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Abstract
Discourse marker inventories are lexical resources that define the meaning of discourse cues (discourse markers) in terms of
associated discourse relation types. They are thus important tools for the development of both discourse parsers and corpora
with discourse annotations. This paper explores the potential of massively multilingual lexical knowledge graphs to induce
multilingual discourse marker lexicons by means of propagation methods. Given one or multiple source language discourse
marker inventories and a large number of bilingual dictionaries to link them – directly or indirectly – with the target language,
we study to what extent discourse marker induction can benefit from the integration of information from different sources, the
impact of sense granularity and what limiting factors may need to be considered. Our study uses discourse marker inventories
from nine European languages normalized against the discourse relation inventory of the Penn Discourse Treebank (PDTB), as
well as three collections of machine-readable dictionaries with different characteristics, so that the interplay of a large number
of factors can be studied.
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1. Background

Discourse parsing has been a topic that received con-
siderable renewed attention in the last years. The area
does, however, still suffer from a general sparsity of
resources. At the moment, we are aware of discourse
corpora for little more than a dozen languages, only,
including English (Carlson et al., 2003; Wolf and Gib-
son, 2005; Prasad et al., 2008), Chinese (Huang and
Chen, 2011; Long et al., 2020), Czech (Poláková et al.,
2013), Dutch (Van Der Vliet et al., 2011), French (Dan-
los et al., 2015), German (Stede, 2004; Gastel et al.,
2011), Hindi (Oza et al., 2009), Italian (Raymond et al.,
2007), Portuguese (Pardo and Nunes, 2004), Spanish
(Da Cunha et al., 2011), and a small number of cross-
linguistic discourse annotations, e.g. Buch-Kromann
and Korzen (2010) and Zeyrek et al. (2019).
While for most languages, full-fledged discourse pars-
ing is thus beyond reach, it is well-known that al-
ready more shallow techniques can be employed to fa-
cilitate the development of discourse-aware technolo-
gies. One such technique is the application of dis-
course marker inventories, i.e., machine-readable dic-
tionaries of discourse cues (‘markers’) such as adverbs,
conjunctions and particular phrases, classified accord-
ing to fine-grained sense inventories that represent their
discourse functions in terms of associated discourse re-
lations. These can then be used as gazetteers to de-
termine possible discourse functions of the associated
marker in a text. A plain lookup may thus provide in-
formation about the discourse relation an utterance is
subject to, or, at least, to narrow their possible band-
width, and this information can either be directly used
(as a replacement of discourse parsing) (Fuentes Fort,
2008) or used as a factor to support more sophisticated
methods for discourse parsing (Bourgonje and Stede,

2020).
For bootstrapping discourse marker inventories, three
main techniques have been applied so far: (1) extrac-
tion from a corpus with discourse annotation (Das et
al., 2018), (2) induction from parallel corpora (Versley,
2010; Laali and Kosseim, 2014), or (3) translation of
an existing discourse marker inventory in another lan-
guage by the hands of a native speaker and/or existing
dictionaries (Alonso, 2005).
In the creation of most discourse marker inventories
we are aware of, these techniques have been applied
in combination, but in most cases, the ultimate goal
was the creation of a discourse-annotated corpus, not
the creation of a discourse marker inventory per se,
and thus, monolingual (1) or parallel (2) corpora have
played a particular prominent role in this context,
whereas lexical methods (3) have been somewhat ne-
glected – at least as far as the automated induction of
discourse marker inventories is considered. To some
extent, this is motivated by the insight that general-
purpose dictionaries can only cover lexical discourse
markers, as phrasal discourse markers like for this rea-
son would not normally be listed in a print dictionary.
And, indeed, this is an inherent limitation. At the same
time, a large number of discourse markers listed in the
inventories we studied consisted of single words only,
so that lexical induction methods are capable of provid-
ing at least a partial discourse marker inventory.1 Al-

