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Abstract
Formal documents often are organized into sections of text, each with a title, and extracting this structure remains an
under-explored aspect of natural language processing. This iterative title-text structure is valuable data for building models for
headline generation and section title generation, but there is no corpus that contains web documents annotated with titles and
prose texts. Therefore, we propose the first title-text dataset on web documents that incorporates a wide variety of domains
to facilitate downstream training. We also introduce STAPI (Section Title And Prose text Identifier), a two-step system for
labeling section titles and prose text in HTML documents. To filter out unrelated content like document footers, its first step
involves a filter that reads HTML documents and proposes a set of textual candidates. In the second step, a typographic
classifier takes the candidates from the filter and categorizes each one into one of the three pre-defined classes (title, prose text,
and miscellany). We show that STAPI significantly outperforms two baseline models in terms of title-text identification. We
release our dataset along with a web application to facilitate supervised and semi-supervised training in this domain.
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1. Introduction
Many documents (e.g., news articles, how-to guides,
books, privacy policies, terms of service documents,
and others) adopt an iterative title-text structure. They
often separate their contents into multiple sections, and
each section comes with a title. Sometimes a section is
further broken into a hierarchy of subsections. The first
column of Figure 1 displays typical snippets of title-
text structure. This iterative title-text structure is po-
tentially valuable for natural language generation tasks
such as headline and section title generation, and ques-
tion answering. For headline and section title genera-
tion, it provides labels for whether each text segment is
a title or prose text in the original document. Therefore,
once a large collection of documents is identified, it can
facilitate rapid construction of a large-scale section ti-
tle dataset. For question answering and dialogue sys-
tems, the iterative title-text structure may help a model
find the target section, thus improving the model per-
formance and reducing the search space. This structure
may also facilitate topic extraction and sentiment anal-
ysis by leveraging the titles in a document.
However, extracting this iterative title-text structure
from web documents is not well addressed in previ-
ous research. First of all, there is no corpus that con-
tains web documents annotated with titles and prose
texts. Moreover, our analysis about an existing ap-
proach (Gopinath et al., 2018) shows two cases where
existing algorithms run into difficulties: (1) when doc-
uments do not conform to a universal HTML writing
style, and (2) when irrelevant text segments like head-
ers and footers that are not related to our title-text ex-
traction task exist. As shown in Figure 1, visually
similar title-text representations are backed up by com-

pletely different HTML structures due to diverse writ-
ing styles. Additionally, many documents may have
contents like headers and footers. For example, a navi-
gation bar can be a document header and is not relevant
to the title-text structure. When the title-text extraction
task incorporates these irrelevant text pieces into its in-
put space, the original title-text structure will be dis-
organized. Therefore, discarding them during HTML
parsing facilitates the extraction of the title-text struc-
ture.
In this paper, we introduce STAPI1, which stands for
Section Title And Prose text Identifier. STAPI comes
with a dataset about annotated web documents and a
software pipeline that can be trained on our dataset for
labeling section titles and prose texts in HTML docu-
ments. This system is expected to extract textual con-
tents from HTML and benefit downstream tasks like
headline generation, and the third column of Figure 1
displays its sample outputs. Adopting STAPI as the
back-end model, we also develop a web application to
demonstrate its functionality2. The key contributions
of this work are summarized as follows:

• We release a dataset with labeled titles and prose
texts, which is the first collection of web docu-
ments that contains title-text annotations.

• We create a novel pipeline and a web applica-
tion for extracting iterative title-text structure from
web documents, which mitigates the two difficul-
ties (inconsistency of HTML writing styles and in-
corporation of irrelevant text segments) identified
from existing literature (Gopinath et al., 2018).

1https://github.com/ZN1010/STAPI
2https://structure-extractor.ist.psu.edu
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Figure 1: Excerpts from the website privacy policies of Amtrak, ABS-CBN, and ATT (Gopinath et al., 2018) for
presenting three examples of visually similar title-text representations with different HTML structures. The left
column shows the original visual representation of each example through Google Chrome browser. Each example
has the title on top followed by the section paragraph. The two columns in the middle display the simplified version
of HTML structure (HTML tags) for each example and outputs from STAPI. The right column shows the origin of
each example.

