
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 2528–2535
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

2528

Quevedo: Annotation and Processing of Graphical Languages∗

Antonio F. G. Sevilla1,2, Alberto Díaz Esteban1,3, José María Lahoz-Bengoechea2
1Department of Software Engineering and Artificial Intelligence,

Facultad de Informática, c/ Profesor José García Santesmases, 9 28040 Madrid, Spain
2Department of Spanish Linguistics and Literary Theory,

Facultad de Filología, edificio D, c/ Prof. Aranguren s/n, 28040 Madrid, Spain
3Knowledge Engineering Institute,

Facultad de Psicología, Lateral 2, Campus de Somosaguas 28223 Pozuelo de Alarcón, Spain

Universidad Complutense de Madrid

afgs@ucm.es, albertodiaz@fdi.ucm.es, jmlahoz@ucm.es

Abstract

In this article, we present Quevedo, a software tool we have developed for the task of automatic processing of graphical

languages. These are languages which use images to convey meaning, relying not only on the shape of symbols but also on their

spatial arrangement in the page, and relative to each other. When presented in image form, these languages require specialized

computational processing which is not the same as usually done either for natural language processing or for artificial vision.

Quevedo enables this specialized processing, focusing on a data-based approach. As a command line application and library,

it provides features for the collection and management of image datasets, and their machine learning recognition using neural

networks and recognizer pipelines. This processing requires careful annotation of the source data, for which Quevedo offers an

extensive and visual web-based annotation interface. In this article, we also briefly present a case study centered on the task of

SignWriting recognition, the original motivation for writing the software. Quevedo is written in Python, and distributed freely

under the Open Software License version 3.0.

Keywords:Graphical Languages, Annotation, Datasets, Machine Learning, Open Software

1. Introduction

The human language capacity is flexible and very pow-

erful. It gives us not only the usual languages that are

the focus of linguistics, i.e. natural, oral languages,

but also artificial systems for communication that have

some or most of the features of languages and can there-

fore be studied and processed with linguistic tools.

An example of these systems are graphical languages,

which rely on images for communication. Musical

notation (Figure 1), Feynman diagrams, elementary

arithmetic notation, or the Unified Modeling Language

(UML (Technical Committee: ISO/IEC JTC 1 Infor-

mation technology, 2012), Figure 2) are systems which

share some of the important characteristics of lan-

guages: signs with a signifier-signified nature, syntac-

tic rules for combining them, and meaning which is

compositional, a whole resulting from the considera-

tion of the symbols but also their context and relative

arrangement.

However, graphical languages have an important char-

acteristic which is not common in natural languages:

they are visual, and exploit the two dimensions of the

page as a fundamental feature for codifying meaning.

Location of symbols in the two dimensions and their

relative arrangement is key to the correct understand-

ing of graphical languages, but it is a problem beyond

the tools habitual to natural language processing.

∗Quevedo is available online at https://github.com/
agarsev/quevedo

Figure 1: Modern musical notation as an example of

a graphical language. Image by Prof.rick1 (public do-

main).

Figure 2: An UML communication diagram. Image by

Oemmler2, distributed under a CC BY-SA 3.0 license.

1https://commons.wikimedia.org/wiki/File:
Chopin_Prelude_7.png

2https://commons.wikimedia.org/wiki/File:
UML_Communication_diagram.svg

https://github.com/agarsev/quevedo
https://github.com/agarsev/quevedo
https://commons.wikimedia.org/wiki/File:Chopin_Prelude_7.png
https://commons.wikimedia.org/wiki/File:Chopin_Prelude_7.png
https://commons.wikimedia.org/wiki/File:UML_Communication_diagram.svg
https://commons.wikimedia.org/wiki/File:UML_Communication_diagram.svg

2529

Figure 3: SignWriting transcription of the Spanish Sign

Language sign for “coffee”, performed iconically as

stirring the beverage in a cup. A video can be seen on-

line at SpreadTheSign3.