1Even within the same language, we find a great deal of
variation in this regard, so that, for example, the PDTB v.2
inventory (Prasad et al., 2008; Chiarcos and Ionov, 2021) fea-
tures 71% single-word expressions (54/186), whereas in the
English DiscMar inventory (Alonso, 2005), only 45% of the
listed discourse markers are single-word expressions (47/86).
Overall, this seems to be largely a difference in lexical cover-
age, although theoretical considerations may play be a role,
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ready a partial discourse marker inventory represents
an invaluable resource for a language in which no dis-
course annotation exists, be it as a basis for the de-
velopment of annotation guidelines (e.g., by giving a
practical definition of discourse relations by means of
a substitution test in the target language), or for evalua-
tion and quality control for other methods (e.g., manual
corpus annotation or projection in parallel corpora).
We address this gap and describe the application
of large-scale lexical networks to automatize the
translation-based method for discourse marker induc-
tion. We consider this particularly valuable for low re-
source languages where standard means of induction
or projection via parallel corpora are either not possi-
ble (because of the lack of electronically available and
legally cleared translated text) or restricted to highly
specialized genres that are not representative for the
language (e.g., Bible translations, subtitles, technical
documentation). We follow the general setup of a se-
ries of Shared Tasks on Translation Inference Across
Dictionaries (Ordan et al., 2017, TIAD) conducted con-
tinuously since 2017. The task is to take a collection of
bilingual dictionaries (say, English-Spanish, English-
Catalan, Spanish-French and French-Catalan) to boot-
strap a new bilingual dictionary between languages in-
directly connected by the resulting graph (say, English-
Spanish) by using other languages (here, Spanish and
Catalan) as pivots. Our scenario is structurally similar,
as we propagate labels (rather than translations) from
source language(s) to target language(s) by means of
one or multiple pivot languages, so we adopt the techni-
cal setting of TIAD shared tasks, and in particular, ap-
proaches developed in this context that were based on
the propagation of translations or concepts from source
to target languages (Chiarcos et al., 2020b).
As we explore multi-source induction over multiple
pivot languages, our method of builds heavily on the
availability of two kinds of resources: (a) large-scale
lexical data in consistent machine-readable formats,
and (b) several discourse marker inventories using a
single and consistent taxonomy of cross-linguistically
equivalent discourse relations. Both kinds of data have
previously been made available using compatible web
standards, so that now, their conjoint evaluation be-
comes a relatively easy task.

2. Data
For both lexical data and discourse marker inventories,
we operate on machine-readable editions on the ba-
sis of RDF (Klyne et al., 2004) and OntoLex-Lemon
(Cimiano et al., 2016).
RDF, the Resource Description Framework,2 is a W3C
standard that provides a generic data model for di-
rected labeled graphs on the web: Nodes, vertices

e.g., in what consitutes a discourse marker and what consti-
tutes an ‘alternative lexicalization’ of the respective discourse
relation.

2https://www.w3.org/RDF/

and graphs are identified by Uniform Resource Iden-
tifiers (URIs, resp., Internationalized Resource Identi-
fiers, IRIs), and on the basis of HTTP-resolvable URIs,
a technical ecosystem evolved that facilitates the access
to distributed data sets by standardized means of ac-
cess (HTTP), query (SPARQL), and, in particular, the
linking between datasets distributed on the web, hence
the term ‘Linked Data’ (Berners-Lee, 2006). A notable
feature of Linked Data technology is that the query lan-
guage SPARQL can be used to query across different
datasets, even if hosted by different providers. So, pub-
lishing data in RDF allows us to easily integrate infor-
mation from different resources, and here, lexical data
sets and discourse marker inventories.
Numerous RDF vocabularies define domain-specific
data models, and OntoLex-Lemon3 is a widely used
community standard for publishing lexical resources
as RDF data on the web (Cimiano et al., 2020, p.45-
59). As such, OntoLex-Lemon has been applied in
the aforementioned series of Shared Tasks on Trans-
lation Inference Across Dictionaries (TIAD). Both lex-
ical data and discourse marker inventories are available
in OntoLex editions.
As lexical data basis, we use the ACoLi Dictionary
Graph (Chiarcos et al., 2020a), an aggregate over sev-
eral major collections of bilingual dictionaries, e.g.,
Apertium (Forcada et al., 2011), FreeDict (Bański and
Wójtowicz, 2009), the Open Multilingual WordNet
(Bond and Foster, 2013), and PanLex (Westphal et al.,
2015). Overall, it features more than 3,000 bilingual
dictionaries from various sources, provided as RDF
data in accordance with the Ontolex-Lemon vocabu-
lary. We evaluate against three subsets from the ACoLi
Dictionary Graph with specific characteristics:

Apertium (A) 53 bilingual dictionaries for 44 lan-
guages, high-quality datasets developed for ma-
chine translation.

FreeDict (F) 145 bilingual dictionaries for 104 lan-
guage pairs and 45 languages.

MUSE (M) 108 dictionaries for 57 language pairs for
45 languages, predominantly linked via English.

These collections provide bilingual dictionaries for 174
language pairs and 77 languages (see Appendix A). For
evaluation, we did not experiment with PanLex dictio-
naries (that constitute about 2/3 of the ACoLi Dictio-
nary Graph) because these represent a rather uneven
pool of language resources with heterogeneous char-
acteristics and varying levels of quality. The subsets
above, on the other hand, represent prototypical cate-
gories of dictionaries which allows us to explore the
impact of their respective characteristics. They are,
however, not fully comparable as they cover different
languages.

