
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 4253–4259
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

4253

Dilated Convolutional Neural Networks
for Lightweight Diacritics Restoration

Bálint Csanády, András Lukács
Department of Computer Science, AI Research Group

Institute of Mathematics, Eötvös Loránd University
Pázmány Péter stny. 1/c, 1036 Budapest, Hungary

csbalint@protonmail.ch, lukacs@cs.elte.hu

Abstract
Diacritics restoration has become a ubiquitous task in the Latin-alphabet-based English-dominated Internet language environ-
ment. In this paper, we describe a small footprint 1D dilated convolution-based approach which operates on a character-level.
We find that neural networks based on 1D dilated convolutions are competitive alternatives to solutions based on recurrent
neural networks or linguistic modeling for the task of diacritics restoration. Our approach surpasses the performance of
similarly sized models and is also competitive with larger models. A special feature of our solution is that it even runs locally in
a web browser. We also provide a working example of this browser-based implementation. Our model is evaluated on different
corpora, with emphasis on the Hungarian language. We performed comparative measurements about the generalization power
of the model in relation to three Hungarian corpora. We also analyzed the errors to understand the limitation of corpus-based
self-supervised training.

Keywords: diacritics restoration, 1D convolutional neural network, A-TCN, small footprint, Hungarian

1. Introduction
Many languages, including most European languages,
have alphabets where some of the characters are de-
rived from base characters using diacritical marks. The
goal of diacritics restoration is to restore diacritical
marks, given an input text which does not contain (or
only partially contains) the proper diacritical marks.
Diacritics restoration is a practical task on the Inter-
net, where the absence of diacritical marks can still be
prominent.
Diacritics restoration is a useful preprocessing step for
many NLP tasks, e.g. question answering (Abdelnasser
et al., 2014). On the other hand, diacritics restoration
is an important tool for language revitalization (Galla,
2009), thus contributing to linguistic diversity, the liter-
acy of endangered languages, and the maintenance of
their digital presence (Kornai, 2013). This can be ef-
fectively supported by language-independent diacritics
restoration tools. Nevertheless, we consider only liv-
ing languages where large corpora based on the Latin
alphabet are available (omitting such exciting cases as
Celtic languages or poetry marking). Diacritical marks
appear in certain Slavic languages (Czech, Slovak, Pol-
ish), some Finno-Ugric languages (Finnish, Hungarian,
Latvian), Romanian, Turkish, and, most intensively, in
Vietnamese.
Approaches to diacritics restoration have evolved from
rule-based and statistical solutions to the application of
machine learning models (Yarowsky, 1999). The latter
approach can be broken down into solutions using fixed
or learned representations. All solutions with learned
representations seem to be based on neural networks
connected to the models used in NLP, lately recurrent
neural networks models (Hucko and Lacko, 2018) be-
ing replaced by transformers (Laki and Yang, 2020;

Náplava et al., 2021). In such cases, models used for
machine translation are often used to correct diacritical
marks (Novák and Siklósi, 2015). Another approach is
to consider diacritics restoration as a sequence labeling
problem where convolutional neural networks and re-
current neural networks such as BiLSTM-s (Náplava et
al., 2018) can be applied. We apply a fast language-
independent method with small footprint for automatic
diacritics restoration using a neural architecture based
on 1D convolutions, the so called Acausal Temporal
Convolutional Networks (A-TCN). Models based on
A-TCN have comparable performance to BiLSTM-s
(Alqahtani et al., 2019), which is also confirmed by our
present research.
Our experiments are focused on the Hungarian lan-
guage. In Hungarian the characters which can re-
ceive diacritical marks are exactly the vowels (e.g. u
7→ {u,ú,ü,ű}). For Hungarian, the current state of
the art is reported by (Laki and Yang, 2020) and is
achieved by neural machine translation. Our main con-
tribution is a lightweight model, which can even be
run locally in web browsers, allowing client-side in-
ference. We compared our model with Hunaccent (Ács
and Halmi, 2016); both models have a similar size of
around 10MB. Our approach outperforms Hunaccent
by a large margin, and performs comparable to the re-
current model in Náplava et al. (2018). Moreover our
method is also language-agnostic.

