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Abstract
This paper introduces HeLI-OTS, an off-the-shelf text language identification tool using the HeLI language identification
method. The HeLI-OTS language identifier is equipped with language models for 200 languages and licensed for academic as
well as commercial use. We present the HeLI method and its use in our previous research. Then we compare the performance
of the HeLI-OTS language identifier with that of fastText on two different data sets, showing that fastText favors the recall
of common languages, whereas HeLI-OTS reaches both high recall and high precision for all languages. While introducing
existing off-the-shelf language identification tools, we also give a picture of digital humanities-related research that uses such
tools. The validity of the results of such research depends on the results given by the language identifier used, and especially
for research focusing on the less common languages, the tendency to favor widely used languages might be very detrimental,
which Heli-OTS is now able to remedy.
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1. Introduction

The significance of language identification as part of
text preprocessing has grown at the same time as natu-
ral language processing (NLP) systems have become
more common in widely used software applications.
For example, to perform machine translation on a piece
of text, the machine translation system must know the
source text’s language. Without automated language
identification, the users have to indicate the language
of the text manually. Google Translate1 is an exam-
ple of a system where language identification has been
incorporated (Jauhiainen, 2019).

Language identification is a many-faceted task, and the
specific aspect that the system presented in this paper
sets out to tackle is the most general case of reliably
identifying a large group of languages, most of which
are not closely related. The HeLI-OTS, an off-the-shelf
language identifier based on the HeLI method (Jauhi-
ainen et al., 2016), includes a repertoire of 200 lan-
guages.

In Section 2, we introduce language identification as
well as some of the existing off-the-shelf language
identification tools. Section 3 presents the HeLI
method together with some of the results of the pre-
vious language identification performance evaluations
where the technique has been featured. In Section 4, we
describe the HeLI-OTS tool itself, and in Section 5, we
evaluate the performance of the current implementation
and compare it with that of the fastText language identi-
fier (Joulin et al., 2016). Section 6 brings to light some
known limitations of the tool, Section 7 concludes our
findings and Section 8 lists our current improvement
targets for future versions of HeLI-OTS.

1https://translate.google.com/

2. Previous Work
2.1. Language Identification
The problem of identifying the language of digital text
has been researched since the 1960s (Jauhiainen et al.,
2019d). It can be considered a sub-task of text classi-
fication and many, if not most, automatic classification
methods have been evaluated concerning their capabil-
ity of distinguishing between languages.
We have been developing language identification meth-
ods for different scientifically motivated purposes for
more than a decade, and we have published the source
code of some of these systems openly. However,
before the tool’s publication presented in this paper,
we had not issued a ready-to-use language identifica-
tion system, including pre-compiled language models.
We built the previously published systems for specific
shared tasks and the needs of our Finno-Ugric Lan-
guages and the Internet project (Suki) (Jauhiainen et
al., 2015a; Jauhiainen et al., 2021b). Even though
the language identifier used in the project as part of
the web-harvesting pipeline included language models
for over 350 languages, we had selected the language
repertoire that gives good results when looking for the
low-resourced Uralic languages that were the target of
the project. It was clear that the repertoire created prob-
lems for many majority languages. For HeLI-OTS, we
have curated an assortment of languages that is at the
same time quite sizeable but also provides accurate re-
sults for the languages concerned.

2.2. Existing Off-the-shelf Language
Identifiers

TextCat was one of the first downloadable off-the-shelf
language identifiers (van Noord, 1997).2 It uses the lan-
guage identification method presented by Cavnar and