• Our experimental results demonstrate that our pro-
posed pipeline is more effective than baseline
models in reducing irrelevant text segments and
identifying title-text structure.

2. Related Work
We review current literature to see how STAPI can ben-
efit headline and section title generation. Then, we re-
view existing approaches for structure extraction from
input documents and broadly categorize this domain
into two folds: extracting structure-related information
from HTML documents and from other formats such as
PDFs and document images. Although this paper con-
centrates on extracting textual structure from HTML,
we also review methods for other markup languages.

2.1. Applications of Document Structure
Extraction

We review representative papers of section title and
headline generation for the sake of motivation of our
work. Gehrmann et al. (2019) developed a pipeline
for section title generation in low-resource environment
(limited training data with labels). Their pipeline incor-
porates a selector that chooses the most salient sentence
and a compressor that adopts a Semi-Markov Condi-
tional Random Field (Sarawagi and Cohen, 2004) to
leverage word representations such as BERT (Devlin et
al., 2019). Specifically, their selector was trained on the
CNN/DailyMail dataset (Hermann et al., 2015). Field
et al. (2020) designed various transformer decoders to
achieve section title generation. Without using news-
related data, their dataset consists of articles from the
English Language Wikipedia. Their dataset is not pub-
licly available.

Kiyono et al. (2018) have addressed headline gener-
ation by mitigating three of the bottlenecks of previ-
ous approaches: (1) redundant generation, (2) miss-
ing important phrases, and (3) incorporation of irrel-
evant entities. They used the Gigaword corpus (Graff
et al., 2003), which is a news-related dataset. Jin et
al. (2020) proposed a novel model that generates style-
specific headlines. Their model could generate hu-
morous, romantic, and clickbait headlines. To train
their model, they compiled a rich source dataset by
combining the New York Times (Sandhaus, 2008) and
CNN/DailyMail. Matsumaru et al. (2020) concen-
trated on improving the truthfulness of automatically
generated headlines. Truthfulness is determined by
checking whether a generated headline contains infor-
mation outside of its corresponding section. They built
a binary classifier to predict entailment relationship be-
tween headlines and the corresponding sections and
manually annotated the entailment relationships of in-
stances in the Gigaword corpus to train this binary clas-
sifier.

To the best of our knowledge, most headline and sec-
tion title generators utilize news-related datasets like
the CNN/DailyMail and Gigaword corpus. These
datasets are built by collecting articles from a few large
news sites such as CNN, and articles from a single site
typically have consistent HTML structures. For exam-
ple, we find that paragraphs (prose texts) in CNN ar-
ticles share a class name called “zn-body paragraph”.
Field et al. (2020) use articles from Wikipedia that is
outside of news domain and also has consistent HTML
structure. In other words, extracting title-text structure
from one site (or a small number of sites) is straight-
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forward, because people just need to check every plat-
form individually and look for its specific identifiers
of section titles and prose paragraphs. However, when
researchers want to train a section title generator on
a dataset that contains web documents from countless
platforms, they may find a hard time looking for a
desired dataset, because each platform adopts unique
HTML writing styles and it is costly to find structure
identifiers for every platform. For instance, datasets
on privacy policy such as Wilson et al. (2016) usu-
ally have documents collected from innumerable sites,
since every company has its own privacy policy. Be-
cause training section title generators like Gopinath et
al. (2020) requires documents collected from various
sites, a competitive structure extraction tool that works
for documents from any site is highly demanded. The
purpose of such tool is to scale up the structure extrac-
tion work that humans can achieve. We hence propose
STAPI, a fully automated tool, to locate the section ti-
tles and prose texts in web files from any sites.

