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Abstract
Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), has been one of the central tasks in
Artificial Intelligence (AI) and Natural Language Processing (NLP). RTE between the two pieces of texts is a crucial problem,
and it adds further challenges when involving two different languages, i.e., in the cross-lingual scenario. This paper proposes an
effective transfer learning approach for cross-lingual NLI. We perform experiments on English-Hindi language pairs in the
cross-lingual setting to find out that our novel loss formulation could enhance the performance of the baseline model by up to
2%. To assess the effectiveness of our method further, we perform additional experiments on every possible language pair using
four European languages, namely French, German, Bulgarian, and Turkish, on top of XNLI dataset. Evaluation results yield up
to 10% performance improvement over the respective baseline models, in some cases surpassing the state-of-the-art (SOTA). It
is also to be noted that our proposed model has 110M parameters which is much lesser than the SOTA model having 220M
parameters. Finally, we argue that our transfer learning-based loss objective is model agnostic and thus can be used with other
deep learning-based architectures for cross-lingual NLI.
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1. Introduction
Textual Entailment (TE) is one of the fundamental prob-
lems of Natural Language Understanding (NLU). Un-
derstanding entailment and contradiction is fundamental
to understanding natural language, and inference about
entailment and contradiction is vital for developing se-
mantic representations of natural languages. For two
sentences, premise (P) and hypothesis (H), the Natural
Language Inference (NLI) task is to understand the rela-
tionship between these two sentences (viz. Entailment,
Contradiction, Unknown/Neutral). It is an elusive and
frontier problem in Artificial Intelligence (AI). More
specifically, H entails P if it strictly follows the state-
ments:

• Hypothesis (H) is a logical consequence of Premise
(P).

• Hypothesis (H) is true in every circumstance in
which the Premise (P) is true.

If both P and H are in different languages, the problem
is known as Cross-Lingual Textual Entailment (CLTE).
Over the years, Natural Language Inference (NLI) has
been addressed using a large variety of techniques,
including those based on symbolic logic, knowledge
bases, machine learning algorithms, and neural net-
works. While the field of Textual Entailment is quite
popular and developed, limited research has been done

*Work done while he was an intern at IIT Patna.

in the field of CLTE. The main challenge of CLTE is that
the fragments of texts are in different languages having
different semantic and syntactic structures and grammar.
NLI or TE aims to detect logical consequences within a
given pair of text fragments, and to do this efficiently, we
need to incorporate world knowledge and facts. In this
paper, we focus on the challenging task of cross-lingual
textual entailment, and propose an effective architecture
to improve its performance. To this end, we propose a
novel transfer learning mechanism from a certain lan-
guage pair to another language pair, equipping the latter
with knowledge and features obtained from the former
language pair efficiently. We also introduce a joint loss
objective accompanied by a traditional cross-entropy
loss function. We perform a wide range of experiments
and show that our baseline model, while equipped with
the novel transfer learning technique, significantly im-
proves the performance of CLTE tasks. We evaluate our
approaches on a standard English - Hindi cross-lingual
dataset (Saikh et al., 2019), derived from the Stanford
Natural Language Inference (SNLI) (Bowman, Samuel
R. and Angeli, Gabor and Potts, Christopher, and Man-
ning, Christopher D., 2015) Corpus. To further assess
the effectiveness of our proposed methodology across
a wide range of languages, we also perform a wide
range of experiments on four languages of the XNLI
(Conneau et al., 2018) dataset i.e French, German, Bul-
garian and Turkish for Cross-lingual natural language
inference tasks and show improvement of results us-
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ing our proposed approach (c.f. Section 3.2) than the
existing baseline (c.f. Section 3.1). Furthermore, we
provide a detailed analysis of the effects of employing
our proposed transfer learning mechanism on the hid-
den state representations of the models used. Though
we analyze our transfer learning mechanism on BERT
(Devlin et al., 2019), this transfer learning technique is
architecture-independent, and it can be used with both
Transformer (Vaswani et al., 2017) based and Recurrent
Neural Network-based models.
This paper mainly focuses on Cross-lingual Textual En-
tailment (CLTE) and methods to improve the perfor-
mance of the existing models in CLTE. The specific
attributes of the current work are summarized as fol-
lows:

1. We introduce a novel transfer learning mechanism
from one language pair to another for better per-
formance in the textual entailment problem in a
cross-lingual setting.

