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Abstract
TimeML is an annotation scheme for capturing temporal information in text. The developers of TimeML built the TimeBank
corpus to both validate the scheme and provide a rich dataset of events, temporal expressions, and temporal relationships for
training and testing temporal analysis systems. In our own work we have been developing methods aimed at TimeML graphs
for detecting (and eventually automatically correcting) temporal inconsistencies, extracting timelines, and assessing temporal
indeterminacy. In the course of this investigation we identified numerous previously unrecognized issues in the TimeBank
corpus, including multiple violations of TimeML annotation guide rules, incorrectly disconnected temporal graphs, as well as
inconsistent, redundant, missing, or otherwise incorrect annotations. We describe our methods for detecting and correcting
these problems, which include: (a) automatic guideline checking (109 violations); (b) automatic inconsistency checking (65
inconsistent files); (c) automatic disconnectivity checking (625 incorrect breakpoints); and (d) manual comparison with the
output of state-of-the-art automatic annotators to identify missing annotations (317 events, 52 temporal expressions). We provide
our code as well as a set of patch files that can be applied to the TimeBank corpus to produce a corrected version for use by other
researchers in the field1.
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1. Introduction
TimeML is a temporal annotation scheme for capturing
events, temporal expressions, and temporal relations
in natural language texts (Pustejovsky et al., 2003a).
The TimeBank corpus was released as a reference cor-
pus for TimeML which provides extensive annotated
data for training and testing temporal analysis systems
that produce TimeML (Pustejovsky et al., 2003b). The
TimeBank corpus has been used in much Natural Lan-
guage Processing (NLP) research, including works on
event detection (UzZaman and Allen, 2010; Färber
and Rettinger, 2015; Bansal et al., 2018; Veyseh et
al., 2021), temporal expression recognition (Kolomiyets
and Moens, 2009; Zhong et al., 2017; Chen et al., 2019),
and temporal link extraction (Mani et al., 2006; Mir-
roshandel and Ghassem-Sani, 2011; Kadir et al., 2016;
Ning et al., 2018). If there are errors in TimeBank, they
could potentially affect the accuracy of all works that
use it.
In prior work we have been using TimeBank as a start-
ing point for developing methods for detecting temporal
inconsistency, measuring temporal indeterminacy, and
automatically correcting and enriching temporal graphs.
In the course of that work, we have identified a num-

1Data and code may be downloaded from https://
doi.org/10.34703/gzx1-9v95/EFNL6H. Approved
for Public Release; Distribution Unlimited. Public Release
Case Number 22-0288. ©2022 The MITRE Corporation and
Florida International University. ALL RIGHTS RESERVED

ber of previously unrecognized issues in the TimeBank
corpus, including numerous violations of TimeML an-
notation guide rules, incorrectly disconnected tempo-
ral graphs, as well as inconsistent, redundant, missing,
or otherwise incorrect annotations. Here we describe
these issues and present a suite of methods for cor-
recting the corpus. First, we implemented a system
to check whether TimeBank follows the TimeML an-
notation guidelines where they can be formulated as
strict, syntactic, no-exceptions rules. This revealed a
number of problems. Second, for each annotated file we
checked overall temporal consistency, which revealed
additional problems not described in prior work. This in-
cludes checking for redundant or inconsistent self-loops
in the graphs. Third, we analyzed the connectivity of
the TimeML graphs, and this analysis as a guide showed
that numerous TimeML graphs were improperly discon-
nected. Finally, we used an automatic TimeML parser
(CAEVO) to parse raw TimeBank files, and manually
compared those automatic annotations with the gold-
standard annotations, thereby identifying a number of
places where the TimeBank corpus misses events, times,
and relations.