2.2. Structure Extraction from HTML
Extracting iterative title-text structure in web docu-
ments is an underexplored aspect of natural language
processing (NLP). Existing libraries like Beautiful
Soup (Richardson, 2007) can capture the markup that
visually distinguishes titles from prose, but they cannot
identify which text is title and which text is prose due to
inconsistently used HTML tags as shown in Figure 1.
As an early piece of work of adopting machine learning
algorithms to extract information from web documents,
Freitag (1998) took structural and other information of
the web document as input to build an extensible token-
oriented feature set. This method can be adapted to
tasks like identifying the title of a web page. Flesca et
al. (2004) reviewed rule-based tools called wrappers
(Adelberg, 1998; Baumgartner et al., 2001; Muslea et
al., 2001; Crescenzi et al., 2001; Kushmerick, 2000;
Laender et al., 2002) which automatically extract in-
formation from web documents, and Dalvi et al. (2011)
improved wrappers by allowing them to be trained on
noisy training data. Unlike rule-based systems, STAPI
is flexible enough to handle web documents with dif-
ferent writing styles. Algur and Hiremath (2006) ex-
tracted data records (a set of data that represent a mean-
ingful entity in a web document) from HTML based on
visual clues. Similarly, YesuRaju and KiranSree (2013)
proposed VIPS (VIsion based Page Segmentation) al-
gorithm that transforms a web page into a visual block
tree for extracting structure-related information. Visual
clues are important for labeling section titles and prose
paragraphs, so we build features for STAPI with the
consideration of the visual appearance of each text seg-
ment.
More recently, Garcı́a-Plaza et al. (2016) adopted
fuzzy logic to leverage HTML markup for web page
clustering. They designed 31 independent rules based
on HTML markup, so their approach is still a rule-

based one. Our approach also builds features based on
HTML markup, but we do not have the performance of
their model on title-text classification to compare with
STAPI, since their approach is for document clustering
task.
As mentioned in the previous section, Gopinath et al.
(2018) proposed ASDUS, which stands for Automatic
Segment Detection using Unsupervised and Supervised
learning. ASDUS is the only tool that serves as a di-
rect competitor of STAPI. Therefore, we select it as our
baseline model for further comparison. We also ana-
lyze its system output incorporated in its dataset. We
find that it assigns textual content appearing before the
first title of a document under an “uncategorized” title.
107 (out of 303) documents have this “uncategorized”
title. The content under the “uncategorized” title con-
tains a mix of legitimate text segments (either section
title or prose paragraph) and irrelevant text segments
(e.g., document header). The incorporation of irrele-
vant text pieces in ASDUS is a shortcoming. Addition-
ally, ASDUS is prone to errors (e.g., inability to han-
dle the anchor element in HTML) when parsing differ-
ent HTML writing styles in the dataset, and its dataset
does not come with labels (e.g., whether a piece of text
is a section title or a prose paragraph). We amelio-
rate all these shortcomings of ASDUS by annotating
its dataset and introducing a more effective pipeline.
STAPI is novel, because there does not exist a rele-
vant pipeline that comes with annotations and adopts
machine learning algorithms to filter out irrelevant text
segments. With better design of features, STAPI is
shown to be more effective than ASDUS (discussed in
Section 5.4) in reducing irrelevant text segments and
identifying title-text structure.