If a graphical language is not stored in an abstract, se-

mantic representation, but rather in its graphic realiza-

tion, it is a challenge to process it automatically. It

is necessary to locate symbols within the page, storing

their relative locations since these are meaningful data,

as well as finding the meaning intended for each sym-

bol, meaning which can be encoded with overlapping

graphical features such as size, rotation, color, etc.

In this article we present a software tool we have de-

veloped to deal with the annotation and automatic pro-

cessing of images of graphical languages: Quevedo.

Quevedo is an open source python library and applica-

tion with both command line and web interfaces. It can

create, organize and manage sets of images containing

samples of a graphical language. The web application

provides a way of visually inspecting and exploring the

datasets, as well as featuring an extensive annotation

interface. It can be run locally, or deployed as a server

for access or annotation by a team.

Processing of the images and their annotations can then

be performed, or they can be used in other programs

by importing Quevedo as a library. The processing al-

lowed by Quevedo includes training and testing com-

puter vision neural networks for the recognition of the

target graphical language. These networks are config-

ured using a declarative format, and can then be orga-

nized into a pipeline, allowing more complex process-

ing and automatic recognition to be performed.

We strive for Quevedo to be a complete solution for

the computational processing of graphical languages,

guided by our own efforts in that domain. However,

we are aware that every task has its own quirks, so

Quevedo is very configurable, and extensible with user

scripts. The organization of the datasets uses standard

file formats and is straightforward and accessible, so the

source data, annotations, and neural networks can also

be consumed externally or enhanced with other tools.

In our research, we use Quevedo for managing Sign-

Writing data. SignWriting (Sutton and Frost, 2008) is a

3https://www.spreadthesign.com/es.es/word/
6209/cafe/0/?q=caf%C3%A9

graphical system for transcribing sign languages, using

the two dimensional possibilities of the page to encode

the movement and use of space of sign languages. In

Figure 3, an example SignWriting transcription can be

seen, and in Section 5 we give more detail into this use

case.

Before that, in Section 2 we examine some related work

that is relevant, Section 3 gives an overview of the dif-

ferent features in Quevedo, and Section 4 gives some

notes into how to use Quevedo as a library and appli-

cation. After we have presented our SignWriting case

study in Section 5, Section 6 summarizes our conclu-

sions with Quevedo and the research it has enabled, and

Section 7 explains our future development and ideas

for how we want to improve it and expand the range

of problems it can solve.

2. Related Work

Recognizing graphical language images might look,

at first glance, somewhat similar to the task of Opti-

cal Character Recognition (OCR). Images of writing,

be they handwritten, or maybe printed, also consist of

shapes in a particular arrangement which need to be

recognized by taking into account the natural variabil-

ity of the graphical realization. Open source tools such

as Tesseract (Smith, 2013) exist to solve this problem,

and indeed often use machine learning and similar al-

gorithms to what we will later propose. The prob-

lem with OCR solutions is that they assume an under-

lying linear ordering to characters, that is, words are

formed by characters in a sequence, and sentences by

words linearly arranged. Graphical languages such as

the ones Quevedo is suited to study are intrinsically

two-dimensional, so OCR tools can not be practically

used to process them.

In the realm of artificial vision, however, finding and

recognizing objects in 2D (or even 3D) is a well stud-

ied task. Deep learning neural networks are a common

and successful approach to this problem, and there is

a wealth of software dedicated to this task, such as Py-

Torch (Paszke et al., 2019) or TensorFlow (Abadi et al.,

2015). Indeed, Quevedo uses one such software, Dark-

net (Redmon, 2013 2016), to train neural networks on

the annotated graphical language data, and uses it for

inference on new data. These tools often give access

to GPUs and other optimizations to make deep learn-

ing algorithms usable in reasonable time frames, and

provide high-level abstractions to the networks’ inter-

nal details. However, they still require the data to be

prepared for the task, and accessory processing beyond

the algorithm itself to be coded by the user.