In particular, we show that TimeBank has 109 instances
that violate the strict TimeML annotation guidelines
rules. We also show that roughly 1/3 of the Time-
Bank files include an inconsistent cycle in the extracted
TimeML graphs, which includes 15 inconsistent self-
loops. Additionally, we detected on average 8.1 discon-

https://doi.org/10.34703/gzx1-9v95/EFNL6H
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nected graphs per file which suggested potentially up to
4 missing temporal relations per file. We also discovered
10 redundant self-loops (a loop that doesn’t cause in-
consistency but also doesn’t provide additional informa-
tion, and is not signaled in the text). After we manually
compared gold-standard annotations and CAEVO-based
annotations, we identified 317 missing events, 52 miss-
ing temporal expressions, and 369 additional missing
TimeML links.
The detected errors of the TimeBank corpus are the
result of either incorrect or missing annotations. As
we have shown through extensive experimentation else-
where, errors such as those described above can have
dramatic effects on the quality of the final graphs and
downstream tasks (Ocal et al., 2022). We corrected the
errors by adding or changing the necessary event, tempo-
ral expression, or TimeML link. The correction process
was a double annotation process. First, the authors took
the CAEVO-generated patch file and annotated it sepa-
rately. Then, the authors got together and went through
each annotation one by one. In total, we corrected 317
events, 52 temporal expressions, and 1,265 TimeML
links, which correspond to 4%, 4%, and 13% of the
total. We released both our analysis code and diff files
that allow other researchers in the field to apply our
corrections to their own copies of TimeBank.
The paper is organized as follows. First, we review
prior work on TimeML, the TimeBank corpus, auto-
matic TimeML annotation, and TimeBank evaluation
(§2. Next, we explain our evaluation methods in de-
tail (§3), followed by our results and an explanation of
how the corrections were made (§4). Finally, we con-
clude with a discussion (§5) and provide a summary of
contributions (§6).

2. Related Work

2.1. TimeML
TimeML is an SGML-based annotation scheme to an-
notate temporal information in documents (Saurı́ et al.,
2006). TimeML is built on Allen’s interval algebra
(Allen, 1983) which allows defining 13 possible tem-
poral relations between events. Using TimeML, we
can annotate events and temporal expressions in docu-
ments. An event is a situation that happens or occurs.
There are seven types of events: REPORTING, PERCEP-
TION, ASPECTUAL, I ACTION, I STATE, STATE, and
OCCURRENCE. An example of an OCCURRENCE event
is shown below.

(1) She wrote the letter.

A temporal expression is any word or phrase that repre-
sents a date, a time interval, a time point, or a duration:

(2) He was in Miami on Tuesday.

TimeML allows for relationships (links) between events
and temporal expressions. There are three types of

TimeML links: Temporal Link (TLINK), Aspectual Link
(ALINK), and Subordination Link (SLINK).
A TLINK represents a temporal relationship between
events and temporal expressions. There are 14 types
of TLINKs: BEFORE, AFTER, I BEFORE, I AFTER, SI-
MULTANEOUS, IDENTITY, BEGINS, BEGUN BY, ENDS,
ENDED BY, INCLUDES, IS INCLUDED, DURING, and
DURING INV. In the example below, the AFTER TLINK
represents a temporal relationship between drank and
ate.

(3) He drank tea after he ate his breakfast.
(drank −AFTER→ ate)

An ALINK holds a relationship between an aspectual
event and its argument event. There are five types
of ALINKs: INITIATES, TERMINATES, CULMINATES,
REINITIATES, and CONTINUES. In the following exam-
ple, INITIATES ALINK represents an aspectual relation-
ship between started and watching.

(4) We started watching the movie.
(started −INITIATES→ watching)

An SLINK holds a relationship between a subordination
event and its argument event. There are six types of
SLINKs: MODAL, FACTIVE, COUNTER FACTIVE, EVI-
DENTIAL, NEG EVIDENTIAL, and CONDITIONAL. An
example of a MODAL SLINK is shown below.

(5) Kai promised to play basketball with me.
(promised −MODAL→ play)

Annotating a text with TimeML naturally begets a
TimeML graph, which is a graph where nodes are
events and temporal expressions, and edges are TimeML
links. An illustration of a TimeML graph (drawn from
wsj 1073.tml) is shown in Figure 1.

(6) [DCT:10/25/19891]: Advanced Medical Tech-
nologies Inc. said2 it purchased3 93% of a
unit of Henley Group Inc. Advanced Medical
paid4 $106 million in cash for its share in a unit
of Henley’s Fisher Scientific subsidiary. The
unit makes intravenous pumps used by hospitals
and had5 more than $110 million in sales6 last
year7, according to Advanced Medical.

BEFORE

BEFORE

DURINGSIMULTANEOUS

BEFORE

EVIDENTIAL

5 6 7

2

3

1 4

Figure 1: Visualization of the gold-standard TimeBank
TimeML graph for Example (6).
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2.2. TimeBank
The TimeBank corpus was developed as a reference cor-
pus for the TimeML annotation scheme (Pustejovsky
et al., 2003b). More than 50 researchers worked on it
including professors, graduate students, and undergrad-
uate students, in both linguistics and computer science.
It comprises news stories from various sources such as
ABC, CNN, and The Wall Street Journal. TimeBank 1.1
was the first release, which suffered from problems due
to the flaws in the annotation software, as well as inter-
nal inconsistency such as different values for the same
Timex (temporal expression) trigger words or having no
values for some TimeML objects. It was substantially
revised for TimeBank 1.2, which is the version we use
here.
The TimeBank corpus contains a rich set of TimeML
annotations. It comprises 183 texts in which are anno-
tated 7,935 events, 1,414 temporal expressions, 6,418
TLINKs, 265 ALINKs, and 2,932 SLINKs, and it has
been used for many NLP tasks such as question answer-
ing (UzZaman et al., 2012a), event detection (Färber
and Rettinger, 2015), temporal expression recognition
(Zhong et al., 2017), temporal representation (Ocal and
Finlayson, 2020), temporal link extraction (Mirza and
Tonelli, 2016) and temporal annotation evaluation (Uz-
Zaman et al., 2012b).

2.3. Automatic TimeML Annotators
TimeBank enabled many researchers in the field to de-
velop automatic TimeML annotators. The TARSQI tool
(Verhagen et al., 2005) comprises five modules to anno-
tate temporal information in documents. TARSQI takes
a raw text as input, and first, it recognizes temporal ex-
pression with the GUTime module. Second, it detects
events with Evita. Then, it detects TimeML links with
GUTenLINK and SLinknet. Finally, it performs tempo-
ral reasoning with the SputLink module and produces
TimeML annotated text.
ClearTK (Bethard, 2013) is a pipeline of three super-
vised models that use only a small set of features. The
time module uses time related features such as text, stem,
POS-tags, and the temporal type of each alphanumeric
sub-token derived from time words. The event mod-
ule uses aspect, modality, tense, POS tags, and event
attributes. And finally, the temporal relation module
uses event and time features to predict TLINKs between
events and times.
CAEVO (Chambers et al., 2014) is a sieve-based ar-
chitecture that contains four modules to annotate doc-
uments: (1) SUTime (Chang and Manning, 2013) is a
rule based system that recognizes and normalizes time
expressions using text regex, compositional rules, and
filtering rules. (2) NavyTime (Chambers, 2013) is a
maximum entropy classification framework based on
the lexical and syntactic features such as n-grams, POS
tags, lemmas, typed dependencies and WordNet events.
(3) The temporal relation extraction module is a su-
pervised machine learning module to extract relations

between events and times in the same sentences and
neighboring sentences. (4) The dense ordering module
applies transitive closure to extract dense TimeML an-
notations. When using automatic annotations to drive
manual correction of TimeBank, as described later in the
paper, we choose CAEVO because CAEVO has the best
performing independent models in the form of SUTime
(0.92 F1), NavyTime (0.81 F1), and CAEVO-TLINK
(0.51 F1).

2.4. Prior TimeBank Evaluations
Several previous works have provided different types of
analysis for the TimeBank corpus.
Boguraev and Ando (2006) evaluated the first version of
the TimeBank corpus (TimeBank 1.1). They presented
a quantitative analysis of the TimeBank corpus such as
distribution of relations, event classes, Timex types, and
TimeML components. They showed that the annotation
tool used to construct TimeBank caused a systematic
shift by a single character. They also showed that for the
same Timex signal, TimeBank 1.1 had different types
of (or missing) Timex tags.
Similarly, Boguraev et al. (2007) presented a quantita-
tive analysis not only for TimeBank 1.1 but also Time-
Bank 1.2, which allows them to compare two corpora.
They selected a random document from the corpora and
evaluated it manually to compare the number of errors
between TimeBank 1.1 and TimeBank 1.2. Based on
their results, the chosen document contained 96 errors
(8 timex, 32 event, 43 links, and 13 signals) for Time-
Bank 1.1 and 28 errors (1 timex, 10 events, and 17 links)
for TimeBank 1.2, suggesting that TimeBank 1.2 was
indeed an improvement over the prior version.
Caselli and Morante (2018) presented a detailed error
analysis for automatic temporal processing systems that
were submitted to TempEval-3. They manually eval-
uated 15% of the TimeBank corpus to check why au-
tomatic temporal processing systems failed to detect
temporal relations in the corpus. The results showed
that plenty of gold temporal relations are either wrong
or in dispute, with the resulting suggestion that annota-
tors consider event’s tense and aspect while annotating
gold temporal relations.
Inel and Aroyo (2019) compared the TimeBank cor-
pus with other TimeML annotated corpora by manually
evaluating events in each sentence. The results showed
that TimeBank contains sentences that do not have any
events, and there are a number of events that are not
consistent with annotation guidelines. The results also
showed that in some cases, the same phrases are tagged
differently in corpora. For example, “election day” was
annotated as TIMEX3 in TimeBank while in other cor-
pora “election” was labeled as an event. Finally, the
comparison showed that the TimeBank corpus has only
a single token for events while other corpora have multi-
token events as well.
Ocal and Finlayson (2020) extracted timelines from the
TimeBank corpus and presented a quantitative analysis
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on the timelines as well as the evaluation of the tempo-
ral indeterminacy of the timelines. They reported the
timelines extracted from TimeBank have an average of
9.3 time steps and 51.1 time points. Additionally, the
timelines have a 67.9% indeterminacy score.
The Corpus Analysis and Validation for TimeML (CA-
VaT) tool (Derczynski and Gaizauskas, 2012) is the
most similar work to that presented here. CAVaT is
a sanity check system for TimeML annotated corpora
which checks the temporal consistency of TLINKs, iden-
tifies disconnected subgraphs (TLINKs only), and detects
self-loops. Additionally, CAVaT prints out the TLINK
distribution and shows how many TLINKs are triggered
by temporal signals. CAVaT was run over the TimeBank
corpus and detected 30 inconsistent texts, 26 self-loops,
and showed that no text has a fully connected TLINK
graph. In our work, we go further than CAVaT by check-
ing not only the consistency of TLINKs, but of the entire
TimeML graph. In contrast to CAVaT we check the
disconnectivity of the entire TimeML graphs (again, not
just TLINKs), and moreover provide automatic correc-
tions for them.

3. Methods
3.1. Strict TimeML Annotation Rules
The first category of corrections we examine are rules
from the TimeML annotation guide that are strictly syn-
tactic with no exceptions. These rules can be checked
for compliance automatically, without reference to the
semantics of the text. We identified 5 rules that link to
this in the annotation guide (Saurı́ et al., 2006).

3.1.1. Evidential Link Rule
As described in Section 2.1, EVIDENTIAL links are a
type of SLINK, typically introduced by reporting and
perception events such as see, say, tell, etc.:

(7) Katy said she went to Vegas.
(said −EVIDENTIAL→ went)

Similarly, NEG EVIDENTIAL links are typically intro-
duced by reporting and perception events but with nega-
tive polarity:

(8) Katy denied that she went to Vegas.
(denied −NEG EVIDENTIAL→ went)

According to the TimeML annotation guideline (Saurı́
et al., 2006, p. 53), Perception events will always intro-
duce SLINKs of type EVIDENTIAL or NEG EVIDENTIAL.
This rule can be checked automatically.

3.1.2. Conditional Link Rule
As discussed in Section 2.1, a CONDITIONAL link is
a type of SLINK that holds between two events and is
usually introduced by a signal such as if. . . then:

(9) If she gets the medicine, she’ll feel better.
(gets −CONDITIONAL→ feel)

The TimeML annotation guideline (Saurı́ et al., 2006,
p. 54) specifies that the conditional conjunctions (if-
clauses) will always introduce CONDITIONAL SLINK.
Based on the rule, we can automatically detect whether
each if-clause is associated with a CONDITIONAL link.

3.1.3. Causative Event Rule
The TimeML annotation guideline (Saurı́ et al., 2006,
p. 7), specifies that any construction of the ”subject event
+ causative event + object event”, must introduce an
IDENTITY TLINK between the subject event and the
causative event. For example:

(10) The rains caused the flooding.
(rains −IDENTITY→ caused)

For this rule, we implemented a system that identifies
the “subject event + causative event + object event”
where the causative event has a head word which is
any inflected form of cause, then checks whether an
IDENTITY TLINK is defined between the subject event
and the causative event.