3https://www.w3.org/2016/05/ontolex/

https://www.w3.org/RDF/
https://www.w3.org/2016/05/ontolex/
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The second major component is a collection of dis-
course marker inventories that serve as a basis for sub-
sequent induction. Here, we operate with discourse
marker inventories for nine languages, DimLex (Stede
and Umbach, 1998; Scheffler and Stede, 2016, Ger-
man), DiscMar (Alonso, 2005, Catalan, English, Span-
ish), DisCo (Bourgonje et al., 2018, Dutch), LDM-PT
(Mendes et al., 2018, Portuguese), LexConn (Roze et
al., 2012, French), LICO (Feltracco et al., 2016, Ital-
ian), PDTB (Prasad et al., 2008, English), and PDiTB
(Zikánová et al., 2019, Czech). Based on efforts con-
ducted in the context of the TextLink network (Degand,
2016) to develop a unified XML representation for
the majority of these inventories, Chiarcos and Ionov
(2021) provide a Linked Open Data edition of this data,
also on the basis of the OntoLex vocabulary. A key fea-
ture of this edition is that all inventories are linked with
ontologies that define their sense inventories. Most in-
ventories provide sense definitions modelled after the
Penn Discourse Treebank (PDTB v.2 or v.3), but some
follow independent conventions (DiscMar, LexConn,
PDiTB). These ontologies are part of a larger collec-
tion of annotation models (ontologies) for PDTB and
other forms of discourse annotation, all linked with a
more general domain ontology for discourse annota-
tions (Chiarcos, 2014). Via this domain ontology, it is
then possible to derive an automated mapping between
all supported schemas.

The PDTB taxonomy defines three primary levels of
granularity as illustrated in Fig. 1. To these we add
level 0 to express whether an expression can repre-
sent a discourse marker. Where an inventory does not
provide a fine-grained distinction (as weiterhin in Fig.
1), coarse-grained labels from higher levels are being
used. Note that not all inventories provide the full depth
of the PDTB taxonomy, e.g., the DiscMar taxonomy
roughly corresponds to the PDTB level 1 classification.

From the original OntoLex data, we use SPARQL
queries to create tabular data with tab-separated val-
ues for both lexical data and discourse marker inven-
tories. The query for lexical data retrieves a table of
source language expression and target language expres-
sions, generalizing over different modelling options in
OntoLex-Lemon. The language of the expressions is
encoded in BCP47 language tags. The query for dis-
course marker inventories retrieves data as structured
in Fig. 1, i.e., source language expression and PDTB
level classification. It is to be noted that the query con-
sults the OntoLex-edited data which provides a link
with the annotation model that defines the underlying
taxonomy. If this is not the PDTB v.2 ontology, but an-
other ontology, say, for the Rhetorical Structure Theory
(Mann, William C. and Thompson, Sandra A., 1986,
RST), the SPARQL query retrieves the linking of the
RST model to the overarching reference model, and,
then, indirectly, to the PDTB ontology. For every orig-
inal RST concept, the mapping returns the PDTB con-
cept(s) with the shortest path.

3. Induction by Sense Propagation
For discourse marker induction, discourse marker in-
ventories and bi-dictionaries are connected into a sin-
gle graph, which we iterate over different target lan-
guages. We operate under the assumption that the dis-
course marker inventories are exhaustive. That is, ev-
ery lexical entry that does not conform to a known
discourse marker is considered to not be a discourse
marker. This is represented as a fifth top-level category
in the sense hierarchy, at the same level as PDTB EX-
PANSION, CONTIGENCY, TEMPORAL and COM-
PARISON. Although this is an idealistic assumption,
all discourse marker inventories considered here have
been designed with the goal to provide such an exhaus-
tive list, either in terms of lexical coverage or by being
defined against a representative corpus.
The induction of discourse relations is calculated in-
dependently over all four levels. Prior to induction,
we calculate the symmetric closure of dictionaries and
merge all dictionaries that connect the same pair of lan-
guages l, k into a single dictionary Dl,k (= Dk,l).

1. Be t the target language. Let the mapping function
M : Σ+ 7→ (R 7→ [0 : 1]) map any word w (in
any language) to a mapping of PDTB relations R
to a numerical score. Initially, M is empty. Be
M t the subset of M that applies to words from
language t, the goal is to induce a mapping M t

that assigns the majority of words from t a sense
mapping. If no such mapping can be found for any
wordw ∈ t after induction, assume thatM t(w) =
(true 7→ 0.0).4

2. For every source language s with a discourse
marker inventory Is, initialize the discourse map-
ping ms as follows:

ms(ws) ={
true 7→ 0.0 if wsnot inIs

rel 7→ 1/length(Is(ws)) for all rel ∈ Is(ws)

Words from the dictionary that are not covered
by the discourse marker inventory are initialized
with a zero score for the sense true. Words or
expressions covered by the discourse marker in-
ventory are initialized with equal probability for
all attested senses. If multiple discourse rela-
tions are given for a word w, the score is divided
by their number (length(Is(ws))), so that unam-
bigous discourse markers yield higher scores for
their information. Add the mapping ms(ws) to
M and iterate for all attested words of all source
languages.

