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Abstract
Access to large pre-trained models of varied architectures, in many different languages, is central to the democratization of
NLP. We introduce PAGnol, a collection of French GPT models. Using scaling laws, we efficiently train PAGnol-XL (1.5B
parameters) with the same computational budget as CamemBERT, a model 13 times smaller. PAGnol-XL is the largest model
trained from scratch for the French language. We plan to train increasingly large and performing versions of PAGnol, exploring
the capabilities of French extreme-scale models. For this first release, we focus on the pre-training and scaling calculations
underlining PAGnol. We fit a scaling law for compute for the French language, and compare it with its English counterpart. We
find the pre-training dataset significantly conditions the quality of the outputs, with common datasets such as OSCAR leading
to low-quality and offensive text. We evaluate our models on discriminative and generative tasks in French, comparing to
other state-of-the-art French and multilingual models, and reaching the state of the art in the abstract summarization task. Our
research was conducted on the public GENCI Jean Zay supercomputer, and our models up to the Large are publicly available.
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1. Introduction
Large pre-trained language models are the workhorses
of modern Natural Language Processing (NLP). The
use of scalable and efficient attention-based Transform-
ers (Vaswani et al., 2017), rather than recurrent neural
networks, has enabled increasingly large and capable
models. Through self-supervised learning, these mod-
els learn contextual word embeddings, building a gen-
eral representation of language. After this pre-training
they can be fine-tuned to target specific tasks (e.g. clas-
sification, parsing, summarization).
Three approaches dominate the field: (1) causal au-
toregressive decoder-only models, such as GPT (Rad-
ford et al., 2018), learning from a general language
modelling tasks; (2) bidirectional encoder-only mod-
els, such as BERT (Devlin et al., 2018), learning from
masked language modelling; (3) sequence-to-sequence
models, such as BART (Lewis et al., 2019) or T5 (Raf-
fel et al., 2020), combining both a bidirectional en-
coder and an autoregressive decoder, learning from a
language denoising task. Encoder-only and sequence-
to-sequence models excel in language understanding
tasks, and have shadowed autoregressive models as a
lesser option.
Autoregressive models have been shown to predictably
benefit from increased size (Kaplan et al., 2020;
Henighan et al., 2020). Scaling laws establish a di-
rect relationship between model size and end-task per-
formance, justifying the training of increasingly large
models (Brown et al., 2020; Zeng et al., 2021; Kim et
al., 2021; Wei et al., 2021). These laws can also in-
form design decisions, helping practitioners use their
available compute budget optimally. Larger models are
more sample and compute efficient: with a given com-
pute budget, it is preferable to train a larger model sig-

nificantly short of convergence than to train a smaller
model to convergence. Furthermore, at extreme-scale,
such as the 175 billion parameters of GPT-3 (Brown et
al., 2020), autoregressive models exhibit unique few-
shot abilities: they can learn from a few prompted ex-
amples, without weight updates. This capability ques-
tions the current fine-tuning paradigm. Recent forays
into prompt engineering/tuning (Li and Liang, 2021;
Lester et al., 2021) have even seemingly bridged the
gap between few-shot performance and fine-tuning.
Encoder-only (CamemBERT (Martin et al., 2019) and
FlauBERT (Le et al., 2019)) and sequence-to-sequence
models (BARThez (Eddine et al., 2020)) exist for the
French language, and recently a decoder-only model
with 1 billions parameters has been made available
(Simoulin and Crabbé, 2021). We introduce PAGnol in
this family, a collection of four French GPT-like mod-
els, and make the following contributions:

• Largest French model trained from scratch.1
We train on CCNet and publicly release four mod-
els, with up to 1.5B parameters for PAGnol-XL.
At the time of this work, this is the largest non-
sparse French language model available, that was
trained from scratch, and we plan to explore in-
creasingly large and powerful models in the fu-
ture.

