs are located in the beginning of the training set followed by less likely
paraphrastic sentence pairs in a decreasing order.

The corpus consists of automatically annotated training
and manually annotated evaluation and test sets. The
automatic annotation of the training sets is based on a
PMI weighted probability of a given sentence pair con-
sisting of two paraphrastic sentences. The most proba-
ble paraphrase pairs are positioned in the beginning of
the training data, followed by less probable pairs in a
descending order. Table 1 provides examples. Albeit
having differences on their syntactic and lexical level,
the first two sentence pairs carry the same approximate
meanings, respectively, and occur early in the training
data. The third sentence pair includes a difference in
tone but still carries the same approximate meaning.
In the fourth example, the surface forms differ only in
the choice of the subjective pronoun. The sentences
in the last example are unrelated. Collecting the first
1.5 million sentence pairs from the English training set
and treating the collected sentence pairs as positive ex-
amples, that is, classifying them as paraphrases, results
in a subset where the probability of acquiring incor-
rectly classified sentence pairs is approximately 10%.
Thus, the proportion of noisy training examples can be
controlled by selecting n examples from the beginning
of the file so that the use of a larger n will produce a
larger proportion of noisy labels. The format of the data
enables a natural evaluation of the model robustness
on different proportions of noisy labels in the training
data. For a detailed description of the construction of
the corpora, we refer the reader to Creutz (2018).
To evaluate the robustness of the models to the increas-
ing proportions of noisy labels in the training data, we
sample corresponding noise buckets for each language
ranging from an estimated proportion of noisy labels
between 5% and 40%. These buckets are generated
by increasing the data sizes for each language indepen-
dently so that the estimated proportion of noisy labels
increases in increments of 5 percentage points. As a
result, we produce eight training data subsets for each
language that differ in size but match in their estimated
noise distributions.

4.2. Data Sampling for Fine-Tuning
Each respective training data subset consists of an
equivalent number (n) of positive and negative exam-

Figure 2: Our approaches for sampling negative train-
ing examples (sentence pairs that are not paraphrases).

ples. The positive examples are always collected start-
ing from the beginning of all available training data,
meaning they comprise the n most likely paraphrases
in the data. We use three different sampling strategies
to obtain an equivalent number of negative examples to
the positive examples, illustrated in Figure 2.
First, we produce negative examples from the same
subset as the positive ones by pairing sentences ran-
domly within the set.
Second, we match the number of positive examples by
randomly sampling a corresponding number of nega-
tive examples from all available training data.
Third, we sample the negative examples similarly to
Sjöblom et al. (2018). We obtain a matching num-
ber of examples following the positive example subset
from the training data and randomly shuffle the pairs
(3a in Figure 2). If the sum of the positive and the re-
quired negative examples exceeds the number of total
examples in the training data, we sample the missing
pairs from the end of the subset used as positive exam-
ples and shuffle the pairs (3b).
As Sjöblom et al. (2018) note, these methods may in
theory introduce false negatives to the training data, but
the probability for this is expected to be so low that
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it does not affect the models’ capability to generalise
well to unseen data. Note, since we expect the negative
examples to be (predominantly) clean of noisy labels,
the reported proportions of noisy labels correspond to
the proportion of noisy labels in the positive examples,
exclusively.
Based on an evaluation of the results obtained using the
different sampling strategies for the negative samples,
we did not observe a clear difference justifying the se-
lection of one strategy over the other. Therefore, we
report results that are averaged over the three negative
sampling strategies.

4.3. Results from the Label Noise Model
Figure 3 presents the averaged results of the fine-tuned
models on Opusparcus development sets over all nega-
tive sampling strategies.
The figures represent a comparison of three models: a
fine-tuned BERT without an additional noise process-
ing layer (BERT Basic), a fine-tuned BERT with the
proposed label noise model (BERT Noise), and a fine-
tuned BERT augmented with the proposed label confi-
dence model (BERT Confidence).
Overall, BERT Noise obtains higher accuracy scores
compared to BERT Basic except for German and for
data selections with very small noise levels in English.
The difference between both models increases with
growing noise levels as expected. All noise models
certainly drop in performance when noise is added but,
especially for Finnish and Swedish, the performance
stays high. In general, one would not know the noise
level of the training data and the result is, hence, very
encouraging in terms of training robustness. German
seems to be an outlier in our experiments but even there
the noise model does at least not hurt the performance
except in the cleanest data sets with noise levels below
10%.

4.4. Results from the Label Confidence
Model

Next, we evaluate the impact of the confidence infor-
mation on the noise modeling performance. We train
BERT Confidence using the same hyperparameters as
before, introducing auxiliary confidence values to the
model. The results show that our model is not able to
pick up additional benefits from those values and the
model behaves very similarly to BERT Noise. Alike
BERT Noise, BERT Confidence outperforms BERT
Basic in Finnish and Swedish on all noise levels, and
in the other languages when trained on the noisier sub-
sets. Similar behaviour between the two noise models
indicates that the label noise model can effectively be
utilised even when we do not have further knowledge
about the noise level in the data and the reliability of
individual labels.

5. Discussion
The results suggest that the additional noise processing
layer is most beneficial in scenarios where the training

data is especially noisy, and utilising the noise model
does not affect performance in a deteriorating manner
in other test conditions either. In most situations, re-
ducing noise by selecting training data only from a cer-
tain distribution of the data is not possible, or informa-
tion about the quality of the data is not known a pri-
ori. In situations where the training data is assumed or
known to be noisy, utilising the noise model is recom-
mended, as the results show that this simple addition
makes the model considerably more robust to noise.
Across the five languages, the English results are the
best in absolute terms, with accuracies over 90%. Fig-
ure 3 (bottom right) may provide an explanation, as it
can be seen that English has more training data than any
other language for each noise level. German, Finnish
and Swedish all reach accuracies in the high 80’s. If
the amount of training data were the decisive factor,
we would expect German to outperform Finnish, which
should outperform Swedish by a slight margin. How-
ever, this is not what happens. Furthermore, the Rus-
sian results are the worst ones, with accuracies well be-
low 80%, although the amount of training data is com-
parable to that of the other languages, except for noise
levels 5 and 10%.