4Note that every word w is also typed for its language
in accordance with Turtle conventions, i.e., "tree"@en for
the string tree in English. So, homographs from different
languages are not being conflated by M .
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# FORM level 0 level 1 level 2 level 3
"weil"@de True CONTINGENCY CONTINGENCY:Cause CONTINGENCY:Cause:Reason
"weiterhin"@de True EXPANSION EXPANSION:Conjunction EXPANSION:Conjunction

Figure 1: German discourse markers with PDTB senses at three levels of granularity

Figure 2: Induction of PDTB level 1 sense TEMPO-
RAL from Catalan (DiscMar) to English via Esperanto
and Spanish, Apertium dictionaries.

3. For every language l and every attested word wl

from that language, be D(wl) the set of transla-
tions provided for the word wl in any existing bi-
dictionary. IfM(wl) is undefined, then: For every
word v ∈ D(wl) and M(v), the set of mappings
from v to PDTB senses and their scores; if there
is any v ∈ D(wl) for which M(v) is defined, set

m(wl) =

rel 7→
∑

v∈D(wl)

{
0 if rel 6∈ domain(M(v))

M(v)(rel)
length(D(wl))

otherwise

So, the sense assignments and their scores are av-
eraged over all translations ofwl for which a sense
mapping has been previously established.

Add m(wl) to M and iterate over all attested
words of all languages in the bi-dictionaries un-
til no further additions to M are possible.

4. Return M t as the resulting mapping from target
language word forms to PDTB discourse relations
and their respective senses.

The resulting sense mapping is reduced to word forms
for which one or more discourse senses receives a score
greater than 0. Figure 2 illustrates the procedure for
a Catalan-English example: Black boxes indicate dis-
course markers according to DiscMar, the dashed box
indicates a partial overlap with a discourse marker.

src dict # p r f

level 0
es A 117 .47 .82 .60
es F 87 .25 .73 .38
es M 22 .59 .93 .72
es all 169 .33 .84 .48
ca A 138 .40 .78 .53
ca M 14 .79 .85 .82
ca all 140 .39 .78 .52

level 1
es A 131 .44 .82 .57
es F 108 .20 .73 .32
es M 27 .52 .93 .67
es all 203 .29 .83 .43
ca A 155 .37 .76 .50
ca M 16 .81 .87 .84
ca all 157 .37 .76 .50

Table 1: Direct induction experiments for the En-
glish DiscMar inventory, PDTB levels 0 and 1 for
A(pertium), F(reeDict), M(USE) and all dictionaries)

(Note that errors in the dictionaries, e.g., the typo sı́
for Spanish si, have not been fixed for the figure.)
This algorithm is refined by constraints as described
below. We evaluate precision, recall and f measure rel-
ative to the number of senses predicted or missed. The
evaluation at level 0 is equivalent to token- (rather than
sense-)level precision and recall. Recall is calculated
as the number of correctly predicted senses relative to
the number of senses of all target language words in
the dictionary. By excluding out-of-vocabulary words,
we limit the evaluation to lexical discourse markers.
Phrasal discourse markers play an important role in
communication, but are inaccessible by this method
and thus excluded from the evaluation.