2. To enable the transfer learning, we introduce a
novel joint loss function along with the traditional
cross-entropy loss function and show that intro-
ducing this mechanism along with the joint loss
function improves the performance of our baseline
model significantly.

3. To establish the effectiveness and robustness of our
proposed transfer learning mechanism and joint
loss function, we perform a wide range of experi-
ments on a standard English - Hindi CLTE dataset
(Saikh et al., 2019) and on chosen language pairs
(viz. language pairs from French, Turkish, Ger-
man, Bulgarian) from the XNLI dataset (Conneau
et al., 2018). We show that our proposed method
performs consistently better than the baseline used,
sometimes surpassing the current state-of-the-art.
We perform a detailed comparison of our proposed
method and the current state-of-the-art for CLTE.

4. Lastly, we also perform a detailed analysis of the
transfer learning mechanism and its effect on the
hidden state representations by applying this mech-
anism. We establish that our proposed methods
are indeed efficient in transferring features from
one language pair to another language pair, which
ultimately improves the performance.

5. Our proposed method uses the standard Multilin-
gual BERT-base having 110M parameters and in
some cases it outperforms the current state-of-the-
art (SOTA) model i.e., XLM-R-base (Conneau et
al., 2020), which contains 270M parameters. This
makes our method more parameter efficient than
the existing SOTA without losing much perfor-
mance.

2. Related Work
Natural Language Inference is a widely-studied problem.
In a monolingual setting, the study of Natural Language
Inference (NLI) has been prevalent, especially in the En-
glish language. Our focus is on improving cross-lingual

NLI, i.e., NLI, where the sentences are in two different
languages.
Textual Entailment: One of the first notable advance-
ment of Natural Language Inference is the creation
of FraCaS (Framework for Computational Semantics)
dataset (Cooper et al., 1996) which was created to eval-
uate the semantics of Textual Entailment. The dataset
was divided into three classes: Entailment, Contradic-
tion, and Neutral. After several years, in PASCAL RTE
(2005) challenge (Dagan et al., 2006) the NLI dataset
contained real-life premise-hypothesis pairs. One of the
most notable works in the field of NLI is the surfacing
of SNLI (Bowman, Samuel R. and Angeli, Gabor and
Potts, Christopher, and Manning, Christopher D., 2015),
and MultiNLI (Williams et al., 2018) datasets. Many
models have been built on these datasets viz. (Chen et
al., 2017; Rocktäschel et al., 2016; Parikh et al., 2016).
Recently, Google T5 (Raffel et al., 2019) model has
obtained state-of-the-art in many NLP tasks, including
monolingual NLI.
Cross-lingual Entailment: Cross-Lingual Natural Lan-
guage Inference is an extension to the NLI task.
(Mehdad et al., 2010) introduced this concept of CLTE.
Later, SemEval-2012 (Negri et al., 2012) and SemEval-
2013 (Negri et al., 2013) with CLTE’s application sce-
nario in content synchronization were organized. Re-
cently, multilingual research in NLP has seen much
interest, especially in the Deep Learning era. (Conneau
et al., 2018) introduced XNLI dataset containing 14
languages apart from English. There have been several
attempts to perform cross-lingual NLI (Aghajanyan et
al., 2021; Le et al., 2020; Cui et al., 2021; Xue et al.,
2022; Conneau et al., 2020). However, cross-lingual
NLI on low-resource languages remains mostly unex-
plored. This paper proposes a novel transfer-learning
method and compares our findings with the state-of-the-
art model, XLM-R.

3. Methodology
We define a baseline (c.f. 3.1), which is Multilingual
Cased BERT Base (Devlin et al., 2019) architecture with
12 hidden layers. We fine-tune this baseline model to
perform the CLTE task. To improve the baseline model,
we introduce a novel fine-tuning procedure where we
propose a joint training loss function consisting of an
additional loss term and a standard cross-entropy loss
term associated with supervised classification tasks. We
refer this improved baseline as BERT-KLD, defined in
Section 3.2.