2. Methods
We approached the diacritics restoration problem as a
character-sequence labeling task. We chose the out-
put labels as the set of characters in the alphabet of the
language. An alternative way to model the restoration
task could have been to produce the possible diacrit-



4254

Figure 1: TCN architecture (kernel size: 3, dilation factors: 1,3,9). Red dashed: without dilation.

Figure 2: A-TCN architecture (kernel size: 3, dilation factors: 1,3,9).

ical marks (including the empty mark) on the output
side. Our choice is motivated by the expectation that
the model’s scope could be expanded, and it might be
able to correct other local errors in the text, not only
missing diacritical marks.
The neural network architecture we considered for se-
quence labeling are Temporal Convolutional Networks
(TCNs). TCNs are a generic family of models with no-
table examples including WaveNet (Oord et al., 2016).
TCNs are 1D fully convolutional networks, where the
convolutions are causal, and at time t output is pro-
duced in each layer by the convolution of input ele-
ments from time t− 1 and earlier (Bai et al., 2018).
To increase the effective size of the convolutional win-
dows, dilated convolutions can be used (Yu and Koltun,
2015). The network is built with dilation factors which
increase exponentially by the depth of the network (Fig.
1). This ensures that the receptive field also increases
exponentially.
TCNs also contain residual connections (He et al.,
2016). A residual block involves a series of transfor-
mations, the result of which are then added to the input.
The transformation consists of a dilated convolution
followed by a normalization layer, activation function,
and dropout. This is repeated b times (often b = 2).
TCNs work well for applications where information
flow from the future is not permitted. For diacritics
restoration it is essential to incorporate future context
as well as past context. To achieve this, the base TCN
architecture has to be slightly modified as seen in Fig.
2. The modified TCN architecture is called acausal
TCN, or A-TCN for short (Alqahtani et al., 2019).

3. ONNX compatibility
Our model is compatible with ONNX (Bai et al.,
2017), a cross-platform neural network format. ONNX
serves as an intermediary format, it can be imported
by ONNX.js (Wang et al., 2018), a JavaScript li-

brary, which makes it possible to run our model in the
browser. Inference happens on the clients device, mak-
ing use of the clients graphical processor with the help
of WebGL.
Converting a model to work with ONNX.js requires
some care. For example LSTMs are not supported yet,
and even 1D convolutions have to be simulated with 2D
convolutions. Although they are mathematically equiv-
alent, we found that training the model in PyTorch is
much more effective if spatial dimension is reduced to
1 in the 2D convolution (instead of reducing the feature
size to 1).
Another difficulty is that the model allows arbitrary in-
put lengths, but in ONNX.js the first inference fixes the
input sequence length. The solution is to dynamically
reload the model. If the input is longer than the current
limit, the model is reloaded with double length.
Since we submitted the paper, ONNX.js got replaced
by ONNX Runtime Web (Wang and others, 2021).
ONNX Runtime Web has fixed some of the above is-
sues, such as the lack of LSTM and 1D convolution
support. The current version of our project uses ONNX
Runtime Web.
Our demonstration web page with diacritics restora-
tion for four Central European languages is available
at https://web.cs.elte.hu/∼csbalint/
diacritics/demo.html.

4. Datasets
The data for training diacritics restoration can be
generated in a self-supervised fashion. Grammatically
correct sentences from the target language provide the
annotated data, which means that the removal of the
diacritical marks provide the input.
We used the datasets provided by Náplava et al.
(2018) for training on four Central European languages
(Czech, Hungarian, Polish and Slovak). We will refer
to these datasets as LINDAT. The datasets were cleaned

https://web.cs.elte.hu/~csbalint/diacritics/demo.html?lang=en&model_lang=HU
https://web.cs.elte.hu/~csbalint/diacritics/demo.html?lang=en&model_lang=HU


4255

Train Dev
Language Sequences Avg.seq.len. Characters Sequences Avg.seq.len. Characters

Cze 946 k 107.6 101.8M 14.5 k 114.4 1.66M
Hun 1287 k 108.3 139.3M 14.7 k 120.7 1.77M
Pol 1063 k 116.2 123.6M 14.8 k 121.3 1.80M
Svk 609 k 106.7 65.1M 14.9 k 114.7 1.71M

Table 1: Statistics of the LINDAT datasets.