The labeling task is an important part of this, and there

is existing software to make this highly visual task effi-

cient and correct. YOLOMark4 is a tool by the authors

of the Darknet software that allows visually tagging im-

age files with the objects within, marking their bound-

ing boxes and their assigned class. However, this tool

4https://github.com/AlexeyAB/Yolo_mark

https://www.spreadthesign.com/es.es/word/6209/cafe/0/?q=caf%C3%A9
https://www.spreadthesign.com/es.es/word/6209/cafe/0/?q=caf%C3%A9
https://github.com/AlexeyAB/Yolo_mark

2530

presupposes that the task consists of single class label-

ing: each object has a tag and that is what is to be stored.

The rich annotation often necessary when dealing with

linguistic data, and which Quevedo makes possible, is

not directly possible with YOLO Mark or other similar

tools.

This problem is also visible regarding dataset organiza-

tion and formatting. Datasets for image recognition and

understanding, such as ImageNet (Deng et al., 2009)

and COCO (Lin et al., 2015), do not need to deal with

such a rich annotation as linguistic data often presents.

It is often sufficient to present raw images on disk, with

a properly formatted name that contains the single la-

bel, or maybe a text file beside the image containing

the annotation. This straight-forward approach facili-

tates sharing and reproduction of results, and using it

requires a small amount of code that is reasonable to

expect every researcher to write themselves. But when

data begin to be more complex, and annotations richer,

it is also reasonable to have a tool to load the data

from disk and access the annotation, a tool tailored for

the problem at hand, such as Quevedo and its custom

dataset organization architecture.

Data Version Control5 (Kuprieiev et al., 2021) is an-

other tool that provides some dataset organization and

experiment preparation tools, but again is a generalist

tool, requiring the researcher to write the specific code

for their domain. Its concerns are, however, orthogonal

to Quevedo’s, so Quevedo datasets are very compatible

with DVC due to their architecture and the use of reg-

ular files. Quevedo commands can be tracked in DVC

pipeline files, and DVC can understand the parameters

in Quevedo configuration files thanks to using TOML6

as configuration language.

As we have seen, and as often happens in ML, there ex-

ist many independent but related tools, some more gen-

eral and some more specialized. Many of them can be

applied to our problem, but require a non-trivial amount

of code and design to make themwork for our purposes.

To alleviate this problem, Quevedo is a tool that under-

stands a more specialized domain, providing features

for graphical language processing, while delegating to

other tools when necessary.

3. Features

Quevedo can help organize the dataset, stor-

ing the source data, metadata and annotations.

Quevedo datasets are file system directories, with a

config.toml configuration file in the top level. This

configuration file keeps common information about

the dataset, such as annotation schema (an array of

possible tags to give to the symbols of the graphical

language), number of splits and their use for training

or testing, or web interface configuration parameters.

A title and description of the dataset can also be given.

5https://dvc.org/
6https://toml.io/en/

The top level directory of the dataset is also a perfect

place to have non-Quevedo files such as a “readme”,

license, or other information. It can also function as a

Git7 and/or DVC repository for better distribution.

Source images are organized into directories, keeping

them as raw images on disk. Beside the image files,

their annotations are stored as JSON files, allowing

easy interoperability. Additional directories are used to

store neural network configuration and trained weights,

as well as inference results, or user-defined scripts and

programs. This straightforward organization into direc-

tories and files is easy for other tools to consume if nec-

essary, but Quevedo creates and manages it automati-

cally for the user’s convenience.

3.1. Annotation Features

Since Quevedo deals with visual data, source files in

Quevedo datasets are images in bitmap format. These

images are divided into two types: logograms and

graphemes.

Graphemes are atomic, individual symbols that repre-

sent some particularmeaning in the target graphical lan-

guage, while logograms are images made of graphemes

in complex andmeaningful spatial arrangements. In the

UML example in Figure 2, the different boxes, arrows

and characters are graphemes. In the SignWriting ex-

ample (Figure 3), the hand symbols along with the ar-

rows indicating movement are the graphemes. In the

sheet music excerpt in Figure 1, one can identify the

notes, accidentals and other symbols as graphemes.