• Optimal scaling. We use scaling laws to inform
our training setup, resulting in optimal use of our

1A larger model, Boris (Müller and Laurent, 2022), was
recently made available by a Swiss team, however PAGnol
is trained from scratch, while Boris is fine-tuned on French
data starting from the English model GPT-J (Wang and Ko-
matsuzaki, 2021).
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compute budget. PAGnol-XL is trained with a
budget of only 3 PF-days, just as much as the 13
times smaller CamemBERT. From our collection
of models, we adjust scaling laws for the French
language.

• Dataset suitability. We highlight the importance
of proper dataset pre-processing when training
generative autoregressive models. While OSCAR
has been relied on for French encoder-only mod-
els, we find it is not suited to PAGnol, leading to
low-quality offensive outputs.

• End-task performance. We evaluate on discrim-
inative (FLUE) and generative tasks (question an-
swering on FQuAD and summarization with Or-
angeSum) in the fine-tuning and prompt tuning
regimes. We establish a new state of the art for
summarization in French on OrangeSum.

2. Related work
Language models. The design and training of neu-
ral language models able to create and process word
embeddings is the cornerstone of modern NLP. Early
on, self-supervised learning was identified as an effi-
cient and scalable way to train such models. The use of
deeper and more complex neural architectures enabled
going from static embeddings (word2vec (Mikolov et
al., 2013), GloVe (Pennington et al., 2014)) to contex-
tual embeddings, allowing models to deal with poly-
semy. Although approaches such as ELMo (Peters et
al., 2018) and ULMFiT (Howard and Ruder, 2018)
highlighted that learned representations can be trans-
ferred across downstream tasks, the poor scalability of
RNNs prevented this vision from being fully realized.
By getting rid of the costly and delicate recurrent pro-
cessing, attention-based Transformers (Vaswani et al.,
2017) spurred a wide interest in NLP. GPT (Radford
et al., 2018), a decoder-only variant of Transformers,
demonstrated large-scale transfer learning from general
language modelling to 12 NLU tasks. Along with the
rise of easy-to-use libraries, encoder-only BERT (De-
vlin et al., 2018), relying on masked language model-
ing, made NLP a commodity – wherein every practi-
tioner could rely on a pre-trained language model and
fine-tune it cheaply to a task of interest. BERT models
are limited by their ability to only ”fill-in-the-gap” for a
span of words: this forbids their use in generative tasks
(e.g. summarization).
With sequence to sequence models and pre-training
through denoising tasks, the original architecture of
Transformers made a comeback with BART (Lewis et
al., 2019), bridging the gap between the generative ca-
pabilities of decoder-only models and the downstream
task performance of encoder-only models. Through
gradually larger and more powerful architectures, state-
of-the-art models are approaching human-level perfor-
mance on many tasks.

Successive generations of GPT models have questioned
the current fine-tuning paradigm. GPT-2 (Radford et
al., 2019), with 1.5 billion parameters, demonstrated
that large language models could tackle entirely new
tasks through few-shot learning2. Without any fine-
tuning, from just a few prompted examples, GPT-2
achieved fair performance on a number of complex
downstream tasks. Furthering this endeavour, GPT-
3 (Brown et al., 2020), with 175 billion parameters,
achieved state-of-the-art performance on some tasks,
without the need for fine-tuning. This opens new possi-
bilities for low-resources tasks, as well as paths to more
natural interactions with these models: recent research
suggests the gap between few-shot learning and fine-
tuning may even be bridged through so-called prompt
programming/tuning (Li and Liang, 2021; Lester et al.,
2021).

Scaling laws. More specifically to our setting, neu-
ral language models have been shown to predictably
benefit from increased scale (Kaplan et al., 2020).
Their training dynamics are size-invariant, allowing
test loss, parameter count, and dataset size to be corre-
lated through smooth scaling laws. This is in fact true
of all GPT-like autoregressive models, even when ap-
plied to image, multimodal, or mathematics modeling
(Henighan et al., 2020). Gains in autoregressive cross-
entropy loss also directly translate to gains in end-task
performance after fine-tuning. As they relate to com-
pute budget, these predictions can be used to inform
the training of large models.