Unambiguous Ambiguous Ratio
Corpus Sequences Words Words Bases Words Bases Words Bases

HunWeb1 649 k 35.7M 18.2M 979 k 17.6M 29.3 k 1.032 33.5
HunWeb2 6.16M 403.0M 118.6M 4.51M 284.4M 179.2 k 0.417 25.2

Table 2: Word ambiguity statistics of the Webcorpus-based datasets for Hungarian.

up by removing the sentences containing exotic charac-
ters (we considered the character exotic if applying the
unidecode Python function on the character yielded a
string more than one character long). We also cut off
all the sentences to a maximum length of 500. Table 1
shows the statistics of the datasets.
Two additional corpora were considered for training
and evaluating on Hungarian. A model was trained
on the dataset built from Hungarian Webcorpus 2.0,
hereinafter referred to as HunWeb2 (Nemeskey, 2020).
The models were also evaluated on the dataset built
from the earlier Hungarian Webcorpus (HunWeb1) by
Halácsy et al. (2004).
Each corpus contains a large collection of Hungarian
text documents. To prepare the data, we extracted sen-
tences from each document until we reached a length
limit of 500. After extracting the sequences, we ran-
dom sampled them, and created the train-dev cuts (Ta-
ble 3). We also cleaned up the data by removing all
sequences not containing enough diacritical marks, as
some part of the corpus contains sentences wich par-
tially or completely lack the proper diacritical marks.
In the case of HunWeb2, we used the "2017-2018" part
of the Common Crawl subcorpus. We decided not to
split up the documents to multiple chunks or sentences,
as we have found that there can be a lot of repeated
sentences within one document, which would skew the
evaluation metrics.

Dataset Seqs Avg. Charsseq. len.
HunWeb1 Dev 10 k 409.3 4.09M

HunWeb2 Train 6.16M 474.0 2.92G
Dev 10 k 474.1 4.74M

Table 3: Statistics of the additional
datasets for Hungarian.

5. Word Ambiguity
Ambiguous words pose a limit to dictionary-based so-
lutions for solving diacritics restoration. For example

we have several options when we want to diacritize
the Hungarian word koros: körös (containing circles
or a Hungarian river), kóros (sick), kórós (contain-
ing weeds), koros (old) and even kőrös (geographical
name).
We analyzed the Hungarian Webcorpus-based datasets
in terms of apparent word ambiguity. Let us call the
base of a word the word we get after removing the di-
acritical marks from it. We categorized a base unam-
biguous if the data contained only one diacritized ver-
sion of it. Similarly, a word was categorized ambigu-
ous if multiple diacritized forms existed in the data.
The ambiguity of a word may be due to grammar or
to an error in the corpus, even after the cleanup step
was performed to decrease the number of such false
positives. Unambiguous words can be diacritized with
a dictionary-based approach.
In Table 2 we see the statistics related to ambiguous
and unambiguous words in the datasets. There are sim-
ilar amounts of ambiguous and unambiguous words in
the data (though as the number of sequences increases,
the chance for false positives and rare variants also in-
creases), but the ambiguous words come from a much
smaller set of bases.
The metric of ambiguous word accuracy is dependent
on which words are classified as ambiguous, which
makes it unsuitable to compare the performance of dif-
ferent models. Nevertheless when compared to (alpha)
word accuracy, we saw that ambiguous word accuracy
was higher at the beginning of the training, but as the
model improved the two metrics switched places. This
might be explained by the numbers in Table 2, as the
ambiguous bases are harder to correctly diacritize on
the long run, but there are substantially more unam-
biguous bases, and the model might need more exam-
ples to memorize them.

