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Abstract
In several ASR use cases, training and adaptation of domain-specific LMs can only rely on a small amount of manually
verified text transcriptions and sometimes a limited amount of in-domain speech. Training of LSTM LMs in such limited data
scenarios can benefit from alternate uncertain ASR hypotheses, as observed in our recent work. In this paper, we propose
a method to train Transformer LMs on ASR confusion networks. We evaluate whether these self-attention based LMs are
better at exploiting alternate ASR hypotheses as compared to LSTM LMs. Evaluation results show that Transformer LMs
achieve 3–6% relative reduction in perplexity on the AMI scenario meetings but perform similar to LSTM LMs on the smaller
Verbmobil conversational corpus. Evaluation on ASR N-best rescoring shows that LSTM and Transformer LMs trained on
ASR confusion networks do not bring significant WER reductions. However, a qualitative analysis reveals that they are better
at predicting less frequent words.
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1. Introduction
Training and adaptation of domain-specific language
models (LM) for automatic speech recognition (ASR)
requires manually verified transcriptions of hundreds of
hours of in-domain speech, and sometimes additional
text from other domains. Such manually verified text
resources are scarce or unavailable for most applica-
tions. In several use cases, the amount of in-domain
speech data itself is limited, e.g., in the early develop-
ment stages of a new application, in privacy-critical ap-
plications, or for under-resourced languages. Fully ex-
ploiting the available in-domain resources is essential
in such scenarios. This motivates us to study training of
LMs on a limited amount (25–50 hours) of in-domain
speech data.
Early works have explored training of n-gram LMs on
ASR N-best lists and lattices (Bacchiani et al., 2006;
Kuznetsov et al., 2016; Levit et al., 2018) and also
exploited ASR confidence scores. However, train-
ing of neural LMs on ASR hypotheses has not re-
ceived attention, except in test time adaptation and
conditioning of recurrent neural network (RNN) LMs
(Deena et al., 2016; Gangireddy et al., 2016; Li et al.,
2018). Our recent work (Sheikh et al., 2021) explored
training and adaptation of Long Short Term Mem-
ory (LSTM) RNN LMs on ASR confusion networks,
with the motivation of exploiting alternate uncertain
ASR hypotheses obtained from limited amounts of in-
domain speech. We proposed three methods, based on
(1) a Kullback–Leibler (KL) divergence loss, (2) a hid-
den Markov model (HMM) formulation, and (3) sam-
pling paths from the confusion networks. The sampling
based method, and in some cases the KL divergence
method, resulted in significant perplexity reductions as
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compared to training on ASR 1-best transcripts. In this
paper, we extend these methods to Transformer LMs.
Transformer LMs have outperformed LSTM LMs on
several large or medium-scale ASR benchmarks (Irie,
2020). The self-attention modules at different lay-
ers of the Transformer LMs have been shown to cap-
ture both local n-gram-like context as well as global
information and instance specific patterns (Irie et al.,
2019). We are interested in evaluating whether the self-
attention mechanism of Transformers can exploit al-
ternate hypotheses represented by ASR confusion net-
works, and outperform LSTM LMs in limited data se-
tups. Prior works have extended Transformers to ASR
lattices (Zhang et al., 2019; Xiao et al., 2019; Mitro-
fanov et al., 2021) and confusion networks (Huang and
Chen, 2019; Liu et al., 2020) for machine translation
(MT), ASR rescoring and spoken language understand-
ing (SLU) tasks. In these works, a Transformer en-
coder embeds the lattice or confusion network into vec-
tor representations, which are then used for classifica-
tion, rescoring or to generate the translated text. In con-
trast to these tasks, training Transformer LMs on ASR
decoded graphs is more challenging since not only the
input but also the output target at each step of a word
sequence is not a unique class or word but a set of un-
certain word hypotheses.
We propose KL divergence and sampling based meth-
ods to train Transformer LMs on ASR confusion net-
works. The Transformer LMs are trained in limited
data setups, wherein a small amount of manual tran-
scriptions and a limited amount of in-domain speech
are available for training. We also evaluate a model
adaptation setting wherein the LM is pre-trained on an
out-of-domain corpus. Moreover, the performance of
the Transformer LMs is compared with that of LSTM
LMs that are similar in size. We would like to high-
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light that our training methods do not modify the Trans-
former or LSTM architecture. The trained LSTM and
Transformer LMs can be readily applied for inference
or rescoring, like any other neural LM. The rest of the
paper is organized as follows. Section 2 briefly recalls
training of LSTM LMs on ASR confusion networks.
Section 3 describes the proposed extension to Trans-
former LMs. Experiments and results are discussed in
Section 4, followed by conclusion in Section 5.

2. Training LSTM LM on ASR
confusion networks

Adopting the typical formulation of RNN LMs, for the
sake of legibility, the working of LSTM LMs withL re-
current layers and weight matrices Θ = {θlin, θlhid, θout}
can be expressed as:

hlt = σ(θlhid h
l
t−1 + θlin x

l
t) (1)

q(wt+1|hLt ) = softmax(θout h
L
t ) (2)

where x1
t is the word embedding of the t-th wordwt, hlt

is the l-th layer hidden state which encodes the history
until t and xlt = hl−1

t for l > 1, σ is a non-linear func-
tion, and q(wt+1|hLt ) is a vector of history dependent
word-level LM probabilities. The LM training objec-
tive is to learn the weight matrices that minimize the
cross-entropy (CE) loss:

Θ̂ = arg min
Θ

∑
t

− log q(wt+1 = vj |hLt ) (3)

where q(wt+1 = vj |hLt ) is the j-th element of
q(wt+1|hLt ). This model assumes a single word in-
put x1

t at each step t in (1) and a single output target
vj at step t + 1 in (3), hence it cannot exploit alter-
natives and uncertainties in ASR confusion networks.
We recall two training methods from our recent work
(Sheikh et al., 2021) which address this issue and re-
sult in lower perplexities than LSTM LMs trained on
ASR 1-best transcripts.

2.1. KL divergence based training
To incorporate multiple confusion bin arcs at step t of
the input, we modify the forward propagation in the
first LSTM layer by computing individual hidden state
vectors h1

t,i for all arcs i and pooling them as:

h1
t,i = σ(θ1

hid h
1
t−1 + θ1

in x
1
t,i) (4)

h1
t = pooli(h

1
t,i). (5)

The pooling can be average, weighted-sum or 1-best
selection that retains the representation of the arc with
highest score. The following LSTM layers are un-
changed. To account for the multiple output arcs vj
at step t+ 1, we minimize the KL divergence between
the LSTM LM predictions q(wt+1 = vj |hLt ) and the
confusion bin posteriors p(wt+1 = vj |S), given the

speech signal S, as:

Θ̂ = arg min
Θ

∑
t

DKL
(
p(wt+1|S) || q(wt+1|hLt )

)
= arg min

Θ

∑
t

∑
vj

p(wt+1 = vj |S)

log
p(wt+1 = vj |S)

q(wt+1 = vj |hLt )
. (6)

2.2. Sampling based training
An alternative to account for the competing hypothe-
ses in ASR confusion networks is to sample one path
at a time for each LSTM forward-backward propaga-
tion. To sample a complete path W̄ , one arc w̄t can
be sampled at a time based on the posterior probabili-
ties of the arcs in each confusion bin as w̄t ∼ p(wt|S).
Given a sampled path from the confusion network, the
LSTM LM can be trained with the standard CE loss
in (3). Each training epoch sees one possible path from
the ASR confusion network of each utterance. The ran-
dom path for each utterance is redrawn at each epoch.

3. Training Transformer LM on ASR
confusion networks

The original Transformer model (Vaswani et al., 2017)
had an encoder and a decoder, each consisting of a
stack of layers composed of multi-head self-attention
and fully connected (FC) layers. However, the ASR
LM task can be realised using either the encoder or the
decoder. We adopt Transformer encoder blocks which
are expected to be more powerful (Irie, 2020). The
encoder blocks are similar to those of Vaswani et al.
(2017). Given the input xlt to the l-th encoder layer,
the output zlt of self-attention with N heads, dx di-
mensional key vectors, and weights θl,nQ , θl,nV , θl,nK ∈
R(dx/N)×N is obtained as

el,n
t,t′

=
(θl,nQ xlt)

ᵀ(θl,nK xlt′)√
dx/N

(7)

αl,n
t,t′

=
exp(el,n

t,t′
)∑

τ exp(el,nt,τ )
(8)

zl,nt =
∑
t′

αl,n
t,t′

(θl,nV xlt′) (9)

zlt = Concat(zl,1t , ..., zl,Nt ). (10)

Masks are used to prevent the self-attention from using
future contexts t

′
> t (Vaswani et al., 2017). The self-

attention outputs go into layer normalization (LN) and
FC layers along with residual connections:

x̃l+1
t = LN(xlt + FC(zlt)) (11)

xl+1
t = LN(x̃l+1

t + FC(ReLU(FC(x̃l+1
t )))). (12)

The outputs of the L-th layer are used to compute LM
probabilities and the CE loss similar to (2) and (3), re-
spectively. Notably, Transformer LMs can be very deep
with L varying from 6 to more than 100, for datasets of
different sizes (Irie, 2020).
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3.1. KL divergence based hierarchical
training scheme

The KL divergence based training method in Section
2.1 pools histories corresponding to multiple arcs in
a confusion bin at each step t to obtain a single hid-
den state vector for the following step. In contrast, a
Transformer LM can simultaneously attend to all the
confusion-bin arcs in the history. Moreover, the self-
attention can use the posterior probabilities on the arcs,
as shown in previous works on MT and SLU (Zhang
et al., 2019; Xiao et al., 2019; Huang and Chen, 2019;
Liu et al., 2020). The approach of Liu et al. (2020)
can be extended to KL divergence based training of
LMs by excluding the last layer which summarizes the
confusion network into one vector. This results in a
rather poor performance. Hence, we explored a hier-
archical scheme to train Transformer LMs on confu-
sion networks, as illustrated in Fig. 1. The approach
of Liu et al. (2020) is a special case of our hierarchi-
cal scheme, with the number of bin-level Transformer
layers reduced to zero.
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Figure 1: Proposed hierarchical scheme for training a
deep Transformer LM on ASR confusion networks.

As shown in Fig. 1, the confusion network is col-
lapsed into a long sequence which maintains the order
of the confusion bins and the order of the arcs within
each bin. Confusion bins with fewer arcs are padded
to maintain a constant spacing. After word embed-
ding lookup, positional embeddings are added to each
arc embedding such that all arcs within a given bin
have the same positional embedding. The arc embed-
dings pass through multiple arc-level Transformer lay-
ers. The self-attention in each arc-level Transformer
layer is updated to incorporate confusion network pos-
teriors (Zhang et al., 2019; Xiao et al., 2019; Huang
and Chen, 2019; Liu et al., 2020): reusing t and t

′
to

index the sequence of arcs obtained after collapsing the

confusion network, (7) is modified as

el,n
t,t′

=
(θl,nQ xlt)

ᵀ(θl,nK xlt′)√
dx/N

+Mt,t′ (13)

αl,n
t,t′

=
exp(el,n

t,t′
)∑

τ exp(el,nt,τ )
(14)

Mt,t′ =

{
log p(wt′ ) t

′ ≤ t
−∞ otherwise.

(15)

Note that the arcs in a confusion bin can attend to arcs
in other confusion bins from the past. The outputs of
the final arc-level Transformer layer undergo pooling
which fuses the outputs corresponding to all arcs in
each confusion bin. The pooling can be a weighted-
sum or one that retains the representation correspond-
ing to the highest scoring arc. The outputs of the pool-
ing operation are passed to multiple bin-level Trans-
former layers, that use (7). This is followed by the
output embedding layer, softmax and a KL divergence
loss similar to (6). It must be noted that (13)-(15) and
the hierarchical scheme are only applicable for train-
ing. During decoding, there is no distinction between
arc-level and bin-level layers and the forward propaga-
tion of normal text sentences through the Transformer
LM follows (7)-(10).

3.2. Sampling based training
Alternatively, the sampling based training method for
LSTM LMs, discussed in Section 2.2, can also be read-
ily used to train Transformer LMs on confusion net-
works. Unlike the KL divergence based hierarchical
training scheme, the number of computations in the
sampling based training of Transformer LMs is equiv-
alent to those in training on 1-best transcripts.

4. Experiments and Results
We evaluate Transformer LMs trained on ASR confu-
sion networks, as discussed in Section 3, and compare
them with LSTM LMs trained using the methods dis-
cussed in Section 2. As compared to our recent work
(Sheikh et al., 2021), the LSTM LMs evaluated here
have 1 or more LSTM layers and a parameter count
that matches the Transformer LMs, as detailed in Sec-
tion 4.3.

4.1. Datasets
We use two domain specific conversational speech
datasets: the English subset of the Verbmobil (VM)
corpus (Burger et al., 2000) and the scenario-only
meeting subset of the AMI (Renals et al., 2007) corpus.
The Verbmobil corpus contains conversations wherein
the participants negotiate and agree upon an appoint-
ment schedule and/or travel plan. The AMI meeting
subset contains meetings in which the participants play
different roles in a design project. It must be noted that
these correspond to real-world use cases for which lit-
tle speech/text data is available. To simulate realistic
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limited data scenarios, these datasets are split into four
disjoint subsets presented in Table 4.1. The labeled
training set is kept small, approximately 1/4-th of the
unlabeled training set. In the case of AMI, meetings
ES2010, ES2016, IS1005, IS1007, TS3010, TS3011 of
SA form our labeled training set and the remainder of
SA forms our unlabeled training set. The development
and test sets are identical to the original scenario-only
subset. The average length of a turn in VM and AMI is
20 words and 8 words, respectively.

Split Verbmobil
(VM) English

AMI scenario
only

hours words hours words
Training labeled 5.23 18 k 9.48 90 k
Training unlabeled 19.36 80 k 37.24 387 k
Development 2.14 7.5 k 9.77 100 k
Test 3.88 15 k 10.34 105 k

Table 1: Datasets and splits.

4.2. ASR setup
In the case of the VM dataset, a TDNN-chain acous-
tic model and a 3-gram LM are trained on the labeled
training set (Sheikh et al., 2020). These models give a
Word Error Rate (WER) of 39.52% and 39.77% on the
VM development and test sets, respectively. For exper-
iments on the AMI dataset we use the ASpIRE chain
model with the already compiled HCLG (Trmal, 2019).
The motivation behind this choice is to evaluate the per-
formance with larger out-of-domain pre-trained mod-
els, in contrast to the VM setup. The ASpIRE models
result in 33.15% and 35.82% WER on the AMI devel-
opment and test sets, respectively.

4.3. LM training setup
LSTM and Transformer LMs are trained on the com-
bination of the small labeled training set (lab) and the
larger unlabeled training set (unlab) of VM or AMI.
Accordingly, training uses manual transcriptions (ref)
of the labeled training set and ASR hypotheses of the
unlabeled training set, which can be 1-best transcrip-
tions (1b) or confusion networks (cn). KL divergence
based training of Transformer LMs using the approach
of Liu et al. (2020) (KL) is evaluated apart from the
proposed hierarchical training scheme (KL hier.). We
evaluate training only on the limited in-domain data
(VM or AMI) as well as an adaptation setting. Adapta-
tion involves training the LSTM/Transformer LM on a
combination of out-of-domain and in-domain data, fol-
lowed by a fine-tuning on the in-domain data. Switch-
board corpus (Godfrey et al., 1992) transcriptions are
used as the out-of-domain data.
The Transformer LMs use sine and cosine based po-
sitional encodings used in the original Transformer
model (Vaswani et al., 2017). To find the best Trans-
former LM configurations, we performed a hyper-
parameter search for the number of layers and attention

heads, the dimension of a layer, and the dropout and
learning rates. Transformers trained only on in-domain
data have about 2 M parameters with 8 layers and 8 at-
tention heads, and those in the adaptation setting have
8 M parameters with 12 layers and 8 attention heads.
The size of the Key/Query/Value vectors and FC layers
were 192 for training only on in-domain data and 256
in the adaptation setting. We observed better perfor-
mance with SGD than the ADAM optimizer. The SGD
optimizer had an initial learning rate of 0.1, momentum
0.9 and a weight decay 1e-5. The initial learning rate
for LM adaptation was lowered to 0.001.
Transformer LMs trained using KL divergence per-
formed better when pooling was done in the pre-final
layers. Pooling that retains the best arc representation
turned out to be better for VM and weighted-sum pool-
ing was better for AMI. The best performing LSTM
LMs with number of parameters matching the Trans-
former LMs are chosen by varying the number of lay-
ers, dimensions and dropout. LSTMs in training and
adaptation settings end up with 1 and 2 layers, respec-
tively. All LMs use a tied input-output embedding ma-
trix (Press and Wolf, 2017).

4.4. Perplexity Results
Table 2 presents perplexities obtained by the LSTM
and Transformer LMs trained only on the in-domain
data (VM or AMI). We use the Wilcoxon signed-rank
test to ensure that the differences in perplexity are sta-
tistically significant, at p = 0.05 (Dror et al., 2018).
Among LMs trained on ASR hypotheses, the sam-
pling based method achieves the lowest perplexity for
both LSTM and Transformer LMs. The reduction in
perplexities is statistically significant as compared to
training on ASR 1-best transcripts. When comparing
LSTM versus Transformer LMs, we can observe that
the Transformer LM achieves lower perplexities in the
case of AMI but not in the case of VM. Among Trans-
former LMs trained using the KL divergence method,
the proposed hierarchical training scheme results in
lower perplexities as compared to a simple extension of
the approach of Liu et al. (2020) with KL divergence
loss. However, perplexity reductions from hierarchical
training are not statistically significant as compared to
training on ASR 1-best transcripts.
Table 3 presents perplexities obtained by LSTM and
Transformer LMs in the adaptation setting. In this
setting, the sampling based method leads to the low-
est perplexity on the AMI dataset and it is on par
with training on 1-best transcripts on the VM dataset,
both for LSTM and Transformer LMs. Overall, Trans-
former LMs perform better than LSTM LMs on the
AMI dataset but not on the VM dataset, similar to
the results in Table 2. Similarly, KL divergence based
training of Transformer LMs results in lower perplexi-
ties with the proposed hierarchical training scheme but
it fails to outperform Transformer LMs trained on the
ASR 1-best transcripts.
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LM VM AMI
setup dev test dev test

LSTM LM
lab-ref + unlab-1b 58.8 62.1 72.8 81.4
lab-ref + unlab-cn KL 55.2 58.9 73.6 83.2
lab-ref + unlab-cn sample 52.3 54.7 71.1 78.8
lab-ref + unlab-ref 47.6 50.4 61.3 67.9

Transformer LM
lab-ref + unlab-1b 56.7 59.7 68.6 76.8
lab-ref + unlab-cn KL 61.7 64.8 70.0 78.1
lab-ref + unlab-cn KL hier. 56.2 59.6 68.4 76.2
lab-ref + unlab-cn sample 54.6 57.7 66.5 74.2
lab-ref + unlab-ref 45.0 47.0 57.3 63.9

Table 2: Perplexity of LSTM and Transformer LMs
trained only on the in-domain data. Bold font indicates
lowest perplexity and performance statistically similar
to it.

LM VM AMI
setup dev test dev test

LSTM LM
lab-ref + unlab-1b (pre) 63.4 63.2 90.7 97.3
lab-ref + unlab-1b 40.9 43.1 59.5 65.0
lab-ref + unlab-cn KL 42.2 44.3 60.3 65.5
lab-ref + unlab-cn sample 41.3 43.6 58.8 64.6
lab-ref + unlab-ref (pre) 52.6 53.4 82.6 88.0
lab-ref + unlab-ref 34.0 35.4 50.8 55.2

Transformer LM
lab-ref + unlab-1b (pre) 47.8 48.3 67.5 73.1
lab-ref + unlab-1b 41.8 43.2 57.4 63.8
lab-ref + unlab-cn KL 43.1 44.3 58.2 64.3
lab-ref + unlab-cn KL hier. 41.6 43.1 57.2 62.8
lab-ref + unlab-cn sample 41.8 43.1 56.7 62.5
lab-ref + unlab-ref (pre) 44.5 45.1 58.1 62.3
lab-ref + unlab-ref 37.3 38.2 48.8 53.7

Table 3: Perplexity of LSTM and Transformer LMs in
the adaptation setting. The models indicated as ‘pre’
are those which have not been fine-tuned. Bold font
highlights lowest perplexity and performance statisti-
cally similar to it.

4.5. Qualitative Analysis
We conducted a qualitative analysis to further under-
stand the reduction in perplexities obtained by the LMs
trained on the ASR confusion networks. The analysis
compares the perplexities obtained by the LMs, trained
with different methods, for the less frequent words. In
this analysis, we computed the perplexity assigned by
an LM to the words in the test set, then grouped the
words based on their count in the in-domain training
set and plotted the average perplexity obtained by each
group of words.
Figure 2 shows the average perplexity obtained by the
Transformer LMs on the AMI test set words, wherein
the X-axis represents word groups based on their

counts in the AMI in-domain training set. Transformer
LMs trained only on the in-domain data are denoted by
prefix ’train’ and Transformer LMs in the adaptation
setting are denoted by prefix ’adapt’. We can observe
that KL and sampling based training methods result in
lower perplexity for less frequent words, in the case
of training only on the in-domain data. Moreover, the
sampling-based method results in a lower perplexity
than KL based training for these less frequent words.
In the adaptation setting, the reduction in perplexity
obtained from the KL and sampling based methods is
smaller. This is mainly because Transformer LMs from
the adaptation setting have already seen most less fre-
quent words during the pre-training on out-of-domain
data. Overall, we can conclude that the proposed meth-
ods to train neural LMs on ASR confusion networks
can be better at predicting less frequent words.
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Figure 2: Average perplexity of Transformer LMs on
words in the AMI test set. (Higher count words on the
X-axis are not shown.)

4.6. WER Results
Following the perplexity evaluation, we present a WER
evaluation of the different LSTM and Transformer
LMs. In order to perform this WER evaluation, lattices
obtained from the first pass decoding were rescored us-
ing a 3-gram LM trained on the LM data setup: lab-ref
+ unlab-1b. 100-best lists were obtained from these
lattices and rescored using the LSTM or Transformer
LMs. We present WER results for the setting wherein
the LMs are trained only on the in-domain data, as we
observe significant reductions in perplexity in this case
(see Table 2). The WER results obtained for this set-
ting are shown in Table 4. The matched pairs sentence-
segment word error test (Gillick and Cox, 1989) from
the NIST scoring toolkit1 is used to ensure that the dif-
ferences in WER are statistically significant (at p =
0.05).

1https://github.com/usnistgov/SCTK

https://github.com/usnistgov/SCTK
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LM VM AMI
setup dev test dev test

3g decode LM
lab-ref 39.5 39.7 32.2 35.1

LSTM LM
lab-ref + unlab-1b 36.2 36.3 31.1 33.7
lab-ref + unlab-cn KL 35.7 36.1 31.3 33.8
lab-ref + unlab-cn sample 35.9 36.1 31.2 33.7
lab-ref + unlab-ref 32.9 32.9 29.3 31.9

Transformer LM
lab-ref + unlab-1b 36.2 36.7 30.9 33.5
lab-ref + unlab-cn KL hier. 38.0 38.3 34.4 37.2
lab-ref + unlab-cn sample 36.2 36.4 31.1 33.6
lab-ref + unlab-ref 32.6 32.7 29.5 32.0

Table 4: WER of LSTM and Transformer LMs trained
only on the in-domain data. Bold font indicates lowest
WER and performance statistically similar to it.

We find that the sampling and KL based training meth-
ods do not achieve any significant WER reductions as
compared to the training on 1-best hypotheses, for both
LSTM and Transformer LMs. This could be due to the
fact that the perplexity reductions come mainly from
the less frequent words which do not contribute signifi-
cantly in the ASR evaluation. Finally we also note that
only part of WER gap between the baseline and the
topline LMs has been filled by the LMs trained on the
ASR hypotheses of the unlabelled data. This motivates
the need for more effective methods to train LSTM and
Transformer LMs on uncertain ASR hypotheses.

5. Conclusion

We presented methods to train Transformer LMs on
ASR confusion networks, in scenarios having a lim-
ited amount of in-domain speech. KL divergence based
training with a hierarchy of arc-level and bin-level lay-
ers results in significant reduction in perplexities, as
compared to training with only arc-level layers. How-
ever, the resulting Transformer LMs are on par with
those trained on ASR 1-best transcripts. The sampling
based training method results in the lowest perplexities
for both Transformer and LSTM LMs. Overall, Trans-
former LMs gave lower perplexity than LSTM LMs on
the AMI scenario meetings but not on the VM conver-
sations. N-best rescoring with the LSTM and Trans-
former LMs shows that the LMs trained on ASR con-
fusion networks do not achieve significant reductions
in WER as compared to those trained on the 1-best hy-
pothesis. However, a qualitative analysis reveals that
the LMs trained on ASR confusion networks using KL
divergence and sampling based methods can be better
at predicting less frequent words.
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