2https://www.let.rug.nl/vannoord/
TextCat/

https://translate.google.com/
https://www.let.rug.nl/vannoord/TextCat/
https://www.let.rug.nl/vannoord/TextCat/
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Trenkle (1994) and is able to distinguish between 76
languages. It is no longer widely used, but for exam-
ple, Somboonviwat et al. (2006) used it in detecting
the language of web pages for creating a national Web
archive for Thailand. One of the still widely used lan-
guage identifiers is the langid.py by Lui and Baldwin
(2012) with 97 languages (Lui, 2017).3 Abu Kwaik
et al. (2018) used it in constructing and evaluating a
text corpus for Levantine Arabic dialects and Bérard et
al. (2019) as well as Li et al. (2020) in data cleaning
for machine translation. It was also used by Aulamo
and Tiedemann (2019) in parallel corpora creation, by
Hovy et al. (2020) in machine translation system eval-
uation, and by Frey (2020) in language choice research.
Some language identifiers are available as methods that
the users can utilize directly in Java programs. The
Apache OpenNLP suite4 includes a “langdetect” pack-
age which can be incorporated into Java programs. It
comes equipped with 103 languages trained using the
corpora found in the Leipzig corpora collection.5 It was
used, for example, by Adams et al. (2019) as part of a
privacy protection toolkit. Apache Tika, a content anal-
ysis toolkit, contains a language detector for 18 lan-
guages.6 Ali et al. (2019) used it in pre-processing text
for cross-lingual ontology enrichment.
Another Java implementation is the Language Detec-
tion Library7 which has been used in NLP, for example,
by Stab et al. (2018) for filtering English text from the
CommonCrawl8 Web corpus. It includes profiles for 53
languages. The “optimaize” language-detector comes
with 71 built-in languages.9 It was used by Saggion et
al. (2017) and Ferrés et al. (2018) as part of a pipeline
for extracting textual content from pdfs, by Glass and
Gliozzo (2018) in a pipeline for building a knowledge
base from text, by Tebbifakhr et al. (2018) in cleaning
data used to create a model for automatic post-editing,
by Abromeit and Chiarcos (2019) and Abromeit et al.
(2020) in automatically annotating language resources
with language metadata, by Mrabet et al. (2020) in cre-
ating a system for the TREC 2020 Health Misinforma-
tion track, and by Noei et al. (2019) to filter user re-
views in issue report prioritization.
Today, one of the most used off-the-shelf identifiers is
based on the fastText method and is equipped with 178
languages (Joulin et al., 2017; Joulin et al., 2016).10

The fastText language identifier has recently been used
in NLP, for example, by Hiippala et al. (2019) for

3https://github.com/saffsd/langid.py
4https://opennlp.apache.org
5https://corpora.uni-leipzig.de/en
6http://tika.apache.org
7https://github.com/shuyo/

language-detection
8http://commoncrawl.org/
9https://github.com/optimaize/

language-detector
10https://fasttext.cc/docs/en/

language-identification.html

studying the diversity of virtual linguistics landscape,
Godinez et al. (2020) in medical text language iden-
tification, Kreutz and Daelemans (2020) for streaming
language-specific Twitter data, Wenzek et al. (2020)
for extracting monolingual datasets from web crawl
data, and Alshaabi et al. (2021) for identifying and ex-
ploring the relative daily use of languages on Twitter.
All of the mentioned language identifiers can be used
to discriminate between languages in their language
repertoire. None of them are perfect: they perform very
well for some tasks and for others very badly. How well
they perform depends greatly on the task at hand. As
language identification is usually an upstream task in
NLP or other pipelines, its performance significantly
affects the reliability of the whole pipeline. With the
more precise off-the-shelf language identifier presented
in this article, we aim to improve the usability of lan-
guage identification in an even wider variety of work-
flows.

3. HeLI Language Identification Method
The system is based on language identification technol-
ogy developed by the authors during several research
projects since 2010. The HeLI method has proven effi-
cient and has remained competitive in several language
identification shared tasks. The HeLI method has been
quite successful when used to discriminate between
closely related languages (Jauhiainen et al., 2015b;
Jauhiainen et al., 2016; Jauhiainen et al., 2017a; Jauhi-
ainen et al., 2018a; Jauhiainen et al., 2018b; Jauhi-
ainen et al., 2018c). In this Section, we describe the
method as it is implemented in HeLI-OTS, which uses
the same preprocessing scheme and parameters which
performed best in our 2017 evaluation (Jauhiainen et
al., 2017b). These parameters include, for example, the
penalty score and the maximum length of character n-
grams used.

3.1. Language Models and Features
The language models used in the HeLI-OTS consist
of single words and character n-grams. These charac-
ter n-grams of length from one to six characters have
been generated from word segments, including the be-
ginning and end of the words manifested by a space
character. All characters were lowercased when com-
piling the models, and only the characters present in the
alphabets, logograms, or syllabaries of languages were
retained. In addition to those characters defined to be-
long to the Unicode letter characters by Java,11 includ-
ing, for example, Chinese and Hieroglyphic signs, we
considered some additional characters as integral parts
of words.12 All other characters were transformed into
space characters and used as word-delimiters.

11We used the regex tokens \p{L} and \p{M}.
12The list of these additional characters can be seen in the

identifyLanguage function of the HeLI.java file at http://
urn.fi/urn:nbn:fi:lb-2022011702.

https://github.com/saffsd/langid.py
https://corpora.uni-leipzig.de/en
http://tika.apache.org
https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection
http://commoncrawl.org/
https://github.com/optimaize/language-detector
https://github.com/optimaize/language-detector
https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
http://urn.fi/urn:nbn:fi:lb-2022011702
http://urn.fi/urn:nbn:fi:lb-2022011702
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3.2. Method
When identifying the language of a text, the program
first lowercases all characters and converts non-letter
characters into white spaces in a similar manner as was
done when compiling the language models. The text is
then divided into words. Each word is given a score
for each language. The scores for words are calcu-
lated using the highest order language models possi-
ble. Words are considered to be of the highest order,
followed by character n-grams from the longest to the
shortest. If the word being scored is found in at least
one language, the word is scored using the word mod-
els. The score is the negative logarithm of the relative
frequency of the word in each language. If the word is
missing from some language, a fixed penalty score of
7.0 is used. If the word is not found in any of the word
models, the method backs off to using the character 6-
grams. The word is divided into overlapping character
n-grams, and the word gets a score equal to the average
of the scores of these n-grams. The same fixed penalty
value is used in case an n-gram is missing from some
language. If none of the 6-grams generated from the
word are found in any of the models, the method backs
off to using character 5-grams and continues to as short
n-grams as needed. Finally, for the whole sentence,
each language gets a score equal to the average of the
scores of the words.
The HeLI method works very well for languages using
clear boundaries between words as it can give equal
opportunity to each word to influence the outcome. For
example, the word “the” is very characteristic of En-
glish and is given the same opportunity as the word “in-
ternational”. If only character n-grams were used, “in-
ternational” would have roughly four times the weight
of “the”. HeLI can also discriminate between lan-
guages that do not use white spaces as word bound-
ary markers but does not perform as well as with lan-
guages using them. For example, in Chinese, complete
sentences are considered one “word”. Furthermore, in
the case of code-switching, the method gives dispro-
portionate value to short sequences of Latin characters
amid, for example, a long continuous line of Chinese
characters. The program has a built-in fix for this latter
problem so that when a text has more than 50% of its
characters from the CJK character set, only Japanese,
Mandarin, or Korean can be given as a result.

3.3. Performance
In 2016, we achieved the shared first position in the
Discriminating Between Similar languages shared task
using the HeLI method (Jauhiainen et al., 2016; Mal-
masi et al., 2016). In that shared task, the aim was to
distinguish between 12 languages or language variants,
some of which were very similar to each other, such as
the Argentine, Castilian, and Mexican variants of writ-
ten Spanish. In 2018, we equipped the HeLI method
with adaptive language models and won both the Ger-
man Dialect Identification (GDI) and the Indo-Aryan

Language Identification (ILI) shared tasks (Jauhiainen
et al., 2018b; Jauhiainen et al., 2018c; Zampieri et al.,
2018).

In 2017, we evaluated several language identifica-
tion methods (Cavnar and Trenkle, 1994; Vogel and
Tresner-Kirsch, 2012; King and Dehdari, 2008; Brown,
2013; Vatanen et al., 2010) in a test setting com-
bining several challenging contexts: the training and
testing sets being from different domains (mostly
Wikipedia for training and Universal Declaration of
Human Rights for testing), the amount of training data
for some languages being meager (starting from 2,710
words), the texts to be identified being very short (start-
ing from 5 characters), and the number of possible lan-
guages being reasonably large (285 languages in the
repertoire of the language identifier) (Jauhiainen et al.,
2017b). In our evaluation, when using fewer than 20
characters, the HeLI method was outperformed by the
absolute discounting method used by Vatanen et al.
(2010) but attained the best F1-score in all the tests with
more than 20 characters and having, for example, eight
times fewer recall errors and five times fewer precision
errors with test texts of 100 characters, than the second-
best evaluated method.

In 2020, we organized the Uralic Language Identi-
fication (ULI) shared task with three separate tracks
(Gaman et al., 2020; Jauhiainen et al., 2020b). The
first two tracks focused on the problematic issues in
finding rare languages among many more common lan-
guages, but the third track was the first general-purpose
language identification shared task to date to feature a
large number of languages. The ULI shared task was
continued in the VarDial evaluation campaign 2021 as
an open leaderboard (Chakravarthi et al., 2021) and the
best language identification method to date in the third
track is still the HeLI method which we used as a base-
line. The HeLI method was used with identical param-
eters to the 2017 evaluation, and no parameters were
optimized for the ULI task. Anyone wanting to eval-
uate additional language identification methods is wel-
come to submit new results, which will be added to the
leaderboard for as long as the leaderboard is active. The
information on how to get the training and testing data
can be found on the leaderboard page.13

The continued competitive performance of the HeLI
method and the possibilities given to us by our ongoing
“Language Identification of Speech and Text” project14

drove us to publish a general-purpose off-the-shelf lan-
guage identification tool.

13http://urn.fi/urn:nbn:fi:
lb-2020102201

14https://www.vaikuttavuussaatio.fi/en/
funded-projects/

http://urn.fi/urn:nbn:fi:lb-2020102201
http://urn.fi/urn:nbn:fi:lb-2020102201
https://www.vaikuttavuussaatio.fi/en/funded-projects/
https://www.vaikuttavuussaatio.fi/en/funded-projects/
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4. HeLI-OTS
The HeLI-OTS 1.2 is described in the Metashare ser-
vice15 of the Language Bank of Finland16, and it
is downloadable from Zenodo (Jauhiainen and Jauhi-
ainen, 2022).17 The software is available under both
CC-BY and Apache 2 licenses. The complete down-
load package includes the Java source code of the iden-
tifier and language models for 200 languages. If the
user is interested in only using the language identi-
fier, it is sufficient to download just the pre-compiled
HeLI.jar file (44.1MB), which can be used as a stan-
dalone language identifier in systems equipped with the
Java 16 runtime environment.18 It can identify c. two
thousand sentences per second using one computing
core (3.2 GHz) and around 3 gigabytes of memory on
a 2021 laptop computer.
We have included two Python files to provide a simple
example of how HeLI.jar can be used in a Python
environment.
In the LanguageModels directory, there are seven
files per language containing the features mentioned
earlier and their frequencies in the material used for
training. Each file contains a maximum of 10,000 fea-
tures.
The frequencies for words and character n-grams in dif-
ferent languages have been calculated using different
corpora. The languages that were part of the repertoire
of the ULI shared task (Jauhiainen et al., 2020b) all
used the same corpora: Wanca 2016 corpora19 (Jauhi-
ainen and Jauhiainen, 2020) for rare Uralic languages
(Jauhiainen et al., 2019a) and corpora from the Leipzig
corpora collection20 (Goldhahn et al., 2012) for others
(Biemann et al., 2007). For the rest of the languages,
the training sources are mostly the same as in the 2017
evaluation21 (Jauhiainen et al., 2017b). In 2021, the
HeLI-OTS 1.1 was tested by Lingsoft22 and the Lan-
guage Bank of Finland, and they encountered practi-
cal problems with dialectal Finnish, which tended to
be identified as one of the close languages, such as
Livvi-Karelian (olo). In order to remedy this problem,
which we had already encountered earlier when crawl-
ing the Finnish internet during the Suki project, ten ad-
ditional models for dialectal Finnish were added using
the sources gathered during the project.

15http://urn.fi/urn:nbn:fi:
lb-2022011701

16https://www.kielipankki.fi/
language-bank/

17http://urn.fi/urn:nbn:fi:
lb-2022011702

18To date the identifier has been tested on Linux and Mac
OS environments.

19http://urn.fi/urn:nbn:fi:
lb-2020022901

20https://corpora.uni-leipzig.de/en
21http://suki.ling.helsinki.fi/

LILanguages.html
22https://www.lingsoft.fi/en

[ido],3.5029755
[lmo],3.5215342
[mwl],3.5261147
[epo],3.5410736
[spa],3.5475852

[lmo],2.7412848
[ina],3.0175257
[cat],3.0623221
[spa],3.089319
[epo],3.111251

Table 1: Example output using “-t 5” option.

4.1. Usage
The identifier can read the text to be identified from
either the standard input or from an existing file. If the
text is read from standard input, each line entered will
be identified separately, and the result will be printed to
standard output as an ISO 639-3 three-letter language
identifier. The program will continue to receive text
to be identified until the EOF character is sent to the
standard input.
If an input file is specified using the -r option, the
program will identify each line found from the file and
print the results to standard output or a file defined by
the -w option.
If the -t option is used followed by number n, the iden-
tifier will print the n best languages followed by their
language scores (lower is better) for each mystery text.
The list of top scores for each text is printed one per
line, and an empty line indicates moving to the follow-
ing mystery text. Table 1 gives an example of such an
output.
The -l option can restrict the language repertoire
loaded when the program commences. The program
still reads in the list of languages from the language-
list file, but the models are loaded for only those
languages in which identifiers begin with one of the
identifiers listed after the option. For example with
-l hsb,slv the models for hbsbos, hbshrv, hbssrp,
and slv are loaded.
By default, the HeLI-OTS supposes that the first and
the last character sequences in a text to be identified
are complete words. This might not be the case in some
situations, and if the -p option is used, the supposition
is not made for the last sequence.
See Table 2 for command examples.

4.2. Confidence Scores
Using the -c option causes the program to print a con-
fidence score after the ISO 639-3 identifier. The confi-
dence score is the absolute difference between the lan-
guage scores of the predicted language and the second-
best language. The higher the score is, the more con-
fident the identification. This relatively simple way of
calculating a confidence score is the same we use in our
language model adaptation method (Jauhiainen et al.,

http://urn.fi/urn:nbn:fi:lb-2022011701
http://urn.fi/urn:nbn:fi:lb-2022011701
https://www.kielipankki.fi/language-bank/
https://www.kielipankki.fi/language-bank/
http://urn.fi/urn:nbn:fi:lb-2022011702
http://urn.fi/urn:nbn:fi:lb-2022011702
http://urn.fi/urn:nbn:fi:lb-2020022901
http://urn.fi/urn:nbn:fi:lb-2020022901
https://corpora.uni-leipzig.de/en
http://suki.ling.helsinki.fi/LILanguages.html
http://suki.ling.helsinki.fi/LILanguages.html
https://www.lingsoft.fi/en
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Command Function
java -jar HeLI.jar reads the stdin line by line and writes ISO 639-3

identifiers to stdout until EOF
java -jar HeLI.jar -r <infile> -w <outfile> reads the <infile> and writes ISO 639-3

identifiers to <outfile>
-t <number> prints the top <number> languages for each line
-l <xxx>,<yyy>,... restricts the language repertoire to listed languages
-p considers the last token of each mystery text to be only

partial word
-h prints usage instructions
-c prints confidence scores after ISO 639-3 identifiers

Table 2: Example commands for HeLI-OTS.

2019c) for deciding the order of adding new material to
the language models. It has proven to be very efficient
(Jauhiainen et al., 2019b; Jauhiainen et al., 2021a).
This confidence score could be used to detect unseen
languages using thresholding, but setting a global con-
fidence threshold for the identifier is practically impos-
sible as the score differences depend significantly on
the languages the user is targeting. If the user is inter-
ested in a language with no structural relatives among
the repertoire of the language identifier, the threshold
can be much higher than for those languages with close
relatives.

4.3. Creating Additional Language Models
The HeLI-OTS 1.2 language identifier is accompa-
nied by a createmodels.java program which
can create additional or customized language models.
The current version of the program reads in text files
named <ISO_639-3_identifier>.train from
a sub-directory Training and writes seven files be-
ginning with the language identifier to Models sub-
directory. In order to use these additional models,
the <ISO_639-3_identifier> has to be added
to the languagelist file, and the corresponding
model files moved to the LanguageModels direc-
tory. The newly created model files may contain
considerably more features than the 10,000 shipped
with the current implementation, so it might be nec-
essary to trim them if there are issues with memory
or storage space. The three first characters of the
<ISO_639-3_identifier> are used as the lan-
guage to which the HeLI-OTS will map the results.
If such a language already exists in the repertoire, the
best score is used, which is the case, for example, with
the additional dialectal Finnish models. The additional
Finnish models have <ISO_639-3_identifier>s
such as fini, finj, and fink and they are all
mapped to fin when producing the results.
With this program, creating language models for all the
214 languages or variants took 4,5 hours using one core
from a laptop computer. Unpacked, these language
models take 115 megabytes of storage space, so about
half a megabyte per language. When adding new lan-
guages, it is not necessary to re-train the existing lan-

guage models, as HeLI is a generative classifier and the
models are independent of each other.

5. Evaluation
Comparing language identification systems is a com-
plicated issue as the evaluation setup can greatly affect
the evaluation outcome. A recent evaluation, in which
fastText was superior to the langid.py language identi-
fier, was carried out by Toftrup et al. (2021). Another
evaluation with similar results was carried out earlier
by Hiippala et al. (2019). In light of these evaluations,
we decided to compare HeLI-OTS especially with the
fastText implementation, which Toftrup et al. (2021)
referred to as a de facto standard in language identifi-
cation.

5.1. Initial Experiments
Hiippala et al. (2019) evaluated the performance of the
fastText, langid.py, and CLD2 in identifying the lan-
guage of Instagram posts. Their test set included 1,755
sentences.23 We rerun langid.py on the sentences and
received a micro F1 score of 0.786 and a macro F-score
of 0.628. For HeLI-OTS, our initial test gave a micro
F1 score of 0.863 and a macro F1 score of 0.685. We
thought especially the macro F-score to be rather low
when compared with, for example, the macro F1 score
of 0.925 reached using the HeLI method at the ULI-
178 shared task, so we manually inspected some of the
results to see what kind of errors our identifier made.
The test set includes some sentences, the language
of which could not be identified with certainty, such
as just the placename “Helsinki” written in Cyril-
lic, which is labeled as Russian even though it could
equally well be one of the other languages written in
Cyrillic. Additionally, we noticed that some of our
training data (such as those for Ewe “ewe”, Igbo “ibo”,
and Tagalog “tgl”) included lots of text written in En-
glish. Text in English and other languages using Latin
characters were also found in the training corpus for
Chinese (cmn), Japanese (jpn), and Korean (kor), as

23The amount is different from the 1,688 reported in their
paper, but we checked with the authors, and 1,755 is the cor-
rect number for sentences.
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afr cmn eng ewe fin fry ibo jpn ltz lus myv pam roh tgl others
cmn 7 2
eng 3 3 694 10 6 4 31 6 8 3 19 3 3 13 32
fin 417 1 3 2 2 16
jpn 1 26

Table 3: Languages confused with English when using Hiippala et al. test set before corpora cleaning.

Program #languages Testing data Macro F1 Micro F1 Micro Recall Micro Precision
HeLI-OTS 1.2 200 ULI 110 0.699 0.993 0.993 0.993
fastText 176 ULI 110 0.536 0.822 0.822 0.822

Table 4: Results of the evaluations using ULI 110 test set.

well as in corpora of languages using Cyrillic charac-
ters. Table 3 is a confusion table showing the languages
to which English text was identified more than twice.
We ended up cleaning the training set by manually
inspecting several training texts. We used word fre-
quency lists generated from the training texts to find
frequent foreign words for some languages. We re-
moved some of the foreign language incursions we
found, most of which were in English. Furthermore,
Latin characters were automatically filtered from cor-
pora such as Japanese and Mandarin. After this, the
micro F1 score rose to 0.876, and the macro F1 score
to 0.693. The improvement was clear but not substan-
tial, and, since we had inspected the errors made by
HeLI-OTS, the results were no more comparable with
those attained without learning from the test set.

5.2. ULI 110
In order to have some indication of the effectiveness
of HeLI-OTS compared with the existing off-the-shelf
language identifiers, we built ULI 110, a new test
set with 110 languages. This new test set contains
1,074,939 sentences in languages in which fastText and
HeLI claim to be proficient. It is a subset of the ULI
test set (178 languages) (Jauhiainen et al., 2020b) with
only the shared languages from the repertoires of the
fastText (176 languages) (Joulin et al., 2017; Joulin et
al., 2016) and the HeLI-OTS (200 languages) language
identifiers.
Including the time to read in the language models, it
took less than 10 minutes for HeLI-OTS 1.2 to process
the test sentences using one laptop computing core, so
c. 1,900 sentences per second. The results of the ex-
periments can be seen in Table 4. With HeLI-OTS, the
macro F1 score was 0.699, and the micro F1 score was
0.993. This macro F1 was quite similar to the one at-
tained when using the Instagram captions test set, but
the micro F1 score was extremely high in comparison.
With fastText, the macro F1 score was 0.536 and the
micro F1 score 0.822. Roughly put, this means that
in this kind of test setting, fastText makes an error
with every fifth sentence and HeLI-OTS just once in a
hundred sentences. The averaged micro recall, micro-
precision, and micro F1 scores are very close because
107 of the 110 languages had the same number of test

sentences, in which case a recall error in one language
means an equal precision error in another. We assumed
the difference in performance between the two identi-
fiers was magnified by the careful curation of the HeLI-
OTS language repertoire, so we took a closer look at the
results of those tested languages in which fastText had
fared the worst in order to see whether the training and
the testing languages were, in fact, the same.
The worst performing language was Palatine German
(pfl), with a recall of 0.0001 and precision of 0.1667.
The testing data was from pfl Wikipedia from Leipzig
Corpora Collection (LCC). pfl is on the list of lan-
guages supported by fastText;24 however, a mystery
text was identified as pfl only six times, and only one
of those texts was actually in pfl. The second worst
performing language was Central Bikol (bcl), with an
F-score of 0.0169. The testing data was again from the
corresponding Wikipedia collection at LCC. Although
bcl is on the fastText list of languages, most bcl texts
were identified as Tagalog. The third worst performing
language was Sardinian (srd), with a recall of 0.0158.
The test material again originated from Wikipedia. Of
the 10,000 Sardinian mystery texts, 2,931 were iden-
tified as Italian, 1,887 Spanish, 1,581 as Catalan, and
1,043 as French. These three examples show that fast-
Text performs poorly for some of the rarer languages
with close relatives in the test set. Partly due to some
of these rare languages having a low recall, the F-score
of some of the more common languages remained low.
Table 5 shows how fastText has a slightly higher recall
than HeLI-OTS for German, English, and Italian, but it
comes with a high price in precision.

5.3. OpenSubtitles
In order to test the performance in a setting not defined
by ourselves, we used the evaluation setup described
by Toftrup et al. (2021) as an inspiration. We took a
subset of the 10,000 short texts from the OpenSubtitles
(Lison and Tiedemann, 2016) for each of the 20 lan-
guages evaluated by Toftrup et al. (2021). Like Toftrup
et al. (2021), we removed all special characters, made
sure that the texts started with a word, and cut the texts

24https://fasttext.cc/docs/en/
language-identification.html

https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
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Program language F1 Recall Precision
HeLI-OTS 1.2 German 0.9894 0.9851 0.9937
fastText German 0.5539 0.9989 0.3832
HeLI-OTS 1.2 English 0.9643 0.9974 0.9334
fastText English 0.4941 0.9982 0.3283
HeLI-OTS 1.2 Italian 0.9451 0.9257 0.9654
fastText Italian 0.4057 0.9588 0.2573

Table 5: Results for German, English, and Italian with fastText and HeLI-OTS using ULI 110.

Program #languages Testing data Macro F1 Micro F1

HeLI-OTS 1.2 20 OpenSubtitles 20 0.824 0.824
HeLI-OTS 1.2 200 OpenSubtitles 20 0.408 0.699
fastText 176 OpenSubtitles 20 0.263 0.635
fastText 20 Toftrup OS 20 0.675
langid.py 20 Toftrup OS 20 0.543

Table 6: Results of the evaluations using Open Subtitles.

after ten characters so that the length of each text to be
examined was exactly ten characters. The results of the
experiments can be seen in Table 6. We used the -p op-
tion with HeLI, as the test length was relatively short,
and it seemed probable that the last tokens would not be
complete words. Without restricting the HeLI-OTS to
the 20 relevant languages, the macro F1 score attained
was 0.408, which is quite good compared with the
0.263 attained by fastText for the same data. The micro
F1 for HeLI-OTS was also better (0.699) than the one
for fastText (0.635).25 The HeLI-OTS 1.2 processed
the 200,000 text excerpts in 59 seconds.26 When we re-
stricted the HeLI-OTS to the 20 relevant languages, the
macro F1 score rose to 0.824, clearly better than those
attained by either off-the-shelf fastText or langid.py in
the evaluations of Toftrup et al. (2021). Restricting
fastText to a subset of its language repertoire is im-
possible without producing results for all the languages
and extracting the relevant subset or, alternatively, re-
training the whole model (Toftrup et al., 2021). When
restricted to the 20 relevant languages, it took only 8
seconds for HeLI-OTS to process the texts.

6. Limitations
Most of the languages included in the repertoire of
the HeLI-OTS can be considered easy to distinguish
from each other. Having rare languages in the reper-
toire of an identifier creates practical problems, espe-
cially if these languages are close relatives or easily
mixed with more common languages. However, as we
took the ULI shared task language repertoire as our
starting point, the HeLI-OTS identifier’s repertoire in-
cludes several rare Uralic languages, such as five sepa-
rate Saami languages.

25For both programs, we mapped the various Norwegian
languages to one.

26fastText managed to process the excerpts in less than 6
seconds.

The HeLI-OTS does not include unseen language de-
tection, so it always labels the text as one of the lan-
guages it knows unless the text is completely removed
during preprocessing, in which case it gives “xxx” as
the result instead of the ISO 639-3 identifier of one of
the languages. The software includes an option to print
confidence scores which can be, and have been, used
to detect unseen languages. However, this is not a de-
fault option as the threshold depends on the intended
usage of the program. As the system maps a text into
exactly one language, it does not solve the problem of
the identification of multilingual texts. It can, however,
be used to detect the languages in multilingual docu-
ments by dividing the documents into smaller parts, for
example, sentences. It can also be used as a component
in the language set identification system we have pub-
lished previously on GitHub (Jauhiainen et al., 2019a;
Jauhiainen et al., 2020a).27

7. Conclusions
As can be witnessed from the research articles listed
in Section 2.2, off-the-shelf language identifiers are
widely used in a variety of digital humanities-related
research. The validity of the results of such research
depends on the results given by the language identifier
used. From our evaluation results (Tables 4 and 5), we
can see that fastText favors the recall of common lan-
guages over their precision and the recall of more rare
languages. This behavior might not be a problem for
specific research questions, especially those focusing
on one of the more common languages. However, this
behavior might be detrimental to research focusing on
the less common languages. We have shown that, by
using the HeLI-OTS 1.2, it is possible to reach both
high recall and high precision for all the languages,
even if the number of languages is reasonably large.

27https://github.com/tosaja/
TunnistinPalveluMulti

https://github.com/tosaja/TunnistinPalveluMulti
https://github.com/tosaja/TunnistinPalveluMulti
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8. Future Work
We have identified a few improvement targets for future
versions of the HeLI-OTS language identifier:

• The handling of languages not using clearly de-
fined word boundary markers should be improved
in future releases.

• As mentioned earlier, the HeLI method combined
with automatic language model adaptation was
very successful in some of the shared tasks. We
plan to incorporate this function into HeLI-OTS
in the future.

9. Acknowledgments
The production and publication of the HeLI-OTS tool,
as well as the writing of this article, have been partly
supported by the Finnish Research Impact Founda-
tion28 from its Tandem Industry Academy 2020 call
in cooperation with Lingsoft Oy.29 We thank Ling-
soft and especially Ilkka Koskenniemi for testing the
software and good improvement suggestions. We also
thank Tuomo Hiippala for providing a Python user’s
point of view.

10. Bibliographical References
Abromeit, F. and Chiarcos, C. (2019). Automatic de-

tection of language and annotation model informa-
tion in conll corpora. In 2nd Conference on Lan-
guage, Data and Knowledge (LDK 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.
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