6. Experimental Setup
In terms of model architecture we used the following
hyperparameters. The character embedding dimension
was set to 50. After the embedding, the vectors are
upsampled to dimension 250, which is the channel size.



4256

Block 1,
dilation=1

Block 2,
dilation=2

Block 3,
dilation=4

Block 4,
dilation=8

Input

Output

Figure 3: Illustration of the hyperparameter setup used in the experiments
(number of blocks: 4, block size: 2, dilation base: 2, window size: 5).

Due to this upsampling, the embedding dimension can
be chosen flexibly. Upsampling is done by an 1 × 1
convolution after permuting the dimensions from 50×
1 × n to 1 × 50 × n, where n is the sequence length.
This effectively means that the input is concatenated by
itself 5 times over, allowing for a scalar multiplier for
each copy. This simpler approach was chosen instead
of the usual upsampling for performance reasons.
The network contains 4 residual block layers with dila-
tion factors of 1,2,4, and 8, respectively (Fig. 3). Each
block contains 2 convolutional layers, each followed by
batch normalization, ReLU, and spatial dropout layers
with a rate of 0.2, respectively. The convolutions have
a kernel size of 5. In the convolutions, zero padding is
used to ensure that the output is the same length as the
input.
We augmented the training data before each epoch in

the training. If a character had a diacritical mark, we
removed it with a probability of 80%. In real world use,
the absence of diacritical marks might only be partial.
When trained on HunWeb2 we limited each epoch to
100000 sequences. The batches contain the same 200
sequences every time (augmentation is applied each
time a batch is accessed), but in each epoch we train
on a random 500 batches.
The model implemented in PyTorch was trained on 4
Nvidia RTX 2080 Ti graphics cards. Training took ap-
proximately one day per model. Our model is avail-
able at https://github.com/aielte-research/
Diacritics_restoration.

7. Results
We calibrated our model size lightweight enough so
that it runs efficiently in a browser. For Hungarian

Model Train data Eval data Character Vowel Alpha-word Sequence

Copy
HunWeb1 0.8979 0.6929 0.4768 0.0000
HunWeb2 0.9020 0.7042 0.4997 0.0000
LINDAT 0.9043 0.7134 0.5093 0.0269

Hunaccent HunWeb1
HunWeb1 0.9886 0.9657 0.9207 0.0398
HunWeb2 0.9855 0.9563 0.9049 0.0087
LINDAT 0.9834 0.9509 0.8934 0.2732

Dictionary HunWeb2
HunWeb1 0.9960 0.9879 0.9772 0.3511
HunWeb2 0.9965 0.9894 0.9791 0.3329
LINDAT 0.9942 0.9831 0.9698 0.6551

A-TCN HunWeb2
HunWeb1 0.9987 0.9961 0.9907 0.6574
HunWeb2 0.9988 0.9964 0.9916 0.6424
LINDAT 0.9974 0.9941 0.9862 0.8087

A-TCN LINDAT
HunWeb1 0.9950 0.9850 0.9649 0.2683
HunWeb2 0.9945 0.9834 0.9621 0.1556
LINDAT 0.9975 0.9925 0.9824 0.7890

Table 4: Accuracy comparison for Hungarian diacritics restoration between the baseline (Hunaccent) and the our
model (A-TCN). We used the pretrained Hunaccent model provided by the authors. The numbers indicate the
results on non-augmented, fully dediacritized input.

https://github.com/aielte-research/Diacritics_restoration
https://github.com/aielte-research/Diacritics_restoration