3.1. Baseline Model
We use the Multilingual Cased BERT Base1 model as
our baseline, and it is described below in details.
Input Layer: We input a sentence pair consisting of
premise and hypothesis to the model. It is important that
we use the premise and hypothesis already translated

1https://github.com/google-research/
bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 1: Schematic of transfer learning method to train baseline architecture

into two different languages.
Hidden Layers: After the inputs are fed into the model,
we take the final hidden state (i.e., the output of the
Transformer) for the first token, which corresponds to
the special [CLS] token embedding. We obtain this
context vector (we call it C) with a dimension of 1×H
(in this case of BERT base, H = 768).
Classification Layer: The hidden representation vector
C is then fed into a feed-forward layer (FFN) (with
K × H dimensional weight, denoted by W ), where
K is the number of ground truth labels i.e Entailment,
Neutral, Contradiction (in this case, K = 3). We call
this intermediate representation as F .

F = C • WT + b (1)

where • denotes the matrix multiplication between the
weight matrix, W and the context vector C and b is a
bias term. The label probabilities are computed with a
standard softmax, P = softmax(F ). P has a dimen-
sion of 1 × K. All the BERT and feed-forward layer
parameters are fine-tuned jointly to maximize the log-
probability of the correct label by employing standard
cross-entropy loss.

3.2. Improved Baseline Model (BERT-KLD)
To further improve the performance of our baseline
model, we introduce a novel loss formulation that fa-
cilitates transfer learning from an already trained base-
line model (Teacher Model; henceforth called P) in
language pair X-Y to a baseline model we are train-
ing (Student Model; henceforth called Q) in language
pair A-B. We name this Student model as BERT-KLD.
Firstly, we train our baseline model denoted as P in the
X-Y language pair (X is the language of premise, Y is

the language of hypothesis). After training P , we ini-
tialize a baseline model Q, which we train using a novel
loss formulation. We use A-B language pair (A is the
language of premise, B is the language of hypothesis)
as input to Q.
For a given input example consisting of a premise and a
hypothesis, we translate them to X-Y and A-B language
pairs, respectively. We then input the translated sen-
tence pairs (X-Y) and (A-B) to P and Q, respectively.
We denote hidden1 and hidden2 as the final hidden state
i.e. output of Transformer for the first token, which
corresponds to the special [CLS] token embedding for
the models P and Q, respectively. We optimize the
parameters of model Q by employing the following loss
function.

JointLoss = CrossEntropy(a, b) + λ×DKL(h1 ∥ h2)
(2)

Where,

• a is log probability of the associated label output
by model Q and b is one hot representation of the
ground truth label.

• h1, h2 are the softmax probability distribution for
hidden1 and hidden2 respectively.

h1 = softmax(hidden1) (3)

h2 = softmax(hidden2) (4)

• DKL(P ∥ Q) denotes the KL-Divergence between
two probability distributions (P(x) and Q(x)) de-
fined as,

DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(5)
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• λ refers to a hyper-parameter associated with KL-
Divergence loss.

A detailed training algorithm is described below (Algo-
rithm 1).

Algorithm 1 Algorithm to fine-tune BERT-KLD for
CLTE
Require: : A baseline model(P) already fine-tuned on language pair X and Y.
Require: : Language pair A and B to be used in training a new BERT model(Q)

with parameters θ.
Require: : Hyper-parameter λ initialized between 0.01 and 0.5.
1: while not converges do
2: Sample a batch(with Batch Size = B) of premise and hypothesis as a

set of sentence pairs τ.
3: Verify the premise and hypothesis for each sentence pair is translated

into language pairs X and A. and Y and B respectively.
4: Batch Loss← 0
5: for each α in τ do ▷α is a sentence pair.
6: Construct one hot labels as one hot representation of ground truth

label associated with α
7: N← no of labels
8: Construct an example I1 for already trained teacher model (P) using

premise and hypothesis from α, translated into language X and Y.
9: Construct an example I2 for to be trained student model (Q) using

premise and hypothesis from α, translated into language A and B.
10: h1← hidden representation from P (I1) ▷

dim(h1)← 768*1
11: h2← hidden representation from Q(I2) ▷

dim(h2)← 768*1
12: logits← Feed Forward Network(h2)
13: log probs← log(softmax(logits))
14: Cross-Entropy Loss←−