3.1.4. ALINK Replacement Rule
As described in Section 2.1, an ALINK occurs be-
tween an aspectual event and its argument event. The
TimeML annotation guidelines (Saurı́ et al., 2006, p. 58)
specifies that the eventInstanceID attribute of an
ALINK must contain the ID of the aspectual event while
relatedToEventInstance attribute indicates the
ID of the argument event. For example:

(11) He finished1 watching2 The Office.

<ALINK eventInstanceID="1"
relatedToEventInstance="2"
relType="TERMINATES"/>

For ALINK replacement rules, we implemented a sys-
tem that goes through every ALINK and checks the
eventInstanceId to ensure compliance.

3.1.5. ALINK-SLINK Incompatibility Rule
As discussed in Section 2.1, an ALINK occurs between
an aspectual event and its argument event while an
SLINK occurs between a subordinated event and its re-
lated event. A TLINK can be introduced along with an
ALINK. Similarly, a TLINK can also be introduced with
an SLINK. However, by definition an ALINK and an
SLINK cannot hold between the same pair of events. For
example, in Example (7), said and went are related by
an EVIDENTIAL subordination relationship. They also
have an AFTER temporal relationship that indicates said
happened after went. This is an instance where TLINK
and SLINK can be present simultaneously. Similarly in
Example (11), between finished and watching there is
both a TERMINATES aspectual link and an ENDS tem-
poral link. For this rule, we implemented a system that
checks every pair of nodes in the TimeML graph for
compliance.
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3.2. Graph Rules
As discussed previously, a TimeML graph is a graph
where the nodes are events and temporal expressions,
and edges are TimeML links. TimeML graphs are useful
for visualizing TimeML annotations. We evaluated the
graphs in TimeBank for temporal inconsistency, graph
disconnectivity, and unnecessary self-loops.

3.2.1. Temporal Inconsistency
Although developers of the TimeBank corpus claimed
that the corpus is fully consistent, Derczynski and
Gaizauskas (2012) found 30 inconsistent stories. How-
ever, they considered only TLINKs when computing con-
sistency. Here we consider both TLINKs and ALINKs
when computing overall consistency, because ALINKs
also indicates temporal relationships.
For this evaluation method we used TLEX, the method
described by Finlayson et al. (2021). TLEX is a system
for producing timelines from TimeML graphs; as one
of its substeps, it implements a method for checking
graph consistency. TLEX proceeds as follows. First,
it partitions the TimeML graph into a set of tempo-
rally connected subgraphs (subgraphs of the full graph
whose nodes are connected to each other via TLINKs
and ALINKs). Second, TLEX transforms temporally
connected subgraphs into point algebra (PA) graphs.
Then finally, it assigns real numbers for each node in
the PA graph. Barták et al. (2014) showed that there
is a solution (i.e., assignment of real numbers to time
points) that satisfies the PA graph if and only if the
graph is consistent. If the real number assignment is not
possible, then the graph is inconsistent (Barták et al.,
2014). Therefore, TLEX tells us whether the graph is
consistent.
To illustrate, in Figure 2 we provide the PA graph of the
TimeML graph shown in Figure 1, as well as the real
number assignment.

2- = 1, 2+ = 2, 1- = 3, 1+ = 4, 3- = 1,
3+ = 2, 4- = 1, 4+ = 2, 5- = 1, 5+ = 2,
6- = 1, 6+ = 2, 7- = 1, 7+ = 2

<

< <

= =

=

<<<<

3- 6+

<

7-=
5-

<2+
<

1+<

3+ 4+

5+

6-

7+4-

2- 1-

Figure 2: Visualization of the output of the transforming
TimeML graph to PA graph.

3.2.2. Graph Disconnectivity
A TimeML graph extracted from a single annotated
file might comprise multiple disconnected subgraphs.
This is because the annotators sometimes forget to an-
notate TimeML links between events and temporal ex-
pressions. Therefore multiple disconnected subgraphs

in a single file suggests the possibility of certain missing
links, which can be manually checked. Disconnectiv-
ity can be easily detected by walking the graph. In
Figure 3, we show the TimeML graph of the Time-
Bank file wsj 0991.tml. When the graphs are com-
pared with the text, one can identify one missing link
(t23−BEFORE→t19) which connects the subgraph in
the upper left to the subgraph on the right. The subgraph
in the lower left is correctly disconnected from the other
two subgraphs.

93 EVI.

FAC.

INC.

EVI. AFT.

EVI.

DUR.

AFT.

ENDS

DUR.

AFT.

MOD.BEF.

t23

85

90

SIM.

88

95

92 91 87

89

86

t19

94 t20

Figure 3: Visualization of a disconnected graph. The
numbers indicate the event instance IDs or time IDs
(starts with t). The file contains three disconnected
graph, therefore, potentially two links are missing.

3.2.3. Redundant Self-Loops
A self-loop in a link from a node to itself, which are
always incorrect in the TimeML scheme. There are two
types of self-loops: inconsistent self-loops and redun-
dant self-loops. Any ALINK or TLINK (except SIMULTA-
NEOUS or IDENTITY) from a node to itself is an incon-
sistent self-loops and will be detected when evaluating
the graph for inconsistency as described in Section 3.2.1.
On the other hand, a redundant self-loop is a SIMULTA-
NEOUS or IDENTITY TLINK self-loop. While they do
not cause inconsistency, they also do not provide any
useful information. Therefore, they are redundant.

3.3. Missing Annotations
Our final check involved comparing the gold-standard
TimeBank annotations with automatically generated
annotations in an attempt to find missing annotations.
As described in Section 2.2, CAEVO is an automatic
TimeML parser that can take raw text as an input and
generate TimeML annotations. Since it has the best
score on detecting events and temporal expressions, we
used CAEVO to generate annotations for comparison
of the TimeBank corpus.
We processed raw TimeBank texts with CAEVO, using
it to detect events and temporal expressions. We then
compared the output with the gold-standard annotations
manually, judging whether events and times detected by
CAEVO, but not in TimeBank, were correct. Because
CAEVO is not perfect, not all events and times detected
by CAEVO are correct; indeed, approximately half of
the events detected by CAEVO but not in TimeBank
were generic events, which should be excluded accord-
ing to the TimeML annotation guide (Saurı́ et al., 2006,
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p. 7). In the following example, driving should not be
tagged as an event since it’s a generic event, however,
CAEVO will tag it as an event.

(12) Driving under influence is illegal.

For temporal expressions, CAEVO cannot correctly fil-
ter some proper names, and so labels incorrectly. In the
following example, SEC represents the US Security and
Exchange Commission. However, CAEVO detects SEC
as a second.

(13) Through his lawyers , Mr. Antar has denied
allegations in the SEC suit.

For the manual comparison process, two of the authors
did a double annotation. First, the authors compared the
events and times separately which allows us to calculate
the inter-annotator agreement score as 0.67. The reason
why the inter-annotator agreement score is relatively
low is disagreements over whether particular events
were generic, which is often a subtle judgement. Then,
the annotators conferred on the annotations, examining
disagreements one by one and comparing them to the
text. When the annotators discovered a missing event
or temporal expression to be added, they also added any
missing links to connect the event or temporal expres-
sion to the rest of the graph.
We didn’t compare the CAEVO-annotated links with
the TimeBank links. This is because (a) CAEVO has
only a 0.51 F1 score on extracting TLINKs, (b) it can
only generate 5 types of TLINKs and does not generate
ALINKs or SLINKs, and (c) it uses transitive closure to
generate links which creates noisy graphs with a lot of
extra links.

4. Results & Corrections
4.1. Results of TimeML Annotation Rules
We built a system that checks the strict TimeML an-
notation rules defined in Section 3.1. Table 1 lists the
results for each of the five rules. As we can see in the
table, there are 109 instances that violate the TimeML
annotation guidelines rules.

Evidential Link Rule Our system detected 48 per-
ception events in the corpus. Only 18 of them
are involved in an EVIDENTIAL link. For the rest
of the perception events, 15 of them have differ-
ent types of SLINKs and the other 15 of them have
no SLINKs at all. We also noted that, out of 18
perception events with EVIDENTIAL, two of them
have negative polarity, meaning, they should introduce
NEG EVIDENTIAL instead of EVIDENTIAL. An exam-
ple from ea980120.1830.0071.tml that violates
the evidential link rule is shown below. The perception
event is underlined and in bold.

(14) Cubans want to know what we’re going to tell
Americans, in many cases, what their relatives
in the United States are going to hear. (No
Evidential SLINK)

For the missing annotations of evidential link rule, we
define the necessary EVIDENTIAL or NEG EVIDENTIAL
links based on polarity with the new linkID. And if
an SLINK was incorrect, we corrected it with a proper
SLINK. For the example, we define an EVIDENTIAL link
between hear and tell.

Conditional Link Rule Our system detected 64 con-
ditional conjunctions and 45 of them have Conditional
SLINKs. The rest of the 19 conditional statements have
no SLINKs at all. An example that violates this rule from
wsj 0586.tml is as follows. We added any missing
Conditional SLINKs.

(15) If you take away the outside influences, the mar-
ket itself looks very cheap. (No Conditional
SLINK)

Causative Event Rule Our system detected 14 “sub-
ject event + causative event + object event” cases
and only four of them correctly introduced IDENTITY
TLINK between the subject event and the causative
event. One of the 10 cases that violates the rule (from
ea980120.1830.0071.tml) is shown below. For
each of the 10 cases, we added the missing Identity
link between the subject event and the causative event.
For the example, we define IDENTITY TLINK between
concern and caused.

(16) Well, this is the eve of the Pope’s visit to one of
the last bastions of Communism anywhere in
the world, and it is already causing enormous
expectations. (No IDENTITY TLINK)

ALINK Replacement Rule Out of 265 ALINKs, our
system took the first eventID and traced back to the
annotations to see if the event is an aspectual event. The
results showed that 46 of them are not aspectual events,
meaning 46 ALINK violate the rule. In the following
example from WSJ900813-0157.tml, annotators
put the ALINK in the reverse order.

(17) Iraq’s Saddam Hussein, his options for ending
the Persian Gulf crisis growing increasingly
unpleasant. (crisis −TERMINATES-> ending)

ALINK-SLINK Incompatibility Rule We checked if
there are any cases that violate the rule. Our system
found four violations where there were a TLINK, SLINK,
and ALINK between the same two nodes. All four cases
involved the verbs launched, offer, suit, or bid, in a
BEGINS, FACTIVE, or INITIATES relationship. For
the four examples, we removed the SLINKs to follow
the rule.

(18) Acquisition has launched a suit in a Delaware
court.

(19) Dow Jones launched the offer on Sept. 26.

(20) A unit of DPC Acquisition Partners launched
a $10-a-share tender offer for the shares.
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(21) Before the bid was launched, he sought ap-
proval to boost his Paribas stake above 10%.

Total # of
Rules Instances Violations

EVIDENTIAL Link 48 30
CONDITIONAL Link 64 19
Causative Event 14 10
ALINK Replacement 265 46
ALINK-SLINK Incompatibility - 4

Total 109

Table 1: Results of the TimeML Annotation Rules. The
number of instances that match the rule are given in
Total Instances, while the number of those matches
that violate the rule are given in # of Violations.

4.2. Results of Graph Rules
We checked the graph rules that are defined in Section
3.2, and the results are summarized in Table 2.

Temporal Inconsistency We showed that 65 texts are
inconsistent, roughly 1/3 of the TimeBank corpus. As
we can see in the Table 2, 30 inconsistent files were
caused by TLINKs, which matches the results reported
by Derczynski and Gaizauskas (2012). However, a
slightly greater number of inconsistencies were caused
by ALINKs (35 texts), which were not investigated previ-
ously. In total, we detected 110 inconsistent subgraphs
across 65 texts. Additionally, we showed that 15 of
those inconsistencies were caused by inconsistent self-
loops which can be easily fixed by simple removal of
the self-loops. Other inconsistencies required a more
careful comparison of the annotations with the text. An
example of an inconsistency from wsj 1011.tml is
as follows.

(22) [DCT:10/26/1989t57] The latest resultsei2048
include a $2.6 million one-time payment from
a ”foreign entity.”
t57−BEFORE–>ei2048
ei2048−BEFORE–>t57

Graph Disconnectivity Our system showed that only
35 texts have a single fully connected graph. The re-
mainder of the files contained anywhere between 2 and
34 disconnected subgraphs, suggesting the same num-
ber of potentially missing links, for an overall total
of up to 739 missing links. Upon manual inspection,
we found only 625 missing links, with the remaining
108 subgraphs being correctly disconnected from the
other graphs in the file because of the lack of tempo-
ral information in the text. Note that Derczynski and
Gaizauskas (2012) reported all files were disconnected,
however, they did not consider ALINKs and SLINKs in
their system. We also found 65 singleton nodes (all
temporal expressions) that had no incoming or outgoing

links, all of which should have been connected to some
other node in the file.
To resolve some disconnections, we implemented a sys-
tem that automatically suggests links between temporal
expressions in disconnected subgraphs. To do that, our
system selects a temporal expression from the main
graph (timex-1) and from the subgraph (timex-2), then,
it normalizes their value. Finally, it creates a TLINK
based on their value such as timex-1 −BEFORE→ timex-
2. This allows us in many cases to achieve connectivity
automatically and correctly.

Redundant Self-loops Our system detected 10 redun-
dant self-loops. Redundant self-loops can be removed
automatically.

4.3. Results of Missing Annotations
We processed the raw TimeBank texts with CAEVO,
which detected 947 events not present in the TimeBank
annotations. Then, we performed the double annotation
process (described in Section 3.3) and we identified 317
missing events in the TimeBank corpus. The reason
for the significant difference between the number of
detected events and those determined to be correct is
that (a) CAEVO is not perfect (0.81 F1 score in event
detection) and (b) CAEVO is especially weak in detec-
tion of generic events, which are explicitly excluded by
the TimeML scheme.
For temporal expressions, CAEVO detected 93 different
temporal expressions not present in TimeBank. After
the manual annotation process, we determined 52 of
these were correct. The main reason for 41 false positive
temporal expressions is that CAEVO detected some
proper names as temporal expression such as ”the SEC”,
”USA Today”, etc.
Each missing event or temporal expression also poten-
tially implied missing links to connect the node to the
main graph. We added the missing links based on our
understanding of text. For all corrections, we strictly
follow the TimeML annotation guidelines rules. The
total number of each correction is shown in Table 3.
Because TimeBank 1.2 is distributed under license by
the LDC, we do not directly provide the corrected cor-
pus. Instead, we provide patch files that can be applied
to the original TimeBank 1.2 using the standard Linux
or Unix diff command.

5. Discussion
In this paper, we presented a semi-automatic evaluation
of the TimeBank 1.2 corpus. We showed that Time-
Bank has 1,630 incorrect or missing annotations, for
which we provide corrections. These misannotations
are mainly caused by manual annotation mistakes. And
there are many other gold-standard TimeML corpora
that might suffer from the manual annotation process.
The complexity of the schema suggests that any gold-
standard TimeML annotations should, as a best practice,
use such an evaluation approach to ensure the highest
quality annotations.
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Rules Events Times TLINK ALINK SLINK Total

TimeML Rules - - 10 46 53 109
Graph Rules - - 722 61 - 783

Missed Annotations 317 52 369 - - 738

Total Corrections 317 52 1,101 107 53 1,630

Total # Objects in TimeBank 1.2 7,935 1,414 6,418 265 2,932 18,964
% Total Corrected 3.9% 3.7% 17.2% 40.8% 1.9% 8.6%

Total # Objects in Corrected TimeBank 8,252 1,466 7,351 271 2,982 20,322

Table 3: Summary of corrections to the TimeBank 1.2 corpus, split into different categories.

Rules # of Files # of Violations

Inconsistency (TLINKs) 30 38
Inconsistency (all) 65 110
Disconnectivity 148 625
Redundant Self-loops 9 10

Total 783

Table 2: Results of checking the Graph Rules. The num-
ber of files that contained a violate of the rule is given in
# of Files, while the number individual violations across
all files is given in # of Violations.

6. Contributions
Our contributions in this paper are three-fold. First,
we presented a comprehensive evaluation of the Time-
Bank corpus comprising 10 different automatic or semi-
automatic checks. Second, we showed that TimeBank
corpus has 1,630 incorrect or missing annotations. Fi-
nally, we provided corrections for the all TimeBank
corpus incorrections and we released patch files as well
as our code for use by other researchers in the field2.
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