4257

we took Hunaccent (Ács and Halmi, 2016) as a direct
comparison. Hunaccent is decision tree based, and it
shares our goal to implement a small footprint restora-
tor. Moreover, it also can be run locally in a browser.
We considered the pretrained Hunaccent model pro-
vided by the authors Ács and Halmi (2016). To ensure
a fair comparison, we set up our model to have a size
similar to the 12.1 MB of the trained model of Hunac-
cent. The raw ONNX file of our trained model is 10.11
MB and our demo HTML file is 13.49 MB. The HTML
file contains the ONNX file as a Base64 encoded string.
Compared to Hunaccent, our model achieved signifi-
cantly better results in all of the metrics we considered.
We also measured the performance of a simple dictio-
nary based method. From the HunWeb2-based train-
ing data, we created a word dictionary containing each
word base we encountered. The most frequent diacriti-
zation was chosen for each base. Náplava et al. (2018)
reports an alpha word accuracy of 0.9902 on Hungar-
ian (LINDAT). Their model is LSTM-based and has a
reported size of around 30 MB.
Table 4 contains the results. We also added a line called
Copy, which measures the accuracy what we get if we
simply copy the input without adding any diacritical
marks. Character accuracy measures the ratio of the
correct characters in the output. Important character
accuracy is measured on characters for which diacrit-
ical marks are applicable. In the case of the Hungar-
ian language, these characters are the vowels. Alpha-
word accuracy is measured by the ratio of the correct
words in the output, where only the words are consid-
ered which contain at least one alphabetical character.
Sequence accuracy is measured by the ratio of flawless
sequences, which is inversely proportional to the aver-
age length of the sequences.
In Table 5 we can see the effect of the augmentation.
Hunaccent performs better on data where all of the di-
acritics are missing, while our model performs slightly
better, but almost the same when we remove only about
80% of the diacritical marks.

Model Eval. task Vowel Alpha-word

Hunaccent Aug. 0.9441 0.8785
Non-aug. 0.9563 0.9048

A-TCN Aug. 0.9967 0.9925
Non-aug. 0.9964 0.9915

Table 5: Performance comparison of Hunaccent (nor-
mal training) and A-TCN (augmented training) on the
augmented and the non-augmented task (HunWeb2).

For Hungarian we compared the datasets in terms of
performance of the trained models (Table 4). Our tests
indicate that our HunWeb2-based dataset yields better
results. This is partly due to the size difference be-
tween the training data. When trained on a smaller size
HunWeb2-based dataset, the model still performed bet-
ter. This might be explained by Table 6, as the model

seems to overfit when trained on LINDAT. The train
and dev data are likely not independent enough.

Dataset Vowel Alpha-word

HunWeb2 Train 0.9924 0.9828
Dev 0.9893 0.9764

LINDAT Train 0.9922 0.9816
Dev 0.9925 0.9824

Table 6: Train and dev accuracies of the same model
trained on HunWeb2 and LINDAT. The model seems
to overfit on LINDAT.

The performance of our model on four Central Euro-
pean languages from the LINDAT corpus can be seen
in Table 7. The results indicate that our model is
language-agnostic and works well for its size for mul-
tiple different languages. The alpha-word accuracies
are slightly below the ones reported by (Náplava et al.,
2018).

Lang. Chr. Imp. Chr. α-word Seq.
Cze 0.9966 0.9944 0.9783 0.7344
Hun 0.9975 0.9925 0.9824 0.7890
Pol 0.9987 0.9970 0.9903 0.8810
Svk 0.9966 0.9947 0.9784 0.7420

Table 7: Accuracies on languages trained on the LIN-
DAT dataset.

8. Error Analysis
The confusion matrix of the A-TCN model (trained and
evaluated on HunWeb2) can be seen in Table 8. Even
though our model can output every character in the vo-
cabulary at each position, the only confused characters
were vowels with the same base. We included preci-
sion (PPV) an recall (TPR) in the table. The overall
weighted F1 score for vowels is 0.996.
We performed a small-scale manual evaluation of the
A-TCN model. After inference on the evaluation
dataset, we selected 500 random errors to be manually
classified in the following categories.

1. The error happens due to a corpus error.
2. The error is false positive due to a corpus error,

the model output is the correct form.
3. The input is ambiguous at word level, but the

model output does not fit grammatically in the
sentence.