4. Evaluation
We evaluated all combinations of source languages,
target languages, dictionary sets and parameters for
all four PDTB levels for direct and indirect induction,
more than 250,000 combinations in total. Only selected
evaluation results can be included here, but result tables
are chosen to be representative for all combinations of
source and target languages.
As we aim to assess the multilingual dimension of dis-
course marker induction, direct induction (i.e., trans-
lation of discourse markers without using pivot lan-
guages) allows us to estimate upper quality bounds
for what can be expected from indirect translations
over multiple or an unconstrained number of pivot lan-
guages.
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4.1. Direct Induction
In the direct induction scenario, we take one source lan-
guage discourse marker inventory and perform a direct,
lookup-based translation into the target language, with-
out iterating over pivot languages or including multiple
source languages. This naive setting and presumable
gold standard is the conventional way for creating a
discourse marker inventory from scratch, although nor-
mally, in a manual process.
Table 1 summarizes example results for direct induc-
tion of an English discourse marker inventory from
Spanish, resp., Catalan, restricted to PDTB levels 0 and
1. Here, we operate with the DiscMar inventory, as by
having the same author, this represents a particularly
consistent subset of discourse marker inventories and
the languages it covers allow to compare all three dic-
tionary families directly. Comparable results (but over
multiple source inventories) for PDTB-based discourse
marker inventories are shown in Tab. 3, A main insight
here is that the characteristics of the bi-dictionaries are
essential for induction quality. At the same time, cov-
erage of the individual dictionary collections is limited,
to that subsequent experiments are primarily evaluated
for the all-dict setting.
In terms of precision and recall, we observe simi-
lar results for discourse marker induction using Aper-
tium for both source languages. The comparative de-
cay of FreeDict reflects the limited coverage of the
English-Spanish FreeDict dictionaries – which feature
only less than 9,000 translation pairs per direction. As
for MUSE, the relatively good performance in preci-
sion and recall is clearly misleading (as evident from
the small number of total predictions), and can be at-
tributed to the nature of alignment-induced word lists,
as these tend to produce 1:1 correspondents, MUSE has
a strong bias against phrases. Another factor is that this
is a high-precision excerpt from a translation table, i.e.,
entries with low precision have been largely filtered
away. For discourse markers, whose meaning is to
a large extent contextually determined, high-precision
alignment is harder to achieve than for designations of
concepts (nouns), states (adjectives) and events (verbs).
As a result, only close correspondents of single-word
discourse markers are being induced. As these are also
captured by more full-fledged lexical resources such as
Apertium, adding MUSE to Apertium has no positive
effect (as shown for induction from Catalan). Indeed,
the level of noise introduced by MUSE seems to have
a negative effect (as shown for induction from Spanish
in the all-dict setting on comparison to the Apertium
setting).
In the full PDTB setting, no Apertium dictionary is
available that permits to directly translate any native
PDTB inventory into another language. We thus eval-
uate FreeDict and MUSE only. The highest f scores
were 0.66 for level 0 (Dutch-English), 0.60 for level
1 (Italian-German), 0.54 for level 2 (German-English)
and 0.48 for level 3 (Italian-German), all obtained by

MUSE, but (as in the DiscMar experiment) with insuf-
ficient coverage in terms of predicted discourse mark-
ers. That these numbers are substantially lower than
the scores obtained for DiscMar probably reflects struc-
tural and conceptional differences in the inventories
that their mapping to PDTB relations could not fully
compensate.

4.2. Refinements, Filters and Parameters
In comparison to direct induction from a single source
inventory, which is available under certain circum-
stances only, indirect induction over one or multiple
pivot languages allows to substantially extend the range
of languages for which discourse marker inventories
can be induced. Moreover, it allows to more flexibly
support induction from multiple source inventories in
different languages, which may help to disambiguate
and refine each others predictions. We assume that (1)
induction over one or multiple pivot languages allows
to circumvent sparsity issues, and that (2) conjoint in-
duction from multiple inventories (via direct or indirect
translations) increases prediction quality. However, in-
duction over longer sequences of dictionaries are also
more error-prone, as lexical ambiguity will naturally
lead to a decay in confidence. For further improve-
ment, we thus introduce a number of parameters for
constrained induction:

min score after induction, return only senses (dis-
course relations) with a score greater than a pre-
defined threshold τ

min pivots if during induction, a given word w does
not have a sense assignment yet, then infer a sense
assignment if and only if translations in at least
m translations exist for which a sense mapping is
defined in M .

min pivot languages for a given word w, require that
translations in at least n languages exist for which
a sense mapping is defined in M . The difference
to the min pivots restriction (which operates on
pivot words, not languages) is that a language re-
striction requires independent evidence from dif-
ferent lexical resources.