Both logograms and graphemes have dictionaries of

tags, following a global schema defined for each

dataset. Using a dictionary permits having more com-

plex annotations than just a single label per object, for

example having tags for different independent features,

or a hierarchy of tags where some values depend on the

values of other tags. Graphemes can be independent, or

part of a logogram.

Logograms are comprised of graphemes, but the mean-

ing of the logogram is not just the concatenation of

the individual graphemes’ meanings, but rather is de-

rived from their geometric arrangement in the page. Lo-

gograms therefore have a list of contained graphemes,

each with their own annotation, but these “bound”

graphemes also have box data, representing the coor-

dinates in the image where they can be found. Location

data is fundamental for graphical languages, since the

relative positions and sizes of the graphemes can have

important repercussions on meaning.

Since annotation is a highly visual process, especially

for the kind of data in Quevedo datasets, Quevedo can

launch a web interface as shown in Figure 5. This web

interface allows editing tags and metadata for all an-

notations, and drawing bounding boxes in logograms.

Custom functions can also be run from the web inter-

face, either aiding with the annotation process, or let-

7https://git-scm.com/

https://dvc.org/
https://toml.io/en/
https://git-scm.com/

2531

ting users visualize the results of these functions with-

out having to run any code.

Annotation files (logograms or independent

graphemes) can also be assigned metadata, such

as source of the data, annotators, or other custom

values to aid in the use of the dataset. Addition-

ally, they can be automatically assigned to different

“splits”. These splits can then be used to train and

test on different subsets of the data, or even perform

cross-validation.

3.2. Processing features

Quevedo can be used as a library, giving access to the

annotations in an easy and organized way, so user code

can perform custom processingwithout having toworry

about files and directories or storage formats. How-

ever, there is also some higher-level functionality im-

plemented, providing an abstraction over complex tasks

that the owner of the dataset may want to carry on.

In the field of Computer Vision, a number of algo-

rithms have been developed to deal with the task of au-

tomatically recognizing images or finding relevant ob-

jects in them. Quevedo can train neural networks for

this task using the data annotated in the dataset. High-

level configuration for the neural network is specified in

the dataset configuration file, mainly the task to solve,

the annotations to use for training, and which tags to

learn to recognize. Based on this high-level description,

the necessary Darknet configuration files are generated,

and the data prepared so Darknet can process it. The

neural network can then be trained with a single com-

mand, and a simple evaluation can also be performed.

The resulting weights can be used by other applications,

or directly from Quevedo.

However, linguistic processing is often not as simple as

a single labelling task. There may be different prepro-

cessing steps to run, or some analysis required beyond

a machine learning algorithm. This is especially true

when the available data is scarce, so rule-based process-

ing is necessary alongside whatever data-based pro-

cessing is possible. Moreover, language is often seen as

organized in layers, and processing mimics these lay-

ers by building aggregated representations one step at

a time. For this purpose, Quevedo can run pipelines,

configured again in a declarative and high-level format

in the dataset. Pipelines consist of series of steps, in-

cluding neural network inference, custom processing

scripts, or branching pipelines depending on tag val-

ues.

4. Usage

Quevedo is freely available on the Python Package In-

dex (PyPI8) so the latest version can be installed with

the command python3 -m pip install quevedo.
Source code is available on GitHub9 under the Open

8https://pypi.org/project/quevedo/
9https://github.com/agarsev/quevedo

Software License 3.010 and documentation is alsomain-

tained using GitHub Pages11.

To build a dataset, we need a collection of images to an-

notate. We can then use the command line to create the

dataset, configure it, and add the images to the relevant

subset:

[path/to]$ python3 -m pip install quevedo
[path/to]$ quevedo -D dataset create
[path/to]$ cd dataset
[path/to/dataset]$ quevedo add_images -i

source_image_directory -g triangles↪→

At this point, we will want to annotate the images. The

first step is to decide on an annotation schema, an array

of tags to give to logograms and graphemes, and the

metadata schema, additional data which wewill want to

store about each file. This is configured in the dataset

configuration file, which is in TOML format so easily

editable with a text editor. An example configuration

could be the following:

title = "Example dataset"

description = """
This dataset is an imaginary example
for how to use Quevedo. Annotations
would be similar to those in vector
graphics format such as SVG.

"""

tag_schema = ["shape", "fill", "stroke"]
meta_tags = ["filename", "meaning"]
...

With this, the web interface can be launched, useful for

both visualization of the source images and annotation

of their meaning:

[path/to/dataset]$ quevedo web --host
'localhost' --port 8080↪→

Once the data have been annotated, the dataset can be

accessed from user code to compute corpus statistics,

perform user processing, or train machine learning al-

gorithms. In the following example, we find the most

common colors used in our imaginary dataset:

from collections import Counter
from quevedo import Dataset

colors = Counter()
ds = Dataset('path/to/dataset')

10https://opensource.org/licenses/OSL-3.0
11https://agarsev.github.io/quevedo/latest/

https://pypi.org/project/quevedo/
https://github.com/agarsev/quevedo
https://opensource.org/licenses/OSL-3.0
https://agarsev.github.io/quevedo/latest/

2532

for a in ds.get_annotations():
fill = a.tags['fill']
stroke = a.tags['stroke']
colors[fill] += 1
colors[stroke] += 1

print(colors.most_common(5))

To use the machine learning functionality provided

with Quevedo, first we have to configure the networks

and pipelines in the dataset configuration file:

[network.monochrome]
subject = "Classify black and white shapes"
task = "classify"
tag = ["shape"]
subsets = ["squares", "triangles",

"circles", "other"]

[network.monochrome.filter]
criterion = "fill"
include = ["black", "white"]
With this filter, only graphemes with a
'fill' tag of black or white will be
used for training. This lets us have
different networks for different tasks.

With the network configured, we can then use the com-

mand line to train it. This will take a bit of time, and

at the end the network weights will be stored in the

network/monochrome directory. These weights can

be used to predict the “shape” tag of new data, and we

can do a basic test of its accuracy on our own data:

[p/t/dataset]$ quevedo -N monochrome train
Neural network 'monochrome' trained

[p/t/dataset]$ quevedo -N monochrome test
Annotations tested: 136
{

"overall": 0.9632352941176471,
"det_acc": 1.0,
"cls_acc": 0.9632352941176471

}

This is a basic introduction to Quevedo usage, andmore

detailed documentation can be found online at https:
//agarsev.github.io/quevedo/latest/. The

command line interface can also list the avail-

able commands and parameters with the command

quevedo --help12.
In the next section we will give a brief overview of our

own dataset and research using Quevedo, including an

12Quevedo’s command line functionality is implemented

with the excellent “Click” library: https://github.com/
pallets/click.

Figure 4: Example of the use of Quevedo to annotate

the graphical language of elementary arithmetic, where

the bidimensional position of elements is semantically

relevant. Section 5 describes a real example of anno-

tation and processing of a different graphical language,

but this example shows that the same techniques can be

used for different languages and systems.

example of the web annotation. This dataset can be

used to follow along with the explanations in this sec-

tion or on the online documentation. A simpler example

dataset is also provided with the Quevedo source code,

and can be found in the examples/toy_arithmetic
directory. This dataset also serves as an example of the

how Quevedo can be used for the annotation of differ-

ent graphical languages, as it contains examples of el-

ementary arithmetic operations —additions, substrac-

tions, etc., performed visually, as would be performed

by students. An example can be seen in Figure 4.

If the source code of Quevedo is downloaded, the lat-

est development features can be tested. For this, we

recommend using Poetry13, a python environment and
dependency manager. For example, we could clone the

source code repository and use Poetry to install de-

pendencies, allowing us to examine the example “toy

arithmetic” dataset using the web annotation interface.

This would give a result similar to Figure 4, accessible

using our own local browser. The following sequence

of commands, adapted to our own environment, could

be used to this end:

[~]$ git clone
https://github.com/agarsev/quevedo↪→

[~]$ cd quevedo
[quevedo]$ poetry install --extras "web"
[quevedo]$ cd examples/toy_arithmetic
[toy_arithmetic]$ poetry run quevedo info
[toy_arithmetic]$ poetry run quevedo web

13https://python-poetry.org/

https://agarsev.github.io/quevedo/latest/
https://agarsev.github.io/quevedo/latest/
https://github.com/pallets/click
https://github.com/pallets/click
https://python-poetry.org/

2533

Figure 5: Annotation of a logogram using the Quevedo web interface. The sign, the same as in Figure 3, means

coffee in Spanish Sign Language. The graphemes marked and annotated within the image represent the two hands

and their relative location and orientation, along with their finger configuration, and the circling movement they

perform. Metadata can help with the annotation process, and user-defined flags can be configured to represent

task-specific messages for other annotator or reviewers. More details on the labels and their values can be found

in the corpus annotation guide at https://zenodo.org/record/6337885.

5. Use Case

Quevedo is one result of our project “Visualizando la

SignoEscritura”14 (VisSE, “Visualizing SignWriting”

in Spanish). One goal of the project was to create

tools capable of automatically processing SignWrit-

ing, a graphical system for transcribing sign languages.

SignWriting uses iconic symbols to represent the hands,

body parts, and their movements and configurations, as

the example in Figure 3 shows. Quevedo and its fea-

tures have enabled us to create a system capable of auto-

matically extracting the graphemes within a SignWrit-

ing transcription, assigning each of them a label rep-

resenting their meaning. This required us to collect a

corpus, publicly available at https://zenodo.org/
record/6337885 (Sevilla et al., 2022) and formatted

as a Quevedo dataset. The corpus was manually and

visually annotated, and a complex hierarchy of neural

networks was trained on these annotations to be able

to find the correct tag set for every grapheme in new

instances.

For every step of this process we used Quevedo, each

step guided by a few configuration lines or command

line options, and the ground truth kept in the annota-

tion files. The different steps in the process and their

results can be recorded with DVC, easing experimenta-

tion and storing of measurements, as well as increasing

reproducibility.

14https://www.ucm.es/visse

Our SignWriting data are handwritten transcriptions of

Spanish Sign Language signs, organized into sets to be

able to do incremental annotation. Metadata for each

file store the annotation progress, doubts and errors, and

possible problems in the source images to take into ac-

count. Within each logogram, the different graphemes

are marked and tagged with a set of features that cap-

tures their meaning. This set of features, the annota-

tion schema of the dataset, includes a coarse-grain class

for graphemes (CLASS), a fine-grain label (SHAPE)

and a possible variation (VAR). Rotation (ROT) and

reflection (REF) are also specified, since they can alter

the meaning of the sign. The relative location of the

graphemes is marked with the bounding boxes, which

are shown visually in the web interface. An example of

this annotation process can be seen in Figure 5.

Splitting the grapheme labels into a coarse classifica-

tion (hands, head symbols, arrows, and some others)

and then a finer one has allowed us to perform auto-

matic recognition of the graphemes in steps, instead of

with one single recognizer. Storing rotation and reflec-

tion of graphemes in the tags, combined with a script to

“straighten” them before recognition, reduced the num-

ber of classes of graphemes to be recognized 16-fold,

de-sparsifying our data and again dividing the problem

of recognition into smaller steps. The trained neural

networks, each specialized in a different task, were then

collected into a Quevedo pipeline, making the full au-

tomatic recognition process available as a single com-

https://zenodo.org/record/6337885
https://zenodo.org/record/6337885
https://zenodo.org/record/6337885
https://www.ucm.es/visse

2534

mand line invocation or a few lines of glue code.

The use of domain knowledge and deterministic rules to

do part of the processing was a necessary step in our re-

search, turning a very difficult problem into a tractable

one. “Dividing and conquering” is a common strategy

in computer science, and is especially necessary if the

amount of data available is not as extensive as the com-

plexity of the problem requires for a purely data-based,

blind approach. Not having “Big Data” at our disposal

means we can not rely on ready made, single-shot so-

lutions to our problem, but we can still use some of the

algorithms coming from the state of the art. This re-

quires thoughtful preparation and organization of data,

and building custom processing sequences. Quevedo

was born to help us in doing this for our SignWriting

research, but is general enough that it can be useful for

other similar tasks of graphical language recognition,

where data is not plentiful and requires careful annota-

tion and processing.

For the VisSE project, the results of the data collection,

annotation and machine learning were integrated into

a user-facing application that explains SignWriting in-

stances15. The application works by using Quevedo’s

recognition pipeline to find the graphemes, and creating

textual descriptions for each of them from the predicted

tag set. While we have given a shallow overview of our

SignWriting pipeline here, researchers interested in re-

producing our research or extending it to new problems

can find a more in-depth description in our forthcoming

work “Automatic SignWriting Recognition”.

The success of the VisSE project in achieving its goals

serves as an initial evaluation of Quevedo as useful soft-

ware for the processing of graphical languages, as well

as a demonstration of its potential for solving similar

problems in the future.

6. Conclusion

Graphical languages use symbols arranged in the page

to convey meaning, but in contrast to the mostly linear

writing systems of oral languages, the two-dimensional

placing of symbols is fundamental to their decoding.

To properly process and recognize images of graphical

languages, we can use techniques from artificial vision,

but also need the rich annotation of meaning found in

natural language processing tools.

Existing software can help in many parts of the pro-

cess, but none is focused on the concrete task of graph-

ical language processing, requiring researchers to write

much code to account for its unique features. Quevedo

is our answer to this problem, a high-level python li-

brary and application that can help in building datasets

of graphical language images, and annotating themwith

the necessary information for their automatic recogni-

tion and processing.

Quevedo has enabled our research into SignWriting,

a complex writing system for transcribing sign lan-

15https://holstein.fdi.ucm.es/visse/ (in Span-

ish).

guages which is a graphical language in itself. How-

ever, Quevedo is general and domain-agnostic, so it can

be used for other tasks and with other datasets. It offers

the researcher tools for performing the chores of dataset

collection and organization, a visual and fully featured

annotation interface, and functions for performing com-

mon tasks such as machine learning algorithms train-

ing. These tasks are all part of modern data science,

but take time and expertise, time which is also needed

for the domain-specific tasks of deciding on an annota-

tion schema, relevant processing pipelines, and actual

annotation of the data.

We have briefly shown howwe use Quevedo, and given

a quick primer on its usage for other researchers. There

is more documentation available online, and our code

is freely distributed at GitHub. We believe that there

aremany other graphical languages which could be pro-

cessed with similar techniques to ours, and sharing our

software may be a way to help other researchers do so.

7. Future Work

In the future, there are many improvements we want to

make, and we are conducting lines of research that will

contribute more functionality to Quevedo. We want to

integrate with alternative deep learning platforms, such

as TensorFlow, to be able to utilize the wide array of

features they provide, as well as making the interaction

of Quevedo with other software easier.

While our focus is on SignWriting, where there is still

much work to be done for its fully automatic process-

ing, we already have many ideas of languages where it

might be interesting to try to apply our techniques. The

examples given in the introduction, such as musical no-

tation and UML diagrams, are only some of them.

Finally, there is current work on developing the next

step in Quevedo processing. When representing graph-

ical languages “semantically”, often the chosen repre-

sentation is a list of symbols with their attributes and po-

sitions. This is indeed the representation that Quevedo

is currently geared to extract, and the one majorly used

when dealing with SignWriting computationally. How-

ever, this representation leaves interpretation of the im-

age meaning to the human reader. To computationally

extract the semantics of graphical language images, fur-

ther processing is needed, taking into account the whole

context of the logograms, as well as the functional re-

lations between the graphemes. This is our current re-

search, and the related code is already under develop-

ment in the Quevedo repository.

8. Acknowledgements

Initial development of Quevedo was part of the project

“Visualizando la SignoEscritura”, reference number

PR2014_19/01, funded by Indra and Fundación Uni-

versia in the IV call for funding aid for research projects

with application to the development of accessible tech-

nologies.

https://holstein.fdi.ucm.es/visse/

2535

Current development and improvements are part of

the project “SSL Signary: A parametric dictio-

nary of Spanish Sign Language”16, reference num-

ber IN[21]_HMS_LIN_0070, supported by a 2021

Leonardo Grant for Researchers and Cultural Creators

from the BBVA Foundation. The BBVA Foundation

accepts no responsibility for the opinions, statements

and contents included in the project and/or the results

thereof, which are entirely the responsibility of the au-

thors.

9. Bibliographical References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,

Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,

L., Kudlur, M., Levenberg, J., Mané, D., Monga,

R., Moore, S., Murray, D., Olah, C., Schuster, M.,

Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,

Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,

M., Yu, Y., and Zheng, X. (2015). TensorFlow:

Large-scale machine learning on heterogeneous sys-

tems. Software available from tensorflow.org.

Deng, J., Li, K., Do, M., Su, H., and Fei-Fei, L. (2009).

Construction and Analysis of a Large Scale Image

Ontology. Vision Sciences Society.

Kuprieiev, R., Pachhai, S., Petrov, D., Redzyński, P.,

da Costa-Luis, C., Rowlands, P., Schepanovski, A.,

Shcheklein, I., Taskaya, B., Orpinel, J., Santos, F.,

Gao, Sharma, A., de la Iglesia Castro, D., Zhanibek,

Hodovic, D., Kodenko, N., Grigorev, A., Earl, Dash,

N., Vyshnya, G., maykulkarni, Hora, M., Vera, Man-

gal, S., Baranowski, W., Wolff, C., and Benoy, K.

(2021). DVC: Data Version Control - git for data &

models.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Gir-

shick, R., Hays, J., Perona, P., Ramanan, D., Zitnick,

C. L., and Dollár, P. (2015). Microsoft coco: Com-

mon objects in context.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,

J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-

Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,

Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).

PyTorch: An imperative style, high-performance

deep learning library. In H. Wallach, et al., editors,

Advances in Neural Information Processing Systems

32, pages 8024–8035. Curran Associates, Inc.

Redmon, J. (2013–2016). Darknet: Open source

neural networks in c. http://pjreddie.com/
darknet/.

Smith, R. W. (2013). History of the Tesseract OCR

engine: what worked and what didn’t. In Document

Recognition and Retrieval XX, volume 8658, pages

1–12. SPIE, February.

16https://www.ucm.es/signariolse

Sutton, V. and Frost, A. (2008). SignWriting: sign

languages are written languages! Center for Sutton

Movement Writing.

Technical Committee: ISO/IEC JTC 1 Information

technology. (2012). Information technology – Ob-

ject Management Group Unified Modeling Lan-

guage (OMG UML) – Part 2: Superstructure. Stan-

dard, International Organization for Standardization.

10. Language Resource References

Sevilla, A. F. G., Lahoz-Bengoechea, J. M., and

Díaz Esteban, A. (2022). VisSE corpus of Span-

ish SignWriting. https://zenodo.org/record/
6337885.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.ucm.es/signariolse
https://zenodo.org/record/6337885
https://zenodo.org/record/6337885

	Introduction
	Related Work
	Features
	Annotation Features
	Processing features

	Usage
	Use Case
	Conclusion
	Future Work
	Acknowledgements
	Bibliographical References
	Language Resource References