4. The output is not wrong grammatically, but does
not agree with the wider context of the text.

5. Though the model output and the ground truth are
different, they both are adequate.

6. The error occurred in a named entity.
7. None of the above.

According to the manual evaluation (Table 9) around
30% of the errors belong to categories 3 and 7. We can



4258

Predicted Vowel
A

ct
ua

lV
ow

el
o ó ö ő TPR u ú ü ű TPR

o 156 k 302 164 118 0.996 u 43.2 k 91 54 23 0.996
ó 297 42.8 k 28 77 0.991 ú 82 12.4 k 3 14 0.992
ö 166 28 42.6 k 92 0.993 ü 72 21 23.6 k 46 0.994
ő 67 68 46 38.3 k 0.995 ű 19 15 24 8263 0.993

PPV 0.997 0.991 0.994 0.993 PPV 0.996 0.990 0.997 0.990

a á TPR e é TPR i í TPR

a 345 k 856 0.998 e 391 k 926 0.998 i 169 k 220 0.999
á 826 138 k 0.994 é 1313 132 k 0.990 í 159 25.0 k 0.994

PPV 0.998 0.994 PPV 0.997 0.993 PPV 0.999 0.991

Table 8: Vowel confusion matrix

reasonably expect to reduce these errors by increasing
the size of the model, both to increase the perceived
vocabulary of the model, and also to enable a larger
context window to draw information from, as some of
the grammatical context is likely too far away for the
model with the current hyperparameters. Named entity
errors are a bit harder to reduce, since they are often
less frequent or more ambiguous in the corpus. Errors
due to ambiguous input in terms of grammar could be
harder to reduce as they sometimes require more in-
sight.

Error class Ratio
1. Corpus error 0.062

2. Corrected corpus error 0.128
3. Word Ambiguous Input 0.186

4. Grammar Ambiguous Input 0.158
5. Context Ambiguous Input 0.124

6. Named Entity 0.256
7. Incorrect Output 0.126

Table 9: Error classes of the Hungarian A-TCN model.

9. Conclusion

We presented a neural network model of small size
based on 1D convolutions for diacritics restoration.
Furthermore, the model is ONNX.js (ONNX Runtime
Web) compatible, so it can even be used in a web
browser. The model was evaluated on four Central Eu-
ropean languages and it performed similarly well com-
pared to other larger models and outperformed models
of similar size. In the case of the Hungarian language,
we considered three data sets and studied the general-
izing power of the model between data sets.

Further research is needed to expand the applicability
of the model to correcting general errors in texts, in-
cluding spelling. We plan to train a larger, but still
browser-compatible model, and plan to further improve
the model architecture, and consider more diacritics-
heavy languages.

10. Acknowledgments
The research was partially supported by the Ministry
of Innovation and Technology NRDI Office within the
framework of the Artificial Intelligence National Lab-
oratory Program, the Hungarian National Excellence
Grant 2018-1.2.1-NKP-00008 and the Thematic Excel-
lence Programme TKP2021-NKTA-62.
The second author was supported by project "Appli-
cation Domain Specific Highly Reliable IT Solutions"
implemented with the support provided from the Na-
tional Research, Development and Innovation Fund of
Hungary, financed under the Thematic Excellence Pro-
gramme TKP2020-NKA-06 (National Challenges Sub-
programme) funding scheme.
We would like to thank Dániel Varga for drawing our
attention to the problem of lightweight diacritics recon-
struction, and Judit Ács for her help with NLP issues.

11. Bibliographical References
Abdelnasser, H., Ragab, M., Mohamed, R., Mohamed,

A., Farouk, B., El-Makky, N. M., and Torki, M.
(2014). Al-bayan: an arabic question answering
system for the holy quran. In Proceedings of the
EMNLP 2014 Workshop on Arabic Natural Lan-
guage Processing (ANLP), pages 57–64.

Ács, J. and Halmi, J. (2016). Hunaccent: Small
footprint diacritic restoration for social media. In
Normalisation and Analysis of Social Media Texts
(NormSoMe) Workshop Programme, page 1.

Alqahtani, S., Mishra, A., and Diab, M. (2019). Ef-
ficient convolutional neural networks for diacritic
restoration. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 1442–1448.