4.3. Induction over the Full Lexical Graph
For induction from multiple sources over multiple dic-
tionaries, we assume that prediction quality increases
with the number of parallel translations involved. How-
ever, feeding in additional discourse marker lexicons
(and thus, more translation paths) does not immedi-
ately improve the picture. Evaluation was conducted
over the respective full dictionary inventory and is re-
ported here for the induction from all discourse marker
inventories (except the English PDTB inventory) to the
English DiscMar inventory.
Table 2 summarizes the evaluation results with the best-
performing configuration (in terms of f measure) per
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feature. In unconstrained induction, without restric-
tions on pivots, all induction results have much lower
f scores than direct induction, but when induction is
constrained, results reach or even exceeed the best case
performance obtained for direct translation.
As for min pivots, we find that f scores reach or exceed
the best case performance direct induction/translation
in the all-dict setting. Although the source data is dif-
ferent (and more heterogeneous) than that taken as ba-
sis for Tab. 1, the evaluation basis is the same, so they
can be directly compared. For Apertium and MUSE,
the best results were achieved with a min pivot restric-
tion of 2, resp., 3; for FreeDict, only with min pivot
restriction of 10 (the maximum tested). We attribute
this to differences in coverage of many FreeDict dic-
tionaries which can be partially compensated by rely-
ing on longer induction paths (as resulting from high
min pivot restrictions): The median size of FreeDict
dictionaries is 15,537 translation pairs, but the actual
size varies between 140 and 671,447 translation pairs,
so that many smaller languages are not effectively cov-
ered, even though they are in the dictionary graph. For
Apertium, median size is 22,285 translation pairs, but
much more balanced, ranging from 4,693 to 106,880
translation pairs. For MUSE, this is similar, with me-
dian 17,133 translation pairs, ranging from 4,082 to
91,849 translation pairs.
As for min pivot languages, we, again, tested for
thresholds from 1 to 10. For Apertium and FreeD-
ict, we confirm a comparable increase in f score. For
MUSE, the pivot language restrictions had no positive
effect. We consider this to be an artifact of the charac-
teristics of MUSE, which provides direct links with En-
glish for all languages and has a sampling bias against
ambiguous discourse markers (as part of the automated
pruning applied).
Finally, both conditions have been combined on the
all dictionary setting. Here, min pivot languages was
found to be the determining factor, with additional
min pivot restrictions not leading to any improvements.
This is consistent with expectations about the structure
of the dictionary graph: High min pivot restrictions
posit positive conditions for either evidence from addi-
tional sources, or ambiguous translation pairs. Increas-
ing min pivot restrictions beyond the number of avail-
able incoming dictionaries will thus prevent unambigu-
ous translation pairs from contributing to the induction.
In our data, this effect outweighs any possible effects
to be expected from excluding small-scale dictionaries
that create a ‘shortcut’ between languages connected
by more large-scale dictionaries with an indirect path.
In subsequent experiments, we thus optimized the pivot
language threshold, but not the min pivots threshold.
The improvements over direct induction are most sig-
nificant on the Apertium data, less so on MUSE, but
neither prominently in FreeDict nor in the all dictionary
setting. Constrained induction in the all dictionaries
setting fails to achieve the performance of the Apertium

dict min min min pivot # p r f
score pivots languages

no pivot restrictions
A 0.15 1 1 230 .31 .88 .46
F 0.35 1 1 1329 .03 .49 .06
M 0.45 1 1 79 .24 .87 .38
all 0.4 1 1 1111 .04 .55 .08

best-performing min pivots, from 1 to 10
A 0.2 2 1 164 .38 .86 .53
F 0.4 10 1 196 .13 .47 .20
M 0.45 2 1 77 .25 .91 .39
all 0.45 10 1 186 .15 .48 .23

best-performing min pivot languages, from 1 to 10
A 0.15 1 2 159 .42 .93 .57
F 0.4 1 7 107 .17 .58 .26
M 0.45 1 1 79 .24 .86 .38
all 0.4 1 4 290 .14 .58 .22

best-performing combination
all 0.4 4 4 290 .14 .58 .22

Table 2: Induction from all discourse marker invento-
ries (except English) to English DiscMar, level 1

data set that it contains. In all configurations tested so
far, its f scores are below those of any specific subset
of dictionaries here, and we take this to be indicative
of a deeper problem with differences in coverage and
structure among the bilingual dictionaries considered.

4.4. Level 2 and 3 Senses
For projecting the senses of deeper levels of the PDTB
taxonomy, we exclude the DiscMar inventories (that do
not provide this information to the full extent) and re-
port results for multi-source induction over the full dic-
tionary graphs for German DimLex and English PDTB
inventories. These represent the two major types of
discourse marker inventories, with DimLex represent-
ing the lexicographical tradition (albeit enriched with
corpus data) and PDTB representing corpus-based dis-
course marker inventories (albeit informed by lexico-
graphic research).
We report the best-performing configurations for the
parameters introduced so far. In addition, we now
normally project more than one sense per discourse
marker, so that we introduce an additional parameter

max senses return only the top k projected senses after
induction. (Induction operates on all senses.)

Results of the projection to English are summarized in
Tab. 3. This was conducted against all dictionaries
to predict the English PDTB inventory from all non-
DiscMar inventories and multi-source induction com-
pared against the best- and worst-performing direct in-
duction. Considering the average case, multi-source
induction without pivot language restriction performs
better than average-case single source direct induction
for level 0, but not for levels 1-3. However, the pivot
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language restriction leads to considerable improve-
ments to the extent that constrained multi-source in-
duction outperforms the best-performing single-source
induction. Again, the most effective factor identified
was the pivot language restriction, and only by means
of this restriction, we can outperform single-source di-
rect induction.
As Table 3 indicates, f scores for inferred English dis-
course relations against the PDTB inventory are com-
parable with the results achieved before for the English
DiscMar inventory for level 0 in the all-dict setting,
but substantially higher for level 1. Very likely, this
is due to the greater similarity of non-DiscMar inven-
tories with the English PDTB inventory, most of which
(except for French) are based on or inspired by PDTB,
whereas DiscMar inventories and the French LexConn
inventory were independently created and had to be
mapped. Clearly, the sense classification of DiscMar
is loosely mappable to PDTB, only, also because its
categories are underdefined.