∑N
n=1 log probs ∗ one hot labels

15: KLD Loss← DKL(softmax(h1) ∥ softmax(h2))
16: Total Loss← Cross-Entropy Loss + λ ∗ KLD Loss
17: Batch Loss← Batch Loss + Total Loss
18: end for
19: Loss← (1/Batch Size)∗

∑Batch Size
i=1 Batch Loss[i]

20: Optimize Parameters θ of model Q with standard BERT optimization
technique with loss computed in the previous line.

21: end while

3.3. Intuitive Explanation of Adjoin Loss
Function

While for multiclass classification tasks, the trivial
Cross-Entropy loss function is used, in this paper, we
introduce a better way to work with CLTE tasks (a multi-
class classification task) by using a weighted sum of two
different loss terms i.e. the trivial cross-entropy loss and
the Kullback-Leibler Divergence or KL-Divergence (c.f.
equation 2). According to the setting described in Sec-
tion 3.2, we obtain the hidden representation hidden1,
hidden2 from model P and Q, respectively. Next, we
convert them into softmax probabilities h1, h2 and com-
pute the KL-Divergence between h1 and h2 as shown
in Equation 6.

DKL(h1 ∥ h2) =
∑
x∈X

h1 log

(
h1

h2

)
(6)

Thus, while training the second model Q, the term
DKL(h1 ∥ h2) captures all the important learned repre-
sentations of the already trained model P from h1 and
transfers them to h2, thereby enriching information that
is useful for Textual Entailment problem employing Q
in A-B language-pair. Next, we compute JointLoss
defined in Equation 2. Later we discuss the consistent
improvements achieved using this adjoin loss function
over the trivial Cross-Entropy loss function. We demon-
strate training process of BERT-KLD in schematic 1.

4. Datasets and Experimental Setup
4.1. Datasets
We perform experiments on four European languages,
i.e. French (fr), German (de), Bulgarian (bg) and Turk-
ish (tr) of XNLI (Conneau et al., 2018) dataset for the
baseline and the proposed BERT-KLD model (i.e. im-
provement on baseline using adjoin loss). We use all
the 5, 000 sentence pairs from the XNLI-Test set for
each language and split them into train and test set, re-
spectively, with 10% of sentences in our test set. For
validation, we have used 5% examples of the training
set. To maintain the alignment of training and test set
between each of the language pairs, we use a fixed ran-
dom seed across every language pairs.
To assess the performance of our models, we further
test our baseline and modified architecture on a dataset
(Saikh et al., 2020) for cross-lingual NLI on English-
Hindi language pairs. This dataset is derived from the
SNLI (Bowman, Samuel R. and Angeli, Gabor and
Potts, Christopher, and Manning, Christopher D., 2015)
Corpus. To differentiate this dataset from XNLI dataset,
we call this dataset as EH-XNLI. We report the per-
formance of our proposed models on both XNLI &
EH-XNLI datasets in Section 5 below. For EH-XNLI,
we have used the same train-dev-test split as in (Saikh
et al., 2020).

4.2. Experimental Setup
For training of both baseline and BERT-KLD, we use
the following training setup: We employ a batch size of
28 and an initial learning rate of 2e− 5 and a maximum
sequence length 128. We use 42 as a random seed. A
warm-up proportion of 0.1 is used, where warm-up is
a period where the learning rate is low and gradually
increases, usually helping the training procedure. For
all experiments, we run each of them for 5 epochs. Both
training procedures are executed on NVIDIA Tesla P100
GPU environment. TensorFlow framework is used to
perform all the experiments.

5. Results and Discussions
5.1. Evaluation on EH-XNLI dataset
5.1.1. Evaluation using baseline model
Firstly we evaluate our baseline model (c.f. Section
3.1) on English-Hindi and Hindi-English language pairs
from our EH-XNLI dataset. From the Table 1, we see
that the accuracy obtained are 68.21% and 71.08%,
respectively, whereas the reported accuracy scores
according to (Saikh et al., 2020) are 69% and 72%,
respectively.