5.1. Effects of Negative Data Sampling and
Unbalanced Classes

One of our observations is that all models, across lan-
guages and noise levels, predict the positive (para-
phrase) class significantly more often than the negative
(non-paraphrase) class. For instance, at the 10% noise
level, BERT Basic predicts the positive class as fol-
lows: 78% (Russian), 77% (English), 76% (German),
69% (Finnish) and 64% (Swedish). This is not un-
expected, due to the way the negative non-paraphrase
training samples were created. Because the samples
were created by randomly pairing sentences from the
training set, we would expect there to be very few non-
paraphrase pairs which are close in surface form, that
is, the hardest cases for the model to recognize as non-
paraphrases. This gives the model a signal that for a
pair of sentences to be non-paraphrastic, the surface
forms should probably have very little in common, and
other pairs are likely to be paraphrases.
Furthermore, increasing the noise level of the training
set exacerbates this problem. As the label noise in-
creases, the models increasingly overpredict the para-
phrase class. This results from the fact that our noise
is asymmetric: we only have noisy samples where the
assumed class is a paraphrase but the sample in real-
ity is a non-paraphrase, further strengthening the signal
that many different types of phrase pairs are paraphras-
tic. However, this problem is clearly worse for BERT
Basic than for BERT Noise. For instance, when BERT
Basic predicts 84% positives for Russian at the 40%
noise level, BERT Noise only predicts 66% positives.
Based on these results, the difference between BERT
Basic and BERT Noise seems to lie in that the addi-
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Figure 3: Paraphrase detection accuracies for models trained on data subsets with increasing noise levels. The
noise levels [%] of the training sets are marked on the x axis. The bars indicate the corresponding training set sizes
(labels on the secondary y axis on the right). Bottom right: Comparison across languages between the increasing
noise level presented on the x axis, and the growing training set sizes on a logarithmic scale on the y axis.

tional noise layer alleviates the second problem result-
ing from the addition of asymmetric noise, confirming
that the model indeed learns to correct for noise dur-
ing training. However, the model cannot naturally cor-
rect for the sampling strategy used to create the non-
paraphrase samples, so the problem still persists for
BERT Noise to some extent.

This also construes the differences between the lan-

guages. The development sets used for testing are not
balanced in terms of classes. Instead, all languages
have more paraphrases than non-paraphrases in the
data. English and German have the largest proportions
of paraphrases in their development sets (75% and 73%
respectively). Hence, it is not a bad strategy to overpre-
dict paraphrases. As the amount of noise in the training
data grows, the increasing overprediction of positives
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Figure 4: Paraphrase detection accuracies for all models of German and Finnish for all training set sizes after the
addition of two smaller sets: 10,000 and 100,000 sentence pairs. The plots now include the same data points as in
Figure 3 plus the two added ones. Note that the x axis shows the size of the training set (on a logarithmic scale)
rather than the noise levels, as in the earlier figures.

by BERT Basic compensates for the overall decrease in
performance, resulting in a smaller difference in perfor-
mance between the BERT Basic and the BERT Noise
models. This is especially true for German.
By contrast, the benefit of the BERT Noise models is
the most prominent for languages where the class dis-
tribution is closer to uniform and the overprediction of
positives degrades performance. This shows in the re-
sults for Finnish and Swedish, where the development
sets contain no more than 61% and 57% positives, re-
spectively. At the highest noise level, 40%, the BERT
Noise models accurately predict positives in very sim-
ilar proportions: 62% (Finnish) and 59% (Swedish).
BERT Basic is far behind, with an overprediction of
positives: 75% (Finnish) and 70% (Swedish).

5.2. Smaller Models
Another open question is the behaviour of models on
even smaller training sets. To study this, we extracted
subsets below the 5% noise level. Since we are unable
to accurately estimate the noise level of the small sets,
we decided to use the same absolute number of train-
ing examples for every language: 10,000 and 100,000
paraphrastic sentence pairs (plus an equal number of
negative samples). We do not know the exact noise lev-
els, but we expect the data to be quite clean with noise
levels below 5%.
The results for the smaller data sets are similar across
the languages. Figure 4 adds their performance for two
languages that otherwise behave quite differently from
each other. We note that in absolute terms the accura-
cies are lower for the smallest sizes, which is not sur-
prising. Small amounts of training data do not outper-
form the use of larger, slightly noisier sets. Also, the
two noise models are very similar to the BERT Basic
model, which is to be expected, since the data does not
contain much noise.
We also notice that the accuracy for the smallest set

is higher for Finnish (86%) than for German (80%).
This could be caused by differences in the qualities of
the underlying BERT models, as the amount of data
used for fine-tuning is still so limited. However, an-
other explanation may be the asymmetry between the
positive and negative classes. At this level, the models
do not yet overpredict the positive class as strongly as
for larger training sets, which is beneficial for Finnish
with its more balanced distribution of labels in the test
data.

6. Conclusion
We have proposed the integration of a linear noise pre-
diction layer into the fine-tuning step of a pre-trained
language model (BERT) to implicitly account for noisy
labels in the training data. We have shown that the
noise model contributes to the training procedures in a
way that alleviates the deteriorating effect of unknown
label noise. We test the approach on a paraphrase de-
tection task showing that the model increases robust-
ness and stability with improved performance for four
out of five languages included in our experiments.
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