4.5. Cross-Lingual Aspects
The best-performing configuration for inducing PDTB
senses in the all-dict settings to English is to require
the presence of 5 pivot languages prior to induction,
with one sense for PDTB level 0, two for level 1, four
for levels 2 and 3. To evaluate these parameters and
to estimate a cross-linguistically valid threshold value,
we now explore induction from all languages (except
English) into every other language (except English).
In scenarios where the maximum number of pivot lan-
guages cannot be reached (e.g., for Czech which is only
connected via English), we use the maximum number
of pivot languages supported by the graph, instead (for
Czech, this is thus 1).
Figure 3 shows the number of pivot languages (against
best-performing min score thresholds for f , predict one
sense only) plotted against f for PDTB level 0. Here,
we find that a higher number of pivot languages does
not necessarily increase prediction quality. The average
f (calculated over all languages other than English) is
indeed maximal for two pivot languages (closely fol-
lowed by three and four pivot languages), but drops
subsequently. The motivation behind is that a higher
number of pivot languages can require longer chains of
indirect propagation, and thus to an increase of noise.
The medians of best-performing min score thresholds
per pivot language restriction are 0.225 (1 pivot lan-
guage), 0.25 (2 pivot languages), 0.20 (3 to 5 pivot lan-
guages), 0.175 (6 pivot languages), and 0.225 (7 pivot
languages). As a generalization, we suggest to use 0.20
as (a lower limit for) as min score for indirect induction.

5. Discussion
This paper describes the induction of discourse marker
inventories from large-scale lexical networks. Taking
a scenario in which a discourse marker inventory is
created by translating an existing discourse marker for

another language by means of a dictionary as a basis,
we found that for languages for which no such bilin-
gual dictionary is available, this can also be achieved
by indirect induction over one or multiple pivot lan-
guages – if this induction is constrained, e.g., by min
pivots threshold that enforces a minimum number of
pivot language translations to perform an induction
step. In scenarios in which information from discourse
marker inventories from multiple source languages can
be combined, we find that such a constrained induction
can outperform the presumed gold standard of direct
induction.
As English seems both the best-connected language in
the graph and features multiple discourse marker in-
ventories, a naive approach could be direct induction
from English to all other languages. Indeed, this has
been tested in Sect. 4.1, but results varied greatly for
the dictionaries. As illustrated for the DiscMar invento-
ries (Tab. 1, 2), best results in direct single-source and
direct multi-source induction have been achieved with
Apertium, and these could be considered gold standard
results. By comparison, FreeDict had strong deficits in
precision (this is heterogeneous, crowd-sourced mate-
rial) and MUSE in coverage (as seen from the small
number of overall predictions). For languages for
which no Apertium dictionary is available, indirect pro-
jection in the the all-dicts setting thus represents the
only viable choice. For the languages with discourse
marker inventories considered here, only Spanish and
Catalan have an English Apertium dictionary, but both
support PDTB levels 0 and 1 only (from DiscMar).
In indirect induction over all dictionaries, we achieve
high levels of recall, although precision is less robust.
This indicates that this method is particularly valuable
for supporting the semiautomated bootstrapping of dis-
course marker inventories in which the algorithm pro-
duces a number of discourse marker candidates ranked
for their respective confidence (predicted level 0 score).
Given such data at hand, a language expert can then
easily sieve through the top matches of this list. With
discourse marker inventories typically containing 50-
500 discourse markers only, this allow enable a lan-
guage expert to create a discourse marker inventory
within only a few working hours.
Code and data for our study are published under the
Apache v.2 license and available from our GitHub
repository.5 This also includes automatically gener-
ated discourse marker inventory stubs for 10 languages
(Bulgarian, Greek, Esperanto, Finnish, Japanese, Nor-
wegian, Polish, Russian, Swedish and Turkish) which
give discourse marker candidates, their PDTB level
0 score (discourse marker probability), and the asso-
ciated discourse relations, ranked for their respective
score in a simple tabular format with PDTB levels 1-
3 merged. Aside from PDTB discourse relations, we
generated inventory stubs for RST, using the same al-