Bai, J., Lu, F., Zhang, K., et al. (2017). ONNX: Open
Neural Network Exchange. https://github.
com/onnx/onnx.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An em-
pirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

https://github.com/onnx/onnx
https://github.com/onnx/onnx


4259

Galla, C. K. (2009). Indigenous language revitaliza-
tion and technology: From traditional to contempo-
rary domains. Indigenous language revitalization:
Encouragement, guidance & lessons learned, pages
167–182.

Halácsy, P., Kornai, A., Németh, L., Rung, A., Sza-
kadát, I., and Trón, V. (2004). Creating open lan-
guage resources for hungarian. In Proceedings of the
Fourth International Conference on Language Re-
sources and Evaluation (LREC’04).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Hucko, A. and Lacko, P. (2018). Diacritics restoration
using deep neural networks. In 2018 World Sym-
posium on Digital Intelligence for Systems and Ma-
chines (DISA), pages 195–200. IEEE.

Kornai, A. (2013). Digital language death. PloS one,
8(10):e77056.

Laki, L. J. and Yang, Z. G. (2020). Automatic dia-
critic restoration with transformer model based neu-
ral machine translation for east-central european lan-
guages. In ICAI, pages 190–202.

Náplava, J., Straka, M., Straňák, P., and Hajic, J.
(2018). Diacritics restoration using neural networks.
In Proceedings of the eleventh international confer-
ence on language resources and evaluation (LREC
2018).

Náplava, J., Straka, M., and Straková, J. (2021). Di-
acritics restoration using BERT with analysis on
czech language. The Prague Bulletin of Mathemati-
cal Linguistics No. 116,, pages 27–42.

Nemeskey, D. M. (2020). Natural Language Process-
ing Methods for Language Modeling. Ph.D. thesis,
Eötvös Loránd University.

Novák, A. and Siklósi, B. (2015). Automatic diacrit-
ics restoration for Hungarian. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2286–2291.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan,
K., Vinyals, O., Graves, A., Kalchbrenner, N., Se-
nior, A., and Kavukcuoglu, K. (2016). WaveNet:
A generative model for raw audio. arXiv preprint
arXiv:1609.03499.

Wang, Y. et al. (2021). ONNX Runtime Web.
https://github.com/microsoft/
onnxruntime/tree/master/js/web.

Wang, Y., Seshadri, H., et al. (2018). ONNX.js.
https://github.com/microsoft/
onnxjs.

Yarowsky, D. (1999). A comparison of corpus-based
techniques for restoring accents in Spanish and
French text. In Natural language processing using
very large corpora, pages 99–120. Springer.

Yu, F. and Koltun, V. (2015). Multi-scale context ag-
gregation by dilated convolutions. arXiv preprint
arXiv:1511.07122.

12. Language Resource References
Halácsy, P., Kornai, A., Németh, L., Rung, A., Sza-

kadát, I. and Trón, V. (2004). Hungarian Web-
corpus. http://mokk.bme.hu/resources/
webcorpus/.

Náplava, J., Straka, M., Hajič, J. and Straňák,
P. (2018). Corpus for training and evaluat-
ing diacritics restoration systems. https:
//lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-2607.

Nemeskey, D. M. (2020). Hungarian Webcorpus 2.0.
https://hlt.bme.hu/en/resources/
webcorpus2.

(Halácsy and Trón, 2004) (Nemeskey, D. M., 2020)
(Náplava, J., Straka, M., Hajič, J. and Straňák, P., 2018)

https://github.com/microsoft/onnxruntime/tree/master/js/web
https://github.com/microsoft/onnxruntime/tree/master/js/web
https://github.com/microsoft/onnxjs
https://github.com/microsoft/onnxjs
http://mokk.bme.hu/resources/webcorpus/
http://mokk.bme.hu/resources/webcorpus/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2607
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2607
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2607
https://hlt.bme.hu/en/resources/webcorpus2
https://hlt.bme.hu/en/resources/webcorpus2

	Introduction
	Methods
	ONNX compatibility
	Datasets
	Word Ambiguity
	Experimental Setup
	Results
	Error Analysis
	Conclusion
	Acknowledgments
	Bibliographical References
	Language Resource References