5.1.2. Evaluation using BERT-KLD
As discussed in Section 3.2, while training model Q for
A-B language pair using our proposed adjoin training
loss, P is an already trained baseline model on language
pair X-Y. Note that, when A-B is English-Hindi, then
X-Y is Hindi-English and vice-versa. From Table 1,
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for both English-Hindi and Hindi-English language
pairs, we obtain 2.15% (from 68.21% to 70.36%) and
1.22% (from 71.08% to 72.30%) improved accuracy
than the baseline model, indicating positive transfer
of knowledge from our baseline model trained on
English-Hindi (or Hindi-English) language pairs
to a model which we train on Hindi-English (or
English-Hindi) language pairs, equipped with adjoin
loss function (c.f. Equation 2).

Model Premise Hypothesis Accuracy (%)

Baseline Eng Hin 68.21
Hin Eng 71.08

BERT-KLD Eng Hin 70.36
Hin Eng 72.30

Table 1: Results obtained on the baseline and the
improvement on baseline on different input modali-
ties. Here, Eng: English; Hin: Hindi; KLD: Kull-
back–Leibler divergence Loss Function. For all the
experiments, λ=0.2

5.2. Evaluation on XNLI dataset
5.2.1. Evaluation using baseline
We perform 6 experiments using our baseline model (c.f.
3.1) with language pairs fr-de, fr-tr, fr-bg, de-tr, de-bg,
tr-bg. Of all these experiments, we obtain the highest
accuracy in fr-de (57.6%) and lowest in tr-bg (48%).
The results of these experiments are tabulated in Table
2. We specifically choose low-resource language like
Bulgarian (bg) and Turkish (tr) to show the effects of
the proposed transfer learning method on low-resource
languages.

Language Pairs

fr-de fr-tr fr-bg de-tr de-bg tr-bg

Accuracy 57.6 50 56 51.6 54.8 48

Table 2: Results obtained in terms of accuracy (%) on
four languages of XNLI dataset using baseline

5.2.2. Evaluation using BERT-KLD
We conduct experiments using BERT-KLD on all of
the language pairs and the results of the experiment is
tabulated in the Table 3. In Table 3, each cell shows
accuracy score of the BERT-KLD model trained using
the language pair shown in respective column by using
hidden representation from the baseline model (thereby
optimizing adjoin loss) already trained in language
pair shown in respective row. For example, training
BERT-KLD on de-bg by obtaining hidden representation
from model baseline already trained on de-tr leads to
an accuracy of 58.4%. For each column of Table 3, we
highlight the best accuracy score.
Comparing Tables 2 & 3, we observe that our improved
baseline with adjoin loss i.e. BERT-KLD performs
consistently well over the baseline. For example, tr-bg

baseline accuracy is 48% and the accuracy increases to
58.2% when we train BERT-KLD model in tr-bg (with
hidden representation from baseline model already
trained in de-tr) using our novel training algorithm and
select optimal hyper-parameter λ = 0.1 by grid search.
Thus, we obtain 10.2% improvement in accuracy for
tr-bg language pair.

Transferred

Transferring fr-de fr-tr fr-bg de-tr de-bg tr-bg

fr-de - 50.4 57 50 57 51
fr-tr 59 - 57 51 58 54.2
fr-bg 59.2 52 - 51 57.6 53.8
de-tr 58.6 49.8 58.4 - 55.4 58.2
de-bg 57.8 51.8 56.8 49.4 - 54
tr-bg 58.8 51 57.2 49.6 57.2 -

Table 3: Results obtained in terms of accuracy (%)
on four languages of XNLI dataset using BERT-KLD.
Here, X-axis: Knowledge is being transferred from
these language pairs (Rows); Y-axis: Knowledge is
being transferred to these language pairs (Columns);
Language identifier: French: (fr), German: (de), Bul-
garian: (bg), Turkish (tr).

5.2.3. Hyper-parameter Optimization
As stated in Algorithm 1, we introduce a hyper-
parameter associated with the KL-Divergence loss to
account for its importance. We conduct a grid search to
optimize hyper-parameter λ for each of the experiments
and find its optimal value ranging between 0.01 to 0.5
depending on the language pair. For hyper-parameter
optimization, we have used 5% of the XNLI train set,
which we have formed for our experiments 4.1. For
each of the experiments in Table 3, we use the optimal
hyper-parameter value that was found by the grid search.
For finding optimal λ in our XNLI experiments, we use
grid search and ran the experiments for the following
values 0.01, 0.05, 0.1,0.2, 0.25, 0.27, 0.3, 0.4, 0.5. For
each of the XNLI experiment mentioned in Table 3,
the optimal values of hyper-parameter λ used in the
experiments are shown in the Table 4

Transferred

Transferring fr-de fr-tr fr-bg de-tr de-bg tr-bg

fr-de - 0.2 0.2 0.2 0.2 0.2
fr-tr 0.1 - 0.1 0.5 0.2 0.2
fr-bg 0.1 0.1 - 0.2 0.5 0.27
de-tr 0.01 0.1 0.5 - 0.3 0.1
de-bg 0.27 0.1 0.5 0.2 - 0.1
tr-bg 0.1 0.1 0.1 0.25 0.3 -

Table 4: Optimal λ used for each XNLI experiment

5.2.4. Comparison to the State-of-the-arts
We use XLM-R model, which is currently the state-of-
the-art (SOTA) model for learning cross-lingual repre-
sentations on XNLI dataset. To compare this model’s
performance to BERT-KLD, we train XLM-R model on
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the same XNLI training set that we used to train our
baseline model and BERT-KLD both. To make fare
comparisons between these models, we use XLM-R-
base model and train it using the same experimental
setup used to train our proposed model. It is important
that during training, the XLM-R model was trained com-
pletely in English and later tested in 6 language pairs
(fr-de, fr-tr, fr-bg, de-tr, de-bg, tr-bg). The compari-
son with our best performing model (BERT-KLD) are
tabulated in Table 5. It is noteworthy that in some of
the language pairs (fr-de, tr-bg), our model exceeds the
performance of the SOTA model while in some of the
language pairs (fr-tr, fr-bg, de-tr) the performance is
very close to SOTA. We also note that our proposed
model only has 110M parameter count, which is far
lesser than the state-of-the-art model (XLM-R) which
has 270M parameters. Despite having such lower no of
parameters, our model is comparable to the state-of-the-
art model.

Language Pairs

Models fr-de fr-tr fr-bg de-tr de-bg tr-bg

XLM-R (SOTA) 58.6 53.2 58.8 52.4 64.6 57.8
BERT-KLD (Ours) 59.2 52 58.4 51 58 58.2

Table 5: Comparison of BERT-KLD with State-of-the-
art. For BERT-KLD, best accuracy scores are listed
from Table 3

5.3. Comparison to Knowledge Distillation
Our transfer learning objective resembles Knowledge
Distillation (KD) Framework (Hinton et al., 2015). We
have one fundamental difference with the KD frame-
work concerning the transfer objective. In the classical
KD framework, the objective is to minimize the KL-
Divergence between the soft logit predictions of the
Teacher and Student model. In contrast, we try to mini-
mize the KL-Divergence between the hidden state of the
Teacher and Student. To compare our method with the
classical KD framework, we apply KD to improve the
performance of the baseline model (Student) on fr-tr lan-
guage pair with the help of another baseline (Teacher)
which is already trained on fr-bg pair. Figure 3 shows
the result with different temperature values, and the
highest obtained accuracy using the KD framework is
50.8%. From Table 3, using the same training setup,
our method achieves 52% accuracy, which is more than
what is achieved using the classical KD framework. Per-
formance of baseline model for fr-tr language pair is
50%, which is only slightly increased by employing
Classical Knowledge distillation. Hence, employing
KD for CLTE might be beneficial for CLTE tasks rather
than simply using a baseline model.

5.4. Analysis of Hidden State Dynamics
To examine the effect of hidden state in model perfor-
mance, we perform empirical analysis to show how our
transfer learning objective equips BERT-KLD model to

perform better than our baseline. We choose de-bg lan-
guage pair for our analysis. We train a baseline model
on de-bg language pair, which obtains an accuracy of
54.8%. Using our training objective, the updated base-
line model (BERT-KLD; the Student Model) achieves
an accuracy of 55.4%. This is done by transfer learn-
ing of hidden states from a baseline model (the Teacher
Model) trained on de-tr language pair.
The training dynamics are clearly seen in Figure 2. On
the left figure, we plot the t-SNE projection (van der
Maaten and Hinton, 2008) of the hidden state both for
trained Teacher model, trained on de-tr pair and student
model, trained on de-bg. They are trained independently
of each other, and there is no overlap between the hidden
state as expected. The labels TRSW denote the instances
where the teacher model classifies correctly, but the stu-
dent model fails, and TRSR denotes the instances where
both teacher and student classify correctly. Overlap be-
tween TRSR and TRSW instances would indicate that the
teacher model influences the student model to classify
more instances correctly, which has already been pre-
dicted correctly by the teacher model. So, intuitively we
expect our transfer learning objective to minimize the
distance between TRSR and TRSW instances. This can
be clearly seen from Figure 2. We can see the closeness
between TRSR and TRSW pairs after transfer learning
as compared to no overlap before applying the transfer
learning method.

Timeline d TRSR d TRSW num TRSR num TRSW
BT 15.4 16.9 80 178
AT 13.2 16.3 86 172

Table 6: d TRSR & d TRSW denotes average euclidean
distance between Teacher-Student TRSR and TRSW
instances on 768-dimensional vector space. num TRSR
and num TRSW denotes the number of those instances
respectively. BT: Before Transfer. AT: After Transfer.

From Table 6, it can be seen that the average Euclidean
distances between Teacher-Student TRSR instances have
decreased after transfer learning. The cases that are cor-
rectly classified by both teacher and student models
(TRSR instances) are more closely situated after trans-
fer learning than before the transfer. This indicates the
positive transfer of knowledge from Teacher to Student.
Moreover, the number of TRSR instances has increased,
indicating that both teacher and student model agrees
with their prediction of more correct examples.
Note that though we analyze this transfer learning
methodology for two specific language pairs (de-tr &
de-bg), a similar kind of analysis can be performed on
other pairs of language pairs to assess the effectiveness
of transfer learning. This kind of reasoning is also appli-
cable for the comparison of our model with the classical
KD framework in Section 5.3, where fr-bg and fr-tr
language pairs are specifically used to demonstrate the
effectiveness of our training method when compared to
classical Knowledge distillation.
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Figure 2: Left: t-SNE projection of the hidden state vector of a trained baseline model before transfer on de-tr and
de-bg language pairs. Right: t-SNE projection of hidden state vector of both Teacher (P) and Student (Q) model
after transfer learning. Before transfer took place (in the left figure), both of the baseline models have hidden states
completely separate when projected on 2-D plane. Right figure demonstrates how hidden state of both of those
baseline models are close to each other, when transferring knowledge from one to another. Teacher and Student
models are trained on de-tr and de-bg respectively.

Figure 3: Performance of BERT-KLD employing clas-
sical KD framework. Transferring and transferred lan-
guage pairs are fr-bg and fr-tr respectively. Peak accu-
racy obtained is 50.8%. α denotes the hyper-parameter
associated with the extra loss term used to train the
Student model. It is seen varying temperature param-
eter in softmax distribution can result in widely in-
creased/decreased performance, with higher values of
temperature usually giving better performance.

6. Conclusion and Future Work
In this paper, we present a novel transfer learning al-
gorithm to tackle CLTE tasks, which yields improved
performance over the existing baseline. We show the
robustness of our proposed algorithm by conducting
experiments on four different European languages fa-
cilitating consistent improvement in the performance,
even surpassing SOTA for some language pairs. It is
also worth noting that our proposed training algorithm

is model agnostic in the sense that it can be used as
a tool for transfer learning in CLTE employing other
deep learning based models used in NLP (e.g., LSTM
(Hochreiter and Schmidhuber, 1997)). In the future, we
would like to extend our work by incorporating multi-
modal features (e.g., ‘acoustic’ that consists of pitch,
voice quality and visual information like video frame
which captures gesture and posture) in cross-lingual
NLI setting, incorporating novel textual and visual in-
formation fusion techniques and building a theoretical
ground for our novel training algorithm.
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