2.3. Structure Extraction from Other
Document Formats

Other researchers have worked on structure extraction
from formats besides HTML. Bentabet et al. (2020) ex-
tracted the table of contents of any searchable PDF files
using the character-level convolutional neural network
(Zhang et al., 2015). This deep neural network takes
a sequence of characters as input, so they cannot learn
from features corresponding to the visual appearance
of each text segment. Therefore, we do not pursue this
model, because we want our model to learn not only
character-level features but also visual clues of every
text segment (humans may also rely heavily on visual
clues when they do title-text classification).
For scanned documents, Yang et al. (2017), Lee et al.
(2019), and Barman et al. (2020) extracted semantic
structure from document images by performing a pixel-
wise segmentation task. Although we can also use the
same method by converting web documents to scanned
ones, we believe it is costly and unnecessary. So we de-
cide to work on raw HTML documents directly. Aydin
(2021) applied optical character recognition (OCR) op-
erations to first extract textual data from document im-
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ages. Then, naive Bayes (Webb, 2010) was utilized to
perform document classification based on the extracted
texts. Performing OCR on a document and then apply-
ing image processing techniques are also costly oper-
ations. Dang and Nguyen (2021) introduced a novel
deep neural network for information extraction on the
2D character-grid embedding of a document, and their
model captured the textual and spatial relations be-
tween 2D elements. Inspired by their design, our fea-
ture set incorporates spatial information between text
segments.
People have done structure detection as a part of other
things. Kuropiatnyk and Shinkarenko (2020) processed
digital documents structure (documents represented by
“doc” or “docx” files format) using templates, so their
method is not flexible enough like STAPI that can
handle various HTML writing styles. Bentabet et al.
(2019) generated table of contents and designed 28
hand-crafted features for title detection on searchable
PDF documents. Some features that we use for STAPI
are also from their feature set, but our model fits bet-
ter with web documents, because we complement their
idea with HTML-specific features such as tag name.
Mezghanni and Gargouri (2016) recognized the seman-
tic structure of Arabic electronic documents including
tiles and the headings of chapters. However, their ap-
proach cannot be used on our dataset, because it builds
many language-specific rules.
Many models analyzed in this subsection are based
on deep learning, so we conduct experiments between
STAPI and a deep neural network-based model to show
the effectiveness of our approach.

3. Methods
STAPI works in two steps. Its first step involves a filter
that identifies relevant parts from the input text, and
its second step involves a typographic classifier. The
output of the filter will be the input of the typographic
classifier. Figure 2 displays its workflow.

Figure 2: System diagram of STAPI.

3.1. Filter
We train a filter using XGBoost (Chen and Guestrin,
2016) to filter out irrelevant text segments in web docu-
ments like document header and footer, since our focus
is on the main text in a document. The filter serves as an
HTML parser. It first discards HTML elements that do
not present a clear separation of textual sections such as
table, image, and button. The iterative title-text struc-
ture does not apply in these HTML elements, and we do
not lose any of the main text in the document by doing
so. Then, the filter examines all the remaining HTML

tags and keeps those that contain texts. We remove un-
readable characters and extra whitespaces from them.
A binary classifier decides which text to filter out (irrel-
evance class) and which text to keep (pertinence class).
Since the number of items in each class is unbalanced,
we adopt the SMOTE (Chawla et al., 2002) to upsam-
ple the number of training instances of the minority
class. We favor oversampling over downsampling, be-
cause we do not want to lose any training data and the
existing literature shows that oversampling can provide
optimal results (Mohammed et al., 2020).
Our filter uses number of words, relative position, tag
name, parent tag name, next tag name in the list, ID
of the tag, and average sentence encoding as features.
The average sentence encoding is a numerical represen-
tation of every text candidate. To compute it, we break
each candidate into sentences, tokenize each sentence,
compute sentence encoding outputs using a pre-trained
BERT model (“bert-base-cased” from Transformers li-
brary of Hugging Face), and average them. We be-
lieve irrelevant text segments are more likely to be se-
mantically different than the rest, so we adopt average
sentence encoding. The average sentence encoding for
each candidate has a fixed length of 768, and it is con-
catenated with the rest of the features to form a feature
set as the input to our XGBoost model. We apply one-
hot encoding to all the categorical features.
We design the feature set based on our literature review
in the previous section. Tag name, next tag name in
the list, and ID of the tag correspond to the visual clues
of text segments. Number of words is morphological
characteristic and can be treated as the syntactic fea-
ture. Relative position encodes spatial information, and
average sentence encoding is the semantic feature.

3.2. Typographic Classifier
The typographic classifier takes the output from the fil-
ter as input and performs structure extraction. It tries
to classify every candidate proposed by the filter into
three classes: title, prose text, and miscellany. The mis-
cellany class is a minority class and is designed for col-
lecting all texts that are not necessarily parts of any sec-
tion in semantics but are still related to the document
discourse. For example, a piece of metadata like “Last
updated at Jan 29, 2021” in a privacy policy document
belongs to the miscellany class. Links that navigate
within the page (e.g., “Back to top”) are also in this
class. (Note that the navigation link for redirecting to
another page belong to the irrelevance class in the pre-
vious step and should be thrown away.) Instead of sim-
ply viewing the miscellany class as the irrelevance class
in the previous step, we design the miscellany class to
keep as many relevant texts as possible, since it may
become useful for future study (e.g., extracting the re-
vision time of a web page). Under the goal of keeping
as much training data as possible, we also use SMOTE
to upsample the number of training instances for the
classes of title and miscellany.
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Type # Documents # Irrelevance # Pertinence # Title # Prose
Text

# Miscellany

Privacy Policy 144 18770 12500 2838 9233 429
Terms of Service 99 7554 9476 2142 7099 235

Miscellaneous Topics 48 5426 2363 506 1648 209

Table 1: Detailed statistics of our proposed dataset

The features that the typographic classifier uses are
number of words, ratio of current text length to next
text length in the list, number of punctuation symbols,
tag name, next tag name in the list, and average sen-
tence encoding. We apply the same techniques as used
in the filter to encode categorical features and calculate
average sentence encoding. We train the typographic
classifier using XGBoost, and it generates a sanitized
version of the raw HTML document that contains pre-
dicted labels of each relevant text segment. Notice that
the number of punctuation symbols and the ratio of cur-
rent text length to next text length in the list are mor-
phological characteristics.

4. Dataset
As mentioned in Section 2.2, there does not exist a
dataset that contains annotated web documents with
the label for whether each text segment is a title or
prose text. Thus, we build the first dataset for ex-
tracting the iterative title-text structure from web doc-
uments. Our dataset is based on the HTML files col-
lected by Gopinath et al. (2018). There are three
types of web documents: privacy policy, terms of ser-
vice, and miscellaneous topics. The miscellaneous top-
ics cover news, sports, botany, web design, photogra-
phy, data science, cookie policies, HTML, history, mi-
graine, dataset, technical documentation, shoes, gram-
mar, kids stories, and cricket domains. Table 1 summa-
rizes the key statistics of our dataset after annotation.
Within a specific document type, the sum of title, prose
text, and miscellany classes should equal the number of
instances in the pertinence class. We see that the prose
text class is always the majority class across all docu-
ment types. On the other hand, the pertinence category
is the majority class in terms of service documents, but
it is the minority class overall. Our dataset incorporates
18 domains with a focus on privacy policies.
We annotated each web document in our dataset man-
ually by adding a label (about title, prose text and mis-
cellany classes) to every relevant text piece that we
see through the Google Chrome browser. As elabo-
rated above, the miscellany class contains texts such
as “Back to top” and “Last updated at Jan 29, 2021”.
The first author of this paper completed all the anno-
tation job to ensure consistency, and the whole anno-
tation process took more than 43 consecutive hours,
which is a long time just for 291 web documents. We
relied on visual clues through the browser to distin-
guish section titles from prose paragraphs. We group

all the labeled text segments together and call them
the gold standard. Note that this annotation work is
for labels that the typographic classifier uses. In other
words, the annotator only labeled the pertinence class
(pertinent text segments) to improve work efficiency.
Our filter will compare its preprocessed text segments
with the gold standard, and those with no label assigned
will belong to the irrelevance class. We deleted doc-
uments that are duplicate or have lots of hidden con-
tents. For example, text segments are not displayed by
the browser if they have “display:none” as the style at-
tribute. When a web document has few hidden seg-
ments, the annotator still labeled them. But the web
document was discarded if it contains so many hidden
segments that the annotator determined the extremely
high cost of locating them. Moreover, when the whole
content of a web document belongs to a table, depend-
ing on the difficulty and reasonableness, the annotator
either deleted the table tag in the original document to
extract the content from the table or removed the entire
document from our dataset. The reason is that SPAPI
is not designed for labeling text segments in tables. We
noted the cases when we had to modify the original
web document. Whenever there are ambiguous cases,
the annotator followed one rule: titles must differenti-
ate themselves from prose text by having different vi-
sual or syntactic clues. For instance, when prose para-
graphs are not numbered while the other text segments
are bullet points, the annotator will assign those bullet
points as titles even if all text segments share the same
visual style (other than being numbered or not).
For reproducibility, we release our dataset along with
the modification note and time spent annotating each
document. We believe the time spent on each doc-
ument is an indicator of the complexity of the docu-
ment, so we keep it for future research. Specifically,
we sometimes spent more than 35 minutes annotating
a single web document due to its lengthy structure,
which demonstrates the high costs of data annotation
for HTML title-text extraction.

5. Experiments
In this section, we first discuss the construction of
our baseline models. We then identify a limitation of
STAPI and possibly all existing applications that in-
volve scraping texts from HTML documents. Finally,
we conduct four kinds of experiments to showcase the
effectiveness of STAPI: (1) train and test STAPI on its
processed text segments to check STAPI’s capability to
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Weighted Precision Weighted Recall Macro Precision Macro Recall
Filter 0.933 0.933 0.930 0.932

Typographic Classifier 0.968 0.967 0.893 0.872

Table 2: Precision and recall for both filter and typographic classifier of STAPI

Figure 3: Confusion matrices and ROC curves for both filter and typographic classifier

predict unseen data, (2) run a baseline model to exam-
ine the necessity of STAPI’s filter, (3) compare STAPI
with two other baselines to see how each model per-
forms on the title-text classification task, and (4) evalu-
ate the importance of each feature via an ablation study.

5.1. Baseline Models
Program jusText (Pomikálek, 2011) is a competitive
tool for parsing HTML documents and claims to re-
move boilerplate content. We select it as a baseline
model to test capability of the filter of STAPI. Because
jusText is purely based on heuristic, we run it directly
on our test set.
Two other baseline models come from ASDUS
(Gopinath et al., 2018): a domain independent model
(DI pipeline) using K-means clustering, and a domain
dependent model (DD pipeline) using a feed forward
neural network. Because some static files of ASDUS
are unavailable, we cannot run its source code. Instead,
we implement both DI and DD models by ourselves
based on the paper and source code of ASDUS. For
the DI pipeline, scikit-learn (Pedregosa et al., 2011)
is utilized to realize the K-means clustering algorithm.
The system builds 8 features to capture the syntactic
aspect of each text piece, and clustering is performed

over these eight manually designed features. For each
potential title identified in clustering, the system calcu-
lates an overlap score between its lemmatized form and
the lemmatized form of the next text segment. Finally,
any potential title that has an overlap score above 75%
will be classified as a section title.
For the DD pipeline, a deep neural network is adopted
to conduct supervised learning. We train this pipeline
using our annotated data. The pipeline uses text from
titles and from prose paragraphs to build two separate
word embedding models via gensim (Rehurek and So-
jka, 2010). It then computes two semantic relatedness
scores and concatenates them with the string length of
the corresponding text segment to form a feature set.
We utilize scikit-learn to realize our own version of the
DD pipeline. Although DD claims to classify a text
piece into “title”, “prose”, or “unrelated”, it does not
define the “unrelated” class. Thus, we only consider
“title” and “prose” classes when we train DD.

5.2. Limitation
We test the parsing capability of STAPI under all writ-
ing styles in our dataset. As shown in Figure 1, some
HTML authors may prefer to place a text in a deeply
nested organization by nesting HTML elements (e.g.,
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Model Privacy Policy Terms of Service Miscellaneous Topics All Types Combined
jusText 63.0% 61.3% 63.7% 66.8%

Filter of STAPI 82.8% 93.2% 78.6% 90.5%

Table 3: The model performance in terms of gold standard coverage

Model Privacy Policy Terms of Service Miscellaneous Topics All Types Combined
DI 0.797 0.800 0.733 0.773
DD 0.854 0.884 0.831 0.869

STAPI 0.965 0.977 0.923 0.976

Table 4: Weighted F1 scores of models across different document types (domains)

the example from Amtrak), which poses a challenge to
the HTML parsing. Others may prefer a flatter organi-
zation (e.g., the examples from ABS-CBN and ATT).
Since the filter of STAPI compares a raw document
with its corresponding gold standard to generate la-
bels of each text segment (described in Table 4), we
set the text in the gold standard as target and compute
the percentage of gold standard coverage to see how
well STAPI can scrape text from raw HTML files. As
a result, we find six documents where more than 50%
of their gold standards are not picked up by STAPI. In
other words, for these six documents, more than half of
their original title-text structures will be lost in training
or testing if we incorporate them in the dataset. STAPI
successfully picks up 95.0% of the gold standard on av-
erage per document after removing the six documents,
but this coverage shrinks to 93.7% if we maintain all
the web documents in our dataset.
Analyzing the HTML source code of these six docu-
ments, we conclude that the mismatch between the vi-
sual appearance of a text segment and its correspond-
ing source code is the reason why STAPI cannot match
more than half of the gold standard in these six doc-
uments. Within a web page, a text segment that peo-
ple see may be backed up by several HTML elements.
For example, the example from ATT in Figure 1 has a
text segment that is backed up by bold and anchor el-
ements. Therefore, an ideal system needs to figure out
the number of HTML elements to be concatenated and
the time for concatenation. Since this element concate-
nation problem is related to HTML parsing and is not
the major concern of this paper, we decide to remove
these six documents from training or testing and leave
this problem for future study.

5.3. Setup
We choose to perform four types of experiments. We
randomly select 60% of documents for training, 20%
of documents for validation, and the rest 20% for the
testing set. The first experiment involves training and
testing STAPI on its processed text segments from all
three document types. We analyze the performance of
both filter and typographic classifier. After we tune hy-
perparameters on the validation set, the filter ends up
with a learning rate of 0.1, and the typographic classi-

fier has a learning rate of 0.65.

The second experiment is to compare the filter of
STAPI with jusText across different document types
(domains) of our dataset. We seek to showcase the ne-
cessity of proposing a novel method for removing ir-
relevant text segments in HTML. To achieve this, we
calculate the percentage of gold standard coverage for
both models. The learning rate of the filter has values
of 0.3, 0.25, 0.3, and 0.1 for the second, third, fourth,
and fifth column of Table 3.

The third experiment tests the title-text classification
capability of STAPI, DI, and DD. We seek to check
how the typographic classifier of STAPI performs
against DI and DD. According to the source code of
ASDUS, both DI and DD adopt generic parsers to pro-
cess raw HTML documents. In particular, they dis-
card more HTML tags than STAPI does. For exam-
ple, anchor tags, form tags, and list-related tags are
discarded in the baselines but not in STAPI. Therefore,
when different pipelines parse HTML differently, each
pipeline will end up with different training and testing
sets. Since HTML parsing is not the point of interest of
ASDUS and the previous experiment already examines
the parsing performance of STAPI, we train and test all
the pipelines on the same data parsed by STAPI. In this
experiment, we throw away the miscellany class in our
dataset when we compare performance across different
systems. The reason is that the definition of miscellany
class is not defined in our baselines. We also select the
weighted F1 score as the evaluation metric, because it
takes label imbalance into account. As for hyperpa-
rameters, the learning rate of the typographic classi-
fier has values of 0.3, 0.7, 0.3, and 0.3 for the second,
third, fourth, and fifth column of Table 4. The num-
ber of clusters of DI is set to 2 for all the columns, and
DD has (h1=4, h2=8), (h1=4, h2=8), (h1=16, h2=2),
(h1=4, h2=8), and (h1=24, h2=48) for the second, third,
fourth, and fifth column of Table 4.

Finally, we conduct an ablation study to showcase the
different contributions of features adopted by the filter
and the typographic classifier. In this study, we drop a
feature and re-train our model to see how the weighted
F1 score gets affected.
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Dropped Feature Filter Typographic Classifier
Number of words 0.928 0.965
Relative position 0.932 -

Tag name 0.929 0.957
Parent tag name 0.929 -

Next tag name in the list 0.924 0.967
ID of the tag 0.932 -

Average sentence encoding 0.920 0.938
Ratio of the current text length to next text length in the list - 0.951

Number of punctuation symbols - 0.966
None 0.933 0.967

Table 5: Ablation study for the performance (weighted F1 score) of filter and typographic classifier

5.4. Results
The effectiveness of STAPI is showed by evaluating the
performance of the filter and the typographic classifier.
Table 2 summarizes their precision and recall, and Fig-
ure 3 shows their confusion matrices and ROC curves.
The filter achieves 0.93 on both weighted precision and
recall, and the typographic classifier achieves 0.97 on
both of these metrics, which demonstrates the strong
performance of STAPI. Note that the typographic clas-
sifier is low on macro recall (0.87). As indicated in
the confusion matrix, macro recall assigns the minority
(miscellany class) with more weight and we choose to
incorporate it at the cost of a slightly lower recall value,
because the AUC score of the miscellany class is still
high (0.96).
Table 3 summarizes the performance of each model in
terms of gold standard coverage. The filter of SATPI
significantly outperforms jusText in every document
type. Although there are tools available for extract-
ing relevant text content from HTML, the performance
of the filter demonstrates the necessity of designing a
novel content filtering model as a part of STAPI. Both
filter and jusText achieve relatively lower coverage on
the documents with miscellaneous topics, which indi-
cates the potential of mitigating the HTML element
concatenation problem discussed in Section 5.2.
In Table 4, the typographic classifier of STAPI is com-
pared against DI and DD for title-text classification. It
is the best model in terms of weighted F1 score. DD re-
lies heavily on semantic features while DI relies purely
on syntactic features. In addition to a wide variety of
techniques such as upsampling, the typographic clas-
sifier constructs features on both semantic and syntac-
tic aspects. This is one of the reasons why it outper-
forms the baselines. Its high F1 score on all three docu-
ment types combined (0.976) demonstrates the capabil-
ity of STAPI as a reasonably domain-agnostic system.
The DD pipeline leads DI in every column because of
the advantage of supervised learning when labels are
available. The superiority of STAPI and DD over DI
showcases that conducting unsupervised learning for
title-text classification on web documents is a subopti-
mal approach and some level of supervision is required
for more competitive performance. Such finding rein-

forces our motivation and the utility of proposing an
annotated dataset for extracting the iterative title-text
structure from HTML documents.
In our ablation study, the importance of each feature
can be treated as the performance drop that the feature
causes. The more important a feature is, the more per-
formance drop it can cause. In Table 5, the average sen-
tence encoding is the most important feature for both
filter and typographic classifier, which demonstrates
the recent success of pre-trained transformer models.
For the filter, next tag name in the list is also important,
so we can infer that the filter we build is trying to learn
the decision boundary of headers and footers. Relative
position and ID of a tag are the least important ones for
the filter. As for the typographic classifier, it is shown
that ratio of the current text length to next text length in
the list is an important feature, because a title usually
has much shorter length than its following paragraph.
On the other hand, number of punctuation symbols is
the least important feature, which indicates that many
titles have similar number of punctuation symbols as
prose texts in our dataset.

6. Conclusion
We propose a novel scraper called STAPI for extract-
ing the iterative title-text structure from web docu-
ments. STAPI mitigates the bottlenecks of previous
approaches by adopting a filter and a typographic clas-
sifier. We show that STAPI is more effective at title-
text classification in comparison to two existing mod-
els. We release our implementation along with our an-
notations and a web application to facilitate research of
structure extraction from HTML.
Future research should study the element concatenation
problem in web documents. In particular, when the vi-
sual appearance of a text segment is backed up by sev-
eral HTML tags, a model needs to efficiently locate the
corresponding HTML tags and concatenate them. Such
a model will enhance the parsing ability of any HTML
parsers and improve the gold standard coverage of our
title-text classification pipeline. In addition, being able
to identify the hierarchy of section titles (e.g., titles and
subtitles) will also be valuable.
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