Non-English generative models. BERT-like models
are now available in a broad number of languages, ei-
ther as specialized models or as multilingual ones. This
is less so the case for generative models, perhaps be-
cause of issues in controlling the language used at gen-
eration time. For the French language, GPTfr is an au-
toregressive generative model, and BARThez (Eddine
et al., 2020) targets some generative abilities. Smaller-
scale efforts exist, such as BelGPT (Louis, 2020), but
they are limited to small models. GPT models have
been trained for German (Schweter, 2020), Chinese
(Zeng et al., 2021), Korean (Kim et al., 2021), Rus-
sian (Alexandr et al., 2021), and Arabic (Antoun et al.,
2021a; Lakim et al., 2022), among others.

3. Efficient training with scaling laws
Scaling. We use scaling laws to inform the duration
of the training of our largest models. Rather than train-
ing to convergence, which would be wasteful, we train
to optimality, as predicted by the equations provided in
(Kaplan et al., 2020). This is akin to what has been
done for GPT-3, and this enables us to keep our com-
putational budget in line with that of CamemBERT, a
model 13x smaller than PAGnol-XL. We find that train-
ing all of our models for a single epoch on the 30 Gi-

2In other areas of machine learning, this has been referred
to as zero-shot learning, as no weight updates are necessary.
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gaTokens (GT) of CCNet enables us to reach optimal-
ity for the most expensive XL model. Table 3 presents
the ratios between the compute budget effectively used
and that to optimality (rCopt) or to convergence (rCconv).
While our small model is trained to convergence, oth-
ers are trained significantly short of it. We find that
our training performance matches nicely with the esti-
mated 2.6 PF-days for the training of GPTfr-LARGE
from (Simoulin and Crabbé, 2021).

4. PAGnol
In this section, we describe the data, model, and train-
ing specifications for PAGnol. In Table 1, we highlight
some of the key differences and similarities with other
French models, and in Table 2 we present two multilin-
gual models that we consider in the following.

4.1. Pre-training data
Sourcing. The Common Crawl (CC) project browses
and indexes all content available online. It generates
200-300 TiB of data per month (around 5% of which
is in French), and constitutes the bulk of most NLP
datasets nowadays. We consider in our experiments
two datasets based on CommonCrawl data: CCNet
(Wenzek et al., 2020) and OSCAR (Ortiz Suárez et al.,
2020). Once tokenized, OSCAR contains 33GT and
CCNet 32GT. We use CCNet for all our main experi-
ments and released models, and compare with results
obtained on OSCAR in Section 5. We validate on the
fr-wiki dataset (0.5GT) and French TreeBank (650kT)
(Abeillé et al., 2003).

CCNet. CCNet combines the usual fastText (Joulin
et al., 2017) pre-processing of CC data with an addi-
tional filtering step to select high-quality documents.
This filtering is done through a language model trained
on Wikipedia, ensuring a text quality similar to that of
its articles. We use a version of CCNet identical to the
one considered in the CamemBERT paper.

OSCAR. OSCAR uses a fastText classifier to select
documents and identify their languages, without any
additional filtering. OSCAR is thus more varied, but
more ”noisy”, than CCNet. OSCAR has been used to
train other French language models such as Camem-
BERT.

Tokenization. We use byte-level Byte-Pair Encoding
(BPE), with a vocabulary of 50,262 tokens: 256 bytes,
6 special tokens, and 50,000 merges. Paragraphs are
separated by an < EOS > token and documents are
separated by a < SEP > token. We add a prefix space
before tokenization, so that the first word in a paragraph
is tokenized in the same way as if it was at any other
position. This is similar to the setup of FlauBERT and
GPT-2. For the models trained on OSCAR, we use a
slightly smaller vocabulary size of 50,000 tokens.

4.2. Model specification
PAGnol is a decoder-only autoregressive transformer.
We evaluate four model sizes: small, medium, large,

and extra-large, with architectures detailed in Table 3.
We use a context size of 1,024 tokens for the S, M and L
models. The XL uses a context size of 2,048, the largest
at release for a French model. Additionally, we use Ro-
tary Embeddings (Su et al., 2021) in place of Learned
Positional Embeddings for the XL model, since they
provide much better training stability at the billion pa-
rameters regime.

4.3. Pre-training
Training objective. We use an autoregressive lan-
guage modelling objective, where the model learns to
predict the next word in a sentence. To improve effi-
ciency, we always fill the context with as much text at
possible, and inform the model about separate docu-
ments through the ¡SEP¿ token.

Optimization. We use the Adam optimizer (Kingma
and Ba, 2014) with a warmup followed by cosine decay
learning rate schedule. We find that proper initializa-
tion is key to training stability, and reproduce the setup
effectively implemented by Megatron-LM (Shoeybi et
al., 2019). We initialize all weights with a normal dis-
tribution N (0, 0.02) and scale the weights under the
residual layers by 1/

√
2nlayers. We tune hyperparam-

eters over 10k step first, and pick the set with the best
train perplexity.

Distributed training. All training runs were per-
formed on the public GENCI supercomputer Jean Zay,
on nodes with 4x or 8x V100 32GB and a 100Gb/s
interconnect. We built our own GPT implementation
from scratch in PyTorch (Paszke et al., 2019), lever-
aging FairScale for distributed training (Baines et al.,
2021).
Models up to PAGnol-L can be trained using simple
distributed data parallelism (DDP). However, PAGnol-
XL does not fit in 32GB of memory. We use optimizer
and model state sharding, along with activation check-
pointing and CPU offloading to fit the model in mem-
ory. This results in a setup similar to ZeRO-3 (Rajb-
handari et al., 2021). It is beneficial to train even small
models with this setup, as it allows for a larger batch
size, and significantly higher GPU throughput.

Perplexity. We report final validation perplexity af-
ter 1 epoch over 30GT in Table 4. We use the official
2019 French Wikipedia dumps and the French Tree-
Bank dataset (Abeillé et al., 2003) in its SPMRL in-
stance (Seddah et al., 2013) as our validation sets. Be-
cause we are running all models for a single epoch on
our data, there are limited risks of overfitting and mem-
orization.

Scaling law for PAGnol models We fit a scaling law
with the same functional form of (Kaplan et al., 2020),
that is the following power law:

L =

(
k

C

)α

where L is the validation loss of PAGnol models trained
on CCNet, k is a constant, C is the compute in PF-days,
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CamemBERT FlauBERT BARThez GPTfr PAGnol (ours)

Language French French French French French
Parameters 110/335M 138/373M 165M 124M/1B 124M/355M/773M/1.5B
Context 512 512 768 1024 1024/2048

Dataset OSCAR Customa Customa Filtered Common Crawl CCNet
33GT/138GB 13GT/71GB 66GB 1.6/3.11 GT 32GT

Tokenization SentencePiece 32k BPE 50k SentencePiece 50k BPE 50k BPE 50k
Compute [PF-days] 3/10 ∼ 7/26b ∼ 4b ?/2.6 0.3/0.7/2/3

Table 1: Model, data, and training setup for PAGnol and other French models. Data size is reported in gigatokens
(GT), and compute in PF-days (8.64×1019 FLOP). PAGnol is the largest French model. Despite being significantly
larger than existing models, its compute cost remains reasonable: as recommended by scaling laws, we train models
to optimality, and not to convergence.

aFlauBERT and BARThez use a similar pre-training dataset assembling CommonCrawl, NewsCrawl, Wikipedia, and other
smaller corpora.

bInsufficient data was provided by authors to infer compute budgets properly.

mBERT mBART

Language 104 languages 25 languages
Parameters 110M 610M
Context 512 768

Dataset Wikipedia CC25
180GT/1369GB

(10GT/57GB French)
Tokenization WordPiece 110k SentencePiece 250k
Compute [PF-days] 2 ∼ 60b

Table 2: Model, data, and training setup for multilin-
gual models including French that we consider. Data
size is reported in gigatokens (GT), and compute in PF-
days (8.64× 1019 FLOP).

PAGnol nparams nlayers dmodel nheads C [PF-days] rCconv rCopt

S 124M 12 768 12 0.3 1.3 9.0
M 355M 24 1024 16 0.7 0.5 3.0
L 773M 36 1280 20 2 0.4 2.5

XL 1.5B 48 1600 25 3 0.2 1.3

Table 3: Model and training budgets for PAGnol. All
models are trained on a single epoch of our 32GT
CCNet-curated data. C is the compute budget used
for the training of the model. rCopt is the ratio between
C and Copt, the optimal compute budget derived from
scaling laws. rCconv is the ratio between C and Cconv, the
compute budget derived from scaling laws to train the
model to convergence.

PAGnol nparams fr-wiki FTB: whole (train/val/test)

S 124M 43.38 23.87 (23.90, 24.38, 23.34)
M 355M 37.46 20.90 (20.92, 21.59, 20.46)
L 773M 34.81 19.97 (19.88, 21.19, 20.02)

XL 1.5B 28.85 16.18 (16.11, 16.67, 16.40)

Table 4: Validation perplexity on fr-wiki and on the
whole French TreeBank (FTB) for PAGnol models af-
ter 1 epoch of training on 30GT of CCNet.

and α is the scaling exponent. The fit is performed in
log-log, and constrained to remain under the efficient
frontier, using cvxpy (Agrawal et al., 2018). We ex-
clude the L and XL models from the fit: due to the
HPC environment, the training was performed in mul-
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Figure 1: Scaling law relative to the compute for PAG-
nol models from XXS to M. We do not include L and
XL: the interrupted nature of the training due to the
HPC environment and the choice of Rotary Embed-
dings for the XL pollute validation curves with arte-
facts that negatively affect the quality of the fit.

tiple splits. At restart, the optimizer state is not nec-
essarily available, generating artefacts in the training
and validation curves. Additionally, the use of Rotary
Embeddings for the XL model would affect the scaling,
and make it incomparable with the English models. We
therefore trained two smaller models, an XXS and an
XS, following the same architectural decisions of the
larger ones, on the same datasets, and used these to fit
a scaling law. We find a scaling exponent α = −0.036
for the French language, to compare to the −0.050 for
the English language from (Kaplan et al., 2020). With
the relatively important caveats that we are using dif-
ferent datasets, codebase, and hardware, it appears that
French is less compute efficient than English, and that
for a same improvement in validation loss, therefore
we need to spend more compute for French than for
English. The increased morphological complexity of
French when compared to English (Seddah et al., 2010)
and its, in average, longer sentences could be a factor
explaining this discrepancy.
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5. Influence of the pre-training data
Existing French models (CamemBERT, FlauBERT,
BARThez) have been trained on datasets based on a
simple filtering pipeline. A fastText classifier is used
to isolate content in French, deduplication is applied,
and noisy content (phone numbers, code, etc.) is re-
moved. While this has been sufficient for pre-training
encoder-only models and sequence-to-sequence mod-
els, the lack of quality control may be an issue for free-
form generation with a decoder-only model such as
PAGnol. Moreover, recent work on the OSCAR dataset
(used by CamemBERT) has found that it may contain
up to 5% of non-linguistic content, or content in the
wrong language, and 0.5% of explicit content for the
French language (Caswell et al., 2021).
We initially pre-trained PAGnol on the OSCAR dataset,
and while experimenting with the model, we observed
the model generated offensive and explicit content,
even when not prompted for it. For instance, the
prompt Bonjour je suis (Hello I am) often resulted in
pornographic content, despite being rather naive. This
motivated our choice to switch to CCNet instead. For
research purposes, we release the small and medium
models trained on OSCAR. In future iterations of this
document, we will provide a more detailed investiga-
tion of the content generated by PAGnol-CCNet and by
PAGnol-OSCAR.

6. End-task performance
Discriminative tasks: FLUE We evaluate our
models on the Sentence Classification task of the
FLUE evaluation setup (Le et al., 2019). The task is
a binary classification problem on reviews of Books,
Music and DVD taken from the Amazon website.
Each review is assigned a score from 1 to 5, and then
labeled as ”negative” if the score is lower than 3 and
”positive” otherwise. We also evaluate our models on
the paraphrasing and natural language inference tasks
(PAWS-X and XNLI). PAWS-X consists in a binary
classification task where the model has to identify
whether two sentences are semantically equivalent or
not. XNLI is instead a 3 class problem where we have
to determine if a premise contradicts, entails or neither
a given hypothesis. For the training, we add a CLS
token at the end of the review (but before the EOS
token). We then replace the projector at the end of the
model with a linear layer and use the embedding of the
CLS token to perform the classification.
Table 5 reports the test accuracy of the best along with
a comparison with other French language models.
All models are fine-tuned for 6 epochs, except the
medium OSCAR and the extra-large CC-100 which
were trained respectively for 4 and 5 epochs. For each
model, we finetune the learning rate and weight decay
in the interval [10−6, 10−4] and [0, 10−3] respectively.
For the classification task, we use a cosine annealing
scheduler that decays down to 1/10 of the original
learning rate in 5 epochs (3 for the medium OSCAR

and 4 for the extra-large CC-100). We additionally
checked if adding dropout with p = 0.1 could improve
the performance. For the PAWS-X and XNLI tasks, we
finetune the learning rate in the interval [10−6, 10−4].
We use the cosine annealing scheduler down to a
learning rate equal to 1/10 of the original value (1/5
for the Small models) over 9/40 Million tokens respec-
tively. PAWS-X training is over 2 epochs while XNLI
training over 1. PAGnol models slightly underperform
smaller BERT models, while being better than multi-
lingual alternatives, and their GPTfr counterparts. For
PAGnol, performance improves with size but seems
to saturate with the XL model, possibly because we
had to use a lower batch size to fit on the hardware for
fine-tuning. Additionally, while the generation quality
of models trained on OSCAR is noticeably worse,
they perform as well or better than the corresponding
models trained on CCNet on these discriminative tasks.

Generative task: FQuAD (d’Hoffschmidt et al.,
2020) is a native French question answering dataset,
comprising more than 25.000 questions fabricated by
higher education students from a set of Wikipedia ar-
ticles, following the same philosophy as the English
dataset SQuAD (Rajpurkar et al., 2018). Given a docu-
ment di, a question qi and the corresponding answer ai,
the Question Answering task is casted into this format:

”{di} Question: {qi} Réponse: {ai}”

where Réponse corresponds to Answer in French.

Given this input format, in a setup similar to pre-
training, the likelihood of the sequence corresponding
to the answer is maximized using the cross entropy
loss on the tokens corresponding to the answer. We
use the Adam optimizer and finetune the learning
rate and weight decay in the interval [10−6, 10−4]
and [0, 10−3]. The different models were trained for
2 epochs. As noted by Radford et al. (2019), the
performance of autoregressive models is still worse
than question answering systems based on masked
language models. Indeed, we evaluated the finetuning
of OpenAI GPT-2 small and medium on SQuAD, and
obtained exact match (EM) and F1 scores in the same
range of PAGnol on FQuAD (Table 7).

Generative task: OrangeSum (Eddine et al., 2020)
is a summarization dataset, considered to be the French
equivalent of the XSum (Narayan et al., 2018). It is an
abstractive dataset containing summary of news article
from the ”Orange Actu” website. Each article comes
with a professionally-written title and abstract. Hence,
the dataset includes two tasks: OrangeSum Title and
OrangeSum Abstract. We evaluate PAGnol on the lat-
ter.
Similarly to our setup for question answering, given a
news article ni and an abstract ai, we cast the summa-
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Model Parameters Books Music DVD PAWS-X XNLI

MultiFiT Not Specified 91.25 89.55 93.40 - -
mBERT 110/340 M* 86.15 86.90 86.65 89.30 76.9
mBART 610 M 93.40 93.13 93.10 89.70 81.07

BARThez 216 M 94.47 94.97 93.17 88.90 80.73
CamemBERT-BASE 110 M 92.30 94.85 93.00 90.14 81.20

CamemBERT-LARGE 335 M 95.47 96.00 95.37 91.83 85.33
Flaubert-BASE 138 M 93.10 92.45 94.10 89.49 80.60

Flaubert-LARGE 373 M 95.00 94.10 95.85 89.34 83.40

GPTfr-BASE 124 M 88.30 86.90 89.30 83.30 75.60
GPTfr-LARGE 1 B 91.60 91.40 92.60 86.30 77.90

PAGnol-S OSCAR 124 M 92.05 92.60 91.70 84.19 76.10
PAGnol-M OSCAR 355 M 94.40 94.90 94.30 87.44 79.46

PAGnol-S CC-100 124 M 92.00 93.00 91.65 87.19 75.67
PAGnol-M CC-100 355 M 94.40 95.20 93.70 89.14 79.00
PAGnol-L CC-100 773 M 94.65 95.25 94.00 90.70 81.48

PAGnol-XL CC-100 1.5 B 94.65 95.35 94.18 89.47 81.83

Table 5: Results on the FLUE Benchmark including classification (Books, Music, DVD), paraphrasing (PAWS-X)
and natural language inference (XNLI) tasks. The best overall results are highlighted in bold, and the best results
for GPT models are underlined.

Model EM F1

CamemBERT-LARGE 82.1 92.2
CamemBERT-BASE 78.4 88.4

PAGnol-S OSCAR 31.7 52.8
PAGnol-M OSCAR 37.1 59.4

PAGnol-S CC-100 33.7 56.0
PAGnol-M CC-100 36.8 59.0
PAGnol-L CC-100 42.8 66.3

PAGnol-XL CC-100 44.4 68.5

Table 6: Question answering on FQuAD.

Model Size EM F1
GPT small 45.5 62.7
GPT medium 50.8 68.1

Table 7: GPT-2 small and medium model performance
on SQuaD

rization task in this format:

”{ni} Résumé: {ai}”

We finetune our model on the crossentropy loss com-
puted only on the tokens of the produced summary.
We optimize the learning rate and weight decay in
the same interval as FLUE, using the same sched-
uler, and train for 4 epochs. We add a dropout with
p = 0.1 to improve the performance. We evaluate the
fine-tuned model using greedy token generation and
the ROUGE metrics (R-1, R-2, R-L for ROUGE-1,
ROUGE-2, ROUGE-L) (Lin, 2004). This task, more
geared towards generation, sees PAGnol-XL establish a
new state of the art for summarization on OrangeSum,
shown in Table 8.

7. Prompt Tuning
Human prompt engineering to extract good zero- and
few-shot performance for large language models has

Model Parameters R-1 R-2 R-L

BARThez 216 M 31.44 12.77 22.23

PAGnol-S OSCAR 124 M 22.79 6.16 16.03
PAGnol-M OSCAR 355 M 24.89 7.87 17.78

PAGnol-S CC-100 124 M 26.47 9.49 17.12
PAGnol-M CC-100 355 M 28.20 10.80 20.79
PAGnol-L CC-100 773 M 28.12 11.05 20.81

PAGnol-XL CC-100 1.5 B 31.17 12.86 22.50

Table 8: Text summarization on the OrangeSum Ab-
stract task. Best results are highlighted in bold, and
second best are underlined.

motivated research in prompt tuning: placing some ran-
dom vectors in the input sequence and optimizing their
values, while keeping the pre-trained model weights
fixed. The advantage of this approach is that the model
does not change, and only the prompt is optimized. We
follow the approach in (Lester et al., 2021), and opti-
mize a certain number k of tokens in our prompt for the
three aforementioned tasks. The best hyperparameters
per size per task have been selected by grid search for
the value of k, learning rate and dropout. In particular
we performed a grid search over k = {1, 5, 20, 35, 50},
learning rate in {0.3, 0.1, 0.01, 0.001, 0.0005}, and
dropout in {0, 0.01, 0.1}. We show the results for
FLUE, FQuAD, and OrangeSum in Table 9. We ex-
pected a smooth scaling in performance with size and
to progressively close the gap with fine-tuning perfor-
mance, as shown by (Lester et al., 2021), however
this scaling slows significantly when we reach the XL
model. We suspect a bug in our implementation of
prompt tuning with Rotary Embeddings, causing the
performance hit, therefore we temporarily show the re-
sults for the XL model in italic in this setting.

8. Discussion
Without fear of aligning an overused cliché, the release
of large language neural models have not only revo-
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FLUE FQuAD OrangeSum

PAGnol Books Music DVD EM F1 R-1 R-2 R-L

S 88.50 87.95 88.24 0.243 0.427 24.54 8.98 18.45
M 91.60 92.65 90.69 0.320 0.561 27.80 10.56 20.29
L 92.60 93.10 91.69 0.365 0.526 28.25 11.05 21.03

XL 92.50 93.25 92.14 0.403 0.450 28.72 11.08 20.89

Table 9: Prompt tuning performance on FLUE CLS, FQuAD, and OrangeSum.

lutionized the NLP field by bringing a major leap in
performance in almost every tasks they were applied
to, they crucially changed the perception of the risks
of their potential misuse. The point is that this dra-
matic boost of performance has led the field to rely on
the capacity of those large models to transfer their, in
layman’s terms, “knowledge” to other tasks via vari-
ous transfer learning modalities. Yet, with this trans-
fer, the potential data biases inherent to large corpus
collection used for pre-training are also susceptible to
appear. Gehman et al. (2020) thoroughly demon-
strated that all generative language models they tested
(from GPT1 (Radford et al., 2018) trained on Book
Corpus only to GPT3 (Brown et al., 2020) and CTRL
(Keskar et al., 2019) trained on various corpora, in-
cluding user-generated content and web-crawled data
sets) were capable of producing toxic output in specific
conditions and presented different ways of alleviating
this behaviour. Having been pre-trained on Common
Crawl-based corpora, our models are certainly not im-
mune from toxic content generation. More generally,
the question of knowing whether the pre-training data
should be curated more or should the model output, de-
pending on the downstream application in sight, be de-
biased, or filtered, directly is still the object of vivid
debates among the community (Bender et al., 2021;
Goldberg, 2021), while of course there is an agreement
toward responsible use of such technology. In this as-
pect, the release of a GPT-generated text detector by
Antoun et al. (2021b) along their Arabic GPT2 model
is an interesting step toward this direction. Regarding
the environmental aspects of this model, our model pre-
training experiments consumed about 62k gpu hours
from the Jean Zay HPC cluster. Being based in France,
its energy mix is made of nuclear (65-75%), 20% re-
newable and the remaining with gas (or more rarely
coal when imported from abroad) (S.Requena, Dir. of
Jean Zay, P.C). Regarding the performance of our mod-
els which almost constantly outperform their closest
French counterparts, the GPTfr models (Simoulin and
Crabbé, 2021), one explaining factor could be the size
of our pretraining data set (30B token vs 3B). Given
our computing limitation, we choose from the begin-
ning to use an experimental protocol as comparable as
possible to the one used for the CamemBERT model
evaluation (Martin et al., 2019), it would of course
be interesting to perform a head to head comparison
with the GPTfr model. In terms of raw performance,
it has been constantly reported that GPT-based models
on the billion parameter scale provide inferior perfor-

mance when compared to their “regular” transformer
counterparts in classic fine-tuning scenarios, our results
confirm this for French as well while highlighting the
interest of our models in generation-oriented scenarios
(such as text summarization where PagnolXL estab-
lishes a new state of the art for French). As for English
(Lester et al., 2021), our preliminary prompt-tuning re-
sults suggest that this approach is promising and could
be a way to close this performance gap.

9. Conclusion

We presented the Pagnol model collection, the first re-
leased large scale generative model for French3, to date
the largest neural language model trained from scratch
for French. Trained on the CCnet corpus, we used
scaling laws to inform our training setup, resulting in
an optimal use of our training budget. The evaluation
of our models on various end-tasks demonstrated first,
that the CCnet corpus was a better choice than the Os-
car French instance when used for generation; second,
they showed that our models provide the same range
of performance than their English counterparts and es-
tablished a new state of the art for summarization of
French on OrangeSum. Pagnol-XL and our smaller
models are available.
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(2020). Ccnet: Extracting high quality monolingual
datasets from web crawl data. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 4003–4012.


	Introduction
	Related work
	Efficient training with scaling laws
	PAGnol
	Pre-training data
	Model specification
	Pre-training

	Influence of the pre-training data
	End-task performance
	Prompt Tuning
	Discussion
	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References