5http://github.com/acoli-repo/
rdf4discourse

http://github.com/acoli-repo/rdf4discourse
http://github.com/acoli-repo/rdf4discourse
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dicts level min score min pivot languages max senses prediction p r f

best-performing direct induction (over aggregated/all dictionaries, cs,de,fr,it,nl,pt)
all:pt-en 2 535 0.164 0.815 0.274
all:pt-en 3 707 0.127 0.804 0.220
average scores for direct induction (cs,de,fr,it,nl,pt)
all 2 604 0.154 0.682 0.242
all 3 645 0.106 0.403 0.164

best-performing pivot language restriction
all 2 0.50 6 unrestricted 441 0.222 0.632 0.329
all 3 0.75 6 unrestricted 251 0.247 0.369 0.296

best-performing restriction on projected senses
all 2 0.45 5 4 250 0.364 0.669 0.472
all 3 0.45 5 4 256 0.309 0.622 0.413

Table 3: Inducing the full English PDTB inventory with restrictions on the number of pivot languages, projected
senses and min score thresholds

Figure 3: Multi-source/multi-target induction for PDTB level 0 (predict 1 sense only), plotted f over min pivot
languages (with best-performing min score from 0.0, 0.05, ..., 1.0).

gorithm and an automated mapping of the original dis-
course marker inventories retrieved with a SPARQL
query from the OLiA Discourse Extensions (Chiarcos,
2014). Furthermore, we also provide inventories with
CCR relations (Hoek et al., 2019) constructed in the
same way.

In future research, these inventory stubs can be used
as input for manual pruning and subsequently be inte-
grated in a community portal for discourse marker in-
ventories such as Connective-Lex (Stede et al., 2019).
Prior to doing this, however, we plan to conduct ad-
ditional experiments with a refined methodology and
additional parameters for which the current study pro-
vides a baseline. In particular, this includes the addi-
tion of corpus information. A natural extension is in-
duction weighted by corpus frequencies (as included in
German and one of the three English discourse marker
inventories we used, but not in any of the others), but
extrapolating corpus frequencies for different discourse

relations from corpora annotated for a schema that is
not identical (albeit close) to the target classification or
estimating them from automated disambiguation is a
non-trivial enterprise and beyond the scope of the cur-
rent experiment.

Finally, we would like to point out a methodological
aspect, that is, the application of web standards: Aside
from being a contribution to the development of dis-
course resources and discourse-aware language tech-
nology, it is important to note that this was possible
only because a large number of resources have been
made available beforehand in formats that facilitate
subsequent information integration and conjoint query-
ing. The fact that discourse marker inventories, bilin-
gual dictionaries and the underlying inventories of dis-
course markers are available in RDF, resp., as Linked
Data, allows us to easily conduct a large-scale study
across multiple families of dictionaries and discourse
marker inventories.
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A. Lexical Graph Topology
We assume that the topology of dictionary graphs may
explain certain differences in the results, therefore, we
provide plots of the dictionary collections in isolation
and as a group. In these figures, every node represents a
language, and nodes with double border represent lan-
guages with discourse marker inventories. Every edge
indicates the presence of at least one bi-dictionary be-
tween these languages. For every node, the shading
indicates the number of links to other languages. The
exact labels (languages) in these figures may not be
readable, but in all cases, a very dark, central node is
English.

The Apertium dictionaries (Fig. 4) form a relatively
sparse graph which prominently features links between
closely related languages (this reflects the application
scenario for symbolic translation between related lan-
guages). The FreeDict dictionaries (Fig. 5) show a
much less regular structure: On the one hand, numer-
ous languages are linked with English only; on the
other hand, a small number of widely spoken languages
forms a clique of major languages. The topology of the
MUSE dictionary graph (Fig. 6) is conceptually simi-
lar to that of FreeDict, except that the number of ma-
jor languages linked with languages other than English
is even more restricted. However, while graph topol-
ogy may have an effect, it cannot be disentangled from
other differences between the data sets. As such, Aper-
tium dictionaries are rich linguistic resources created
for applications in machine translation, and in this ap-
plication, they are subject to rigorous evaluation. In
particular, these dictionaries have a bias towards pro-
viding the most frequent translation only, as rare trans-
lations are more likely to be perceived as errors and to
be eliminated in the data curation process.
FreeDict dictionaries, on the other hand, are designed
for human consumption and created with the goal to
inform the reader. In that regard, they put a stronger
emphasis in providing also less frequent translations, as
these may be what a human translator might be looking
for when consulting a dictionary.
Finally, MUSE dictionaries are shallow word lists au-
tomatically compiled from parallel corpora. As this ex-
traction aimed to extract reliable translation pairs only,
this has a similar bias as the Apertium data, but it is not
optimized for coverage (like Apertium), but for preci-
sion. Moreover, this is not manually curated data, so in
general, it will be more noisy.

Figure 7 illustrates the all-dicts graph. However, for
readability, we removed all dictionaries (edges) that are
not part of a noncyclic path from one discourse marker
inventory to another, so these are those relevant for con-
cept propagation between the discourse marker inven-
tories considered here.

Figure 4: Apertium dictionaries, double lines mark lan-
guages with discourse marker inventory

Figure 5: FreