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Abstract
This paper proposes a new cross-document coreference resolution (CDCR) dataset for identifying co-referring radiological
findings and medical devices across a patient’s radiology reports. Our annotated corpus contains 5872 mentions (findings and
devices) spanning 638 MIMIC-III radiology reports across 60 patients, covering multiple imaging modalities and anatomies.
There are a total of 2292 mention chains. We describe the annotation process in detail, highlighting the complexities
involved in creating a sizable and realistic dataset for radiology CDCR. We apply two baseline methods–string matching and
transformer language models (BERT)–to identify cross-report coreferences. Our results indicate the requirement of further
model development targeting better understanding of domain language and context to address this challenging and unexplored
task. This dataset can serve as a resource to develop more advanced natural language processing CDCR methods in the future.
This is one of the first attempts focusing on CDCR in the clinical domain and holds potential in benefiting physicians and
clinical research through long-term tracking of radiology findings.

Keywords: tracking, cross-document coreference resolution, radiology

1. Introduction
Radiology reports contain rich descriptions of clini-
cally important findings and medical devices. Often-
times, these findings and devices are referred to mul-
tiple times in a single report and are also referred to
across different reports of a patient. Radiologists make
such references in multiple reports mainly to highlight
any longitudinal changes of a particular finding (e.g.,
change in a tumor at a certain location) and also to de-
scribe any interval changes in a device position (e.g.,
change in the position of an endotracheal tube inserted
in a patient with respect to an anatomical location).
Although extracting important information (e.g., find-
ings, anatomical locations) from radiology reports has
been widely studied (Hassanpour and Langlotz, 2016;
Steinkamp et al., 2019; Datta et al., 2020; Syeda-
Mahmood et al., 2020; Sugimoto et al., 2021), tracking
(or identifying the coreferences) of radiological find-
ings across reports is unexplored. Automated track-
ing of findings and devices across a patient’s radiology
reports holds potential to reduce physician burden in
making patient-related decisions as well as to facilitate
various retrospective clinical research studies.

Tracking the same finding or device across re-
ports is a challenging problem as it relies on radi-
ology domain knowledge and requires understanding
the linguistic variations used by radiologists as well
as understanding both linguistic and domain-specific
context across different reports. This is illustrated
through an example in Figure 1, where, for Patient
1, the perihilar edema described in one of the subse-
quent reports of this patient is referencing to the pul-
monary edema mentioned in a previous report, and is
again described through a different expression, perihi-
lar haziness, in a later report. Here, these three find-

ing entities–pulmonary edema, perihilar edema, and
perihilar haziness are describing the progress of the
same finding for this patient. Similarly, for Patient 2,
NG tube and Enteric tube are discussing the same de-
vice, whereas Endotracheal tube and ETT are describ-
ing the change in the status of another device. Thus, we
see that there is a strong reliance on domain language
knowledge and context information to identify the co-
referring expressions of the same findings or devices
across reports.

In this work, we introduce an annotated dataset
to track the same radiological findings and medical
devices across reports. We sample a total of 60 pa-
tients from the publicly available MIMIC-III clinical
database (Johnson et al., 2016), with an average of
10.6 reports per patient. The reports include a va-
riety of imaging modalities covering different human
anatomies. We provide a detailed description of the an-
notation guideline in this paper. Our tracking dataset
comprises of a total of 5872 mentions with 2292 men-
tion chains. A chain here represents all the mentions
across reports of a patient that refer to the same find-
ing or device entity. We represent the tracking task
with enough specificity to capture the clinical granu-
larities that are critical to treatment planning. For ex-
ample, a fracture detected at the right frontal lobe of
the skull is different from a fracture detected at the
left temporal lobe, and, therefore, these two fractures
will be placed in two different mention chains. More
details are explained in the annotation guideline (Sec-
tions 4.1 and 4.2). Instructions to access the annotated
dataset are available at GitHub1. We employ two base-
line methods–a rule-based system and a transformer

1https://github.com/krobertslab/
datasets/tree/master/rad-tracking

https://github.com/krobertslab/datasets/tree/master/rad-tracking
https://github.com/krobertslab/datasets/tree/master/rad-tracking
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Figure 1: Examples of tracking the same finding (edema) and the same devices (NG tube and Endotracheal tube)
across multiple reports.

language-based system, BERT (Devlin et al., 2019),
to automatically identify the cross-report coreferences.
Finally, we evaluate the performance of the systems us-
ing standard coreference metrics.

2. Related Work
Most of the prior work using radiology report text has
developed NLP systems to extract important entities
such as findings, diagnoses, anatomical locations, and
their respective descriptor terms (Hassanpour and Lan-
glotz, 2016), with some focusing on more comprehen-
sive information extraction (Steinkamp et al., 2019;
Sugimoto et al., 2021; Datta and Roberts, 2022). Some
studies have targeted extracting information from the
reports to automatically generate labels for the cor-
responding medical images (Syeda-Mahmood et al.,
2020; Bradshaw et al., 2020; Wood et al., 2020).

In the context of automated tracking, existing re-
search has highlighted the requirement of a tracking
system to track radiological findings. Rubin et al.
(2014) has extracted tumor-related quantitative assess-
ments to facilitate automated tracking. More recently,
Bozkurt et al. (2019) has focused on automatically
identifying measurements and their corresponding de-
scriptor terms from the reports with the aim to im-
prove care delivery by tracking the same lesions across
multiple patient encounters. Another study (Steinkamp
et al., 2019) that extracted various important contex-
tual information from radiology reports has also high-
lighted the benefits of automatic tracking. Two studies
(Mabotuwana et al., 2018; Mabotuwana et al., 2019)
have concentrated on automated matching of follow-
up imaging recommendations from the reports using
contextual information (e.g., recommended anatomy)

and various other features (e.g., text-based similarity
features). Interestingly, an earlier attempt (Son et al.,
2004) was made where a probabilistic model was em-
ployed to correlate lung mass or lung lesion-related
findings across different computed tomography doc-
uments associated with lung cancer patients. How-
ever, the study highlighted limitations such as require-
ment of more refined definitions for locations (a highly
weighted feature in the probabilistic model) in order to
handle scenarios where multiple findings are detected
around the same location. In this work, we aim to
track a broad range of radiological findings and devices
across reports, irrespective of their imaging modality.

We formulate the tracking problem as a cross-
document (CD) coreference resolution task. In the gen-
eral domain, there has been recent advancements to this
relatively less explored and challenging task (Barhom
et al., 2019; Cattan et al., 2021a; Cattan et al., 2021b;
Bugert et al., 2021; Cattan et al., 2021c). Among the
most recent contributions, Cattan et al. (2021a) de-
veloped the first end-to-end CD coreference resolution
model where they applied the model over predicted
mentions and achieved first baseline performances on
the standard ECB+ dataset. Another work by Cat-
tan et al. (2021b) proposed more realistic principles
for evaluating CD coreference models (e.g., tackling
lexical ambiguities involved in real-world CD coref-
erences). Cattan et al. (2021c) also proposed a hi-
erarchical CD coreference resolution task where they
identify the coreference clusters and hierarchy between
them. In the medical domain, Wright-Bettner et al.
(2019) provided insights on the challenging aspects
of this task both from model and annotator perspec-
tives through complex illustrative examples from a
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colon cancer dataset. They suggested relying more on
schematic rules and less on annotator intuition to anno-
tate more realistic and consistent CD coreference rela-
tions. Their work also highlighted the difficulties asso-
ciated with creating human-annotated CD gold annota-
tions on a sizable dataset and, thereby, restricted their
annotation scope (e.g., limit the CD relations to a set of
three notes per patient). In this work, we take into ac-
count some of the challenges described in the previous
papers and aim to create a realistic gold-annotated CD
radiology dataset with more number of reports repre-
senting a patient.

Besides the two works on CD coreference resolu-
tion on a medical corpus, (Son et al., 2004; Wright-
Bettner et al., 2019), a few more studies have targeted
within-document task (Apostolova et al., 2012; Miller
et al., 2017). Thus, CD coreference is still under-
explored in the clinical domain and we tackle this chal-
lenging problem in this work, specifically focusing on
all radiological findings and devices.

3. Data
We sample 60 patients from MIMIC-III for creating
this annotated tracking dataset with a total of 638 re-
ports. The average number of reports per patient is
10.6, with the maximum being 33. The reports consist
of various imaging modalities including X-ray, com-
puted tomography (CT), CT angiography, magnetic
resonance imaging (MRI), and ultrasound as well as
different body organs such as chest, head, neck, foot,
hip, liver, and kidney. The five most frequent modal-
ity types are chest X-ray, CT head, CT abdomen, CT
C-spine, and abdomen X-ray. The average length of a
report in the collection is 244.7 tokens, with the high-
est being 1490 tokens. Our dataset includes sufficient
radiological linguistic variation as the reports belong to
different imaging modalities and describe the imaging
interpretation of various anatomies. For annotation, 60
patients are split among three annotators with medical
background where each report is annotated by two an-
notators. We are currently in the process of reconciling
the annotations.

4. Annotation Process
We annotate the finding and medical device instances
that refer to the same finding/device across reports
for a specific patient. Finding here refers to a radio-
graphic finding described in a report. This includes
clinical findings (e.g., pneumonia) and imaging obser-
vations (e.g., enhancements such as lesion and foci).
Device refers to any medical device including tubes
and catheters (e.g., endotracheal tube, central venous
catheter). We use the Brat tool (Stenetorp et al., 2012)
for annotation. The reports of a patient are sorted
chronologically using the CHARTTIME attribute of
the MIMIC table. Since this is a patient-level annota-
tion, we examine all the sequentially arranged reports
for a patient to identify the finding/device instances

that correspond to the same finding/device. We assign
the same mention identifier to all the entities/mentions
across reports that represent the course of a specific
finding or device.

4.1. Identifying references of the same
finding

The course of a finding can be roughly represented as –
(1) initial detection/diagnosis, (2) improved, worsened,
etc., and (3) no longer detected. We came up with the
following general rules to track a particular finding:

• Identify the first time a finding is detected
• Identify all the other references of the same find-

ing in the subsequent reports highlighting any
change in the characteristics of a finding (e.g, a
finding may become large, may improve when
compared to a previous study etc.)

• Identify all the references until the last report for
a patient is reached or if the finding has been re-
solved

In certain cases, the corresponding location infor-
mation of a finding serves as a clue in identifying the
same reference of a finding across reports. Let us con-
sider the following two examples for a patient:

• Report 1: Questionable aneurysm at right poste-
rior communicating artery.

• Report 4: Small aneurysm of size 2.5 mm arises
at the origin of posterior communicating artery.

We see that both aneurysms in the two reports are refer-
ring to the same aneurysm and hence will be assigned
the same mention identifier (belong to the same men-
tion chain). Note that the location posterior commu-
nicating artery provides a clue that the aneurysms in
these reports are discussing about the same finding.

The findings are tracked at the level of the exact
anatomical location. This is described through the fol-
lowing points:

1. If the same finding is detected at a different body
location or has moved to a different location, we
assign different mention identifiers to these find-
ings. For example, opacity in right lower lobe is a
different finding than an opacity in the left lower
lobe. So different mention IDs will be assigned
to these two opacities and are hence part of two
different mention chains.

2. We also differentiate findings based on the hier-
archical structure of the anatomies. Thus, a left
frontotemporal fracture and a skull fracture are
placed in two different mention chains as the fron-
totemporal region is a sub-part of the skull.

3. We separate findings based on their laterality in-
formation. For example, left pleural effusion and
bilateral effusions are placed in different mention
chains as bilateral indicates that the effusion is
also present on the right side.
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4. Common finding terms such as normal and un-
remarkable are tracked separately based on the
anatomical location or the observation described.
For example, the same finding normal is placed
in separate mention chains corresponding to the
two descriptions–‘The appendix is normal.’ and
‘Heart size normal.’, as the former is describing
about appendix and the latter is about heart size.

5. Again, if the same finding has re-appeared after
a period, a different mention identifier is assigned
(e.g., tumor re-appearing after a few years).

4.2. Identifying references of the same device
Similarly, for tracking the medical devices across re-
ports, the same mention identifier is assigned to entities
of a device that represent a specific device. The course
can be represented as – (1) insertion, (2) device posi-
tion status – normal/abnormal, and (3) removal. The
following are general rules to track a particular device:

• Identify the first time a device is inserted or placed
• Identify all the other references of the same de-

vice in the subsequent reports. This will mainly
include updates related to the previously inserted
device (e.g., any change in its location or update
in the status of its position such as stable, good,
satisfactory, unchanged, etc.)

• Continue identifying all the references until the
last report for a patient is reached or if the device
has been removed

If the same device is re-inserted after a period, we as-
sign a different mention identifier to that device since
this indicates a new use of a device. Consider the fol-
lowing sentences from four different reports:

• Report 1: Right IJ central venous catheter in
place and the tip is in distal SVC.

• Report 2: Right internal jugular central venous
catheter in stable position and emanating in mid-
dle SVC.

• Report 3: Right internal jugular central venous
line remains in position.

• Report 5: Right line is terminating in SVC.

Note that all the device mentions in these reports (indi-
cated in bold) are the different variations that are used
to refer to the same device and all these mentions are
annotated as part of the same mention chain.

4.3. Challenges
The challenges involved in creating this dataset broadly
fall under two categories – dependence on context both
within and across reports and extensive reliance on ra-
diology domain knowledge. Oftentimes, understanding
the context is crucial in correctly annotating the same
references of a finding. Table 1 illustrates a scenario
where contextual information documented in a long re-
port helps in identifying the coreferences of a finding –
subarachnoid hemorrhage. For the first occurrence of

CT HEAD W/O CONTRAST
Findings:
......
The right frontal fracture is associated with a
focal lentiform extra-axial hematoma measuring
roughly 8 mm in thickness and 3.5 cm in maxi-
mal transverse dimension.
This demonstrates a relatively low-attenuation
portion, anteriorly, which may represent acute,
non-clotted blood.
This collection may be bounded by the coronal
suture, and therefore lie in the epidural space.
There is moderate subarachnoid hemorrhage oc-
cupying the immediately subjacent sulci, which
are slightly flattened, due to the mass effect of the
hematoma.
......
No significant extra-axial hematoma is identified
at the corresponding left frontotemporal fracture
site, though there is subarachnoid hemorrhage in
the sulci in this region.
......
Impression:
......
Associated subarachnoid hemorrhage at sites de-
scribed above, with possible small associated
right frontal and left frontotemporal contusions
......

Table 1: An example radiology report snippet il-
lustrating the dependence of context for tracking
subarachnoid hemorrhage. Findings are in or-
ange, anatomical locations are in green, and the
descriptions serving as cues to identify the same
finding are bolded.

hemorrhage, note that linking the right frontal location
mentioned a few sentences above to the expression–
occupying the immediately subjacent sulci in the same
sentence where hemorrhage occurs indicates that the
hemorrhage is associated with right side of the brain.
Again, the second occurrence of hemorrhage is associ-
ated with the left side as indicated by the location left
frontotemporal in the same sentence. And the third oc-
currence is associated with both sides (left and right).
Thus, these three instances of hemorrhage belong to
three different mention coreference chains.

There is also a tremendous dependence on do-
main knowledge. Table 2 shows a few example sen-
tence pairs (same/across reports) where domain knowl-
edge of different levels are required for annotation. The
first example is simple, where dissociation and disrup-
tion are synonymous terms and can be easily identi-
fied as coreferences. The second pair is relatively diffi-
cult, requiring basic clinical knowledge, with swelling
and edema referring to the same finding entity. The
third pair is at a moderate difficulty level, where atelec-
tasis and collapse belong to the same mention chain
and pneumonia and consolidation belong to another
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Difficulty Example pairs

Simple (syn-
onymous)

Some degree of dissociation as well
as lateral displacement of the ossicu-
lar chain; Complex fracture of the left
temporal bone with evidence of lateral
displacement and disruption of the left
ossicular chain

Simple
(clinical
knowledge)

There is a left parietovertex soft tissue
swelling; There is extensive left supra-
and periorbital soft tissue edema

Moderate
(clinical
knowledge)

There is new patchy opacity at the
left lung base, which may repre-
sent resolving postoperative atelecta-
sis with effusion, but pneumonia can-
not be excluded; New retrocardiac col-
lapse/consolidation and bilateral effu-
sions

Complex
(clinical
knowledge)

There is mild prominence of the pul-
monary vascular markings without
overt evidence for failure; In the in-
terval, there is increased interstitial
edema and small-moderate bilateral
pleural effusions.

Table 2: Examples denoting reliance on domain knowl-
edge for annotation.

Item Count
Avg no. of reports per patient 10.6
Total reports 638
Avg no. of tokens per report 244.7
Min no. of mention chain per patient 8
Max no. of mention chain per patient 110
Total mention chains 2292
Total singleton mention chains 1102
Longest chain length 53
Avg chain length (excluding singletons) 4
Avg no. of tokens per mention 1.44
Total entities (radiological finding) 4978
Total entities (medical device) 894

Table 3: Dataset statistics.

mention chain. The fourth example requires a deeper
knowledge where vascular markings and interstitial
edema refer to the same finding.

4.4. Annotation Statistics
Some basic statistics of our annotated dataset are
shown in Table 3. We highlight the five most frequent
finding and device mentions in Table 4 (note that “tip”
is a mention that is often documented while referring
different medical devices). In terms of inter-annotator
agreement, the overall F1 agreement for annotating the
mention spans (considering exact span match) is 0.55.
The disagreements are mainly related to selecting cer-
tain modifier terms describing a radiological findings

Finding Count Device Count
effusion 398 tip 144
pneumothorax 238 ng tube 103
fracture 229 endotracheal tube 101
opacity 180 chest tube 42
atelectasis 176 swan-ganz catheter 36

Table 4: Top five frequent mentions in the dataset.
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Figure 2: Coverage of reports in mention chains. The
x-axis indicates the number of different reports of a pa-
tient covered in a mention chain whereas the y-axis in-
dicates the actual number of mention chains.
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Figure 3: Time difference between two mentions anno-
tated in two consecutive reports in a chain. Each bin
denotes an interval of two weeks.

(e.g., selection of the span “free intraabdominal air”
by one annotator and only “air” by another). For
coreference resolution, we calculate the inter-annotator
agreement using MUC and CoNLL F1 metrics, and the
values are 45.24 and 42.1, respectively.

We provide more insights about our annotated cor-
pus through Figures 2, 3, and 4. Figure 2 illustrates the
number of different reports that are included while an-
notating the mention chains. Each stack in a bar high-
lights the proportion of mention chains according to
their lengths (i.e., # mentions in a chain). It is interest-
ing to note that there are more mention chains of length
2 where only a single report contains both the men-
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Figure 4: Distribution of imaging modalities in mention chains. XR - X-ray, CT - Computed Tomography, MR -
Magnetic Resonance, CTA - CT Angiography, US - Ultrasound, OTHER - other modalities.

tions than when the two mentions are present in two
different reports (represented in blue). Also, the num-
ber of chains of lengths 3 and 4 are the highest when
the chains contain mentions from only two reports.

We show the distribution of temporal distances (in
weeks) between co-referring mentions in two sequen-
tially ordered reports of a patient in Figure 3. Overall,
more radiological findings are co-referred than medi-
cal devices in radiology reports. We observe that the
majority of the coreferences between two consecutive
reports occurred within an interval of 2 weeks whereas
the maximum interval was found to be 2.15 years.

We also illustrate the overlap of imaging modali-
ties of the reports in the annotated mention chains using
the UpSet visualization technique (Lex et al., 2014) in
Figure 4. While a majority of the mention chains con-
tain mentions described in either only X-ray or CT re-
ports, we do find the inclusion of mentions described
in multiple modalities. Among two-modality combi-
nations, (X-ray, CT), (CT, CTA), (CT, MR), and (CT,
Ultrasound) are the most frequent co-occurring modali-
ties. Among three-modality combinations, (X-ray, CT,
CTA) is the most frequent. We also see a very small
percent of mention chains spanning four modalities.

5. Methods
We frame the tracking task as a cross document corefer-
ence resolution (CDCR) problem. We apply two base-
line methods for automatically identifying the corefer-
ences of findings and devices across all radiology re-
ports of a patient. First is a simple string matching-
based baseline, whereas in the second we employ a
BERT-based classification approach to predict the men-
tion chains. Since CDCR is the focus of this work, we
use the gold mentions.

5.1. Rule-based baseline
We perform sentence segmentation and word tokeniza-
tion using NLTK. We combine all entities or mentions
at a patient level. Then all possible mention pairs are

generated. If the lower-cased version of the two men-
tion strings in a pair match, we consider that these two
mentions will belong to the same chain. All these men-
tion pairs are then combined to construct the chain.

5.2. BERT-based baseline
In this approach, given a mention pair, we use BERT
as a binary classifier to predict whether the two men-
tions are coreferences. Specifically, we apply BERT in
a sentence pair classification setting where information
about the two mentions are combined to form the input
sequence. Later, the output generated by BERT for all
mention pairs corresponding to a patient is combined
to predict the final mention chains. We describe the
details in the following sub-sections.

5.2.1. Pre-processing
First, we generate all possible mention pair combina-
tions for each patient. We then generate positive and
negative pair instances for fine-tuning BERT using gold
mention chain information. Since there is imbalance in
the number of positive and negative instances (negative
instances being 25 times as many positive instances),
we randomly sample negative instances such that there
are equal instances of positive and negative pairs.

While forming the input sequence to BERT, we
provide additional contextual information associated
with the two mentions besides the mention spans. We
incorporate anatomy and radiology modifier informa-
tion surrounding a mention span in the sequence. This
is grounded on the point that two finding mentions
with the same name (e.g., fracture) are placed in sep-
arate chains based on their different anatomical loca-
tions (e.g., skull vs hip) or different associated mod-
ifiers (e.g., right vs left). For this, we leverage the
Stanza python library (Qi et al., 2020) and use the
clinical model package for identifying the observation,
anatomy, and their corresponding identifiers. Specif-
ically, we apply the radiology named entity recogni-
tion (NER) model (Zhang et al., 2021) that was trained
on radiology reports from three hospitals using a bi-
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directional LSTM character-level language model. We
feed in the pretokenized text generated from NLTK to
the Stanza NER pipeline.

5.2.2. Fine-tuning BERT
We fine-tune a BERTLARGE model to classify whether
the two mentions in a pair are co-referring. We ini-
tialize the model parameters obtained by pre-training
BERT on MIMIC-III clinical notes (Si et al., 2019).
We frame our mention pair classification problem as a
text pair classification task. First, we use only the men-
tion spans of the two mentions to construct the BERT
input sequence as: [CLS]m1[SEP]m2[SEP], where
m1 and m2 are the spans of the two mentions in a pair.
Next, to provide additional information to the BERT
model about both the mentions in a pair, we encode
the anatomies as well as the anatomy and observation
modifiers predicted by Stanza in the sentences contain-
ing the mentions. Following the standard BERT input
format used in text pair classification configuration, we
separate the information corresponding to the two men-
tions using the special [SEP] token, where anatomy
and modifier information of each mention are delim-
ited by a comma. Specifically, we include the Stanza-
generated anatomy and modifiers in the left and right
of a mention with an window size 5 in the order they
appear in a sentence. We construct the BERT input se-
quence as follows for a mention pair:

[CLS]m1, antyi(m1), ...antyn(m1), modi(m1),
...modn(m1)[SEP]m2, antyi(m2), ...antyn(m2),
modi(m2), ...modn(m2)[SEP]
Here, antyi(m1) refers to all the anatomy terms sur-
rounding mention m1. Similarly, modi(m2) refers to
all the modifier terms surrounding mention m2.
The output corresponding to the [CLS] token is used
to classify if the two mentions are co-referring. The
BERT classifier output is then processed to generate
the mention chains. All the pairs for which BERT pre-
dicted as coreference positive are merged to form the
coreference chains. Further, the predicted chain infor-
mation is converted to CoNLL format for evaluation.

6. Evaluation
We evaluate the methods using gold mentions. We
perform 5-fold cross validation to evaluate the perfor-
mance of the BERT-based approach for CDCR. For
each of the 5 iterations, our dataset of 60 patients are
split into training, validation, and test sets in the ratio
of 60, 20, and 20 %, respectively. The BERT classifier
is applied to all possible mention pairs in the test sets.
We report the results using the CR evaluation metrics–
MUC, B3, CEAFe, the average F1 of these metrics i.e.,
CoNLL F1, and BLANC. MUC (Vilain et al., 1995) is
a link-based evaluation metric that is based on the min-
imum number of coreference links required to trans-
late from gold to predicted mention chains. B3 (Bagga
and Baldwin, 1998) is a mention-based metric where
the evaluation uses the recall or precision of the indi-
vidual mentions. For each mention in the gold chains,

Model P (%) R (%) F1 Acc
Mentions 44.83 85.89 58.91 95.53
+ Context 52.76 86.3 65.49 96.61

Table 5: 5-fold CV results of BERTLARGE models for
classifying if two mentions in a pair are coreferring. P
- Precision, R - Recall, Acc - Accuracy.

B3 recall considers the fraction of the correct mentions
that are included in the predicted chain containing that
mention. The main assumption of CEAF (Luo, 2005)
is that each gold chain should be mapped to only one
response chain, and vice versa. BLANC (Recasens and
Hovy, 2011; Luo et al., 2014) is another link-based
metric where the recall and precision are calculated by
averaging the recall and precision of coreference and
non-coreference links.

We use the BERTLARGE cased model to classify the
mention pairs. The model is pre-trained on MIMIC-III
notes for 320K steps. We set the maximum sequence
length at 128, learning rate at 2e-5, and the number of
training epochs at 4.

7. Results
We show the results of our BERT classification mod-
els in Table 5. We illustrate a few sample errors of the
BERT classifiers in Table 6. In most of the false posi-
tive cases, we observe that the mention strings are the
same and better learning of more broad context is re-
quired. The false negative errors indicate the need to
incorporate more domain-specific knowledge. We then
use the output of the BERT models to perform corefer-
ence resolution across reports. The cross-report coref-
erence resolution results of the string matching base-
line as well as both the BERT variants are in Table 7.
We use the gold mention spans in this evaluation. Al-
though the BERT classifier that uses context performs
better than the one that uses only mention spans (as per
the performance measures in Table 5), we see that the
CDCR performance of the latter is better for all met-
rics. We also observe that the recall values of MUC,
B3, and BLANC are higher for the BERT (mentions)
model than the string-matching method that has better
precision values (the case is reverse for CEAFe).

8. Discussion
We create an annotated cross-document coreference
resolution (CDCR) dataset in the radiology domain to
track the same radiological findings and medical de-
vices across all reports of a patient and apply BERT-
based baseline method to perform CDCR. The task
of CDCR is relatively under-explored in the clinical
domain, and in this work we propose a sufficiently
large dataset with an average of 10.6 reports per patient
(compared to previous 3 notes per patient in (Wright-
Bettner et al., 2019)). Additionally, this is the first
CDCR dataset in radiology.
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Mention pairs Corresponding sentences Category Reason

NG tube; NG tube

Report-5 Compared with prior radiograph, an NG tube has
been withdrawn and there is significant dilatation of the colon
lying just below the right hemidiaphragm; Report-10 An NG
tube terminates with its tip in the stomach

FP
More deep understanding of context is re-
quired (e.g., “withdrawn” in Report-5 indi-
cates that the NG tube in Report-10 is dif-
ferent from the first one). Sufficient contex-
tual information is not incorporated into the
models

thrombus; throm-
bus

Report-3 The grayscale ultrasound of the veins of the upper
extremities demonstrated filling defect in the right cephalic vein
at the level of the antecubital fossa consistent with thrombus;
Report-13 No intraluminal thrombus is identified

collapse; atelec-
tases

Report-1 There is increased retrocardiac density, consistent
with left lower lobe collapse and/or consolidation; Report-20
There is cardiomegaly with atelectases in the left upper lobe as
well as atelectasis in the left lower lobe.

FN
More domain knowledge
understanding is required to link the
correlated findings

hemorrhage;
hematoma

Report-1 There is no intraparenchymal hemorrhage identified;
Report-6 There is a small left frontal subdural hematoma,
slightly larger than prior CT studies

Table 6: Common error types of BERT classification models. FP - False Positive, FN - False Negative.

Methods
MUC B3 CEAFe CONLL BLANC

P R F1 P R F1 P R F1 F1 P R F1
String match 80.18 70.36 74.95 83.52 70.75 76.6 61.88 76.46 68.4 73.32 78.52 71.6 74.44

BERT (mentions) 68.56 95.31 79.65 40.84 86.57 55.23 76.53 23.46 35.84 56.91 53.39 77.18 50.29

BERT (mentions + context) 67.46 92.58 77.87 32.72 85.7 46.48 76.12 18.97 29.99 51.45 49.79 67.92 39.13

Table 7: CDCR performances. Precision - P %, Recall - R %. 5-fold cross validation results are reported for BERT
models.

The results in Tables 5 and 7 indicate that there is
enough scope for performance improvement. A brief
analysis of the output from the BERT classifiers sug-
gests that incorporating rich radiology-specific domain
knowledge will be useful in improving CDCR systems.
For example, there is potential in encoding knowledge
about relations between different human anatomies,
knowledge about clinical correlation between various
radiological findings (e.g., ‘consolidation’ and ‘pneu-
monia’), and information about findings that are more
often coreferred across different imaging modalities.
Another promising avenue is allowing the model to
learn more broad cross-report context (e.g., by leverag-
ing certain language patterns in the reports suggesting
any potential coreference such as ‘compared to previ-
ous study’). We also intend to investigate the impact
of BERT classifier output on the various CDCR evalu-
ation metrics in detail.

An interesting method to explore for CDCR model
development using this annotated dataset is by adopting
the recently proposed cross-document language model-
ing technique that uses a new pre-training approach that
has shown to be effective for several multi-document
downstream tasks including CDCR and multihop ques-
tion answering (Cattan et al., 2021a). The pre-training
technique considers two main ideas: pre-training over
sets of multiple related documents and usage of dy-
namic global attention pattern over masked tokens. We
intend to use this pre-training approach and develop a
CDCR system similar to the CDCR pairwise scoring
framework proposed in a recent work (Caciularu et al.,
2021). Here, we can feed the whole radiology reports
corresponding to the two mentions in a pair into the
CDLM rather than feeding only the local context of the

mentions (e.g., surrounding words of a mention). We
also aim to build an end-to-end CDCR system where
the predicted mention spans are used to infer the men-
tion chains instead of the gold mentions, although this
relies on a robust extraction system to identify the radi-
ological entities accurately (which is oftentimes chal-
lenged by the presence of different modifier terms de-
scribed in conjunction with the main finding terms).
From the clinical application perspective, we also aim
to extend this dataset to cancer domain that demands
long-term tracking of findings such as tumor and cyst
in the future.

9. Conclusion
We construct a new cross-document coreference reso-
lution (CDCR) dataset for tracking radiological find-
ings and devices across reports. Our annotated dataset
comprises of 638 radiology reports belonging to 60 pa-
tients. This resulted in a total of 2292 mention chains.
We provide a detailed description of our annotation
process and demonstrate some important aspects of
the dataset including the major challenges (both from
the annotation and model development perspectives).
We apply two baseline methods to automatically iden-
tify the cross-report coreferences. The system perfor-
mances are low to moderate, and we plan to leverage
this annotated dataset to develop more advanced meth-
ods for radiology CDCR in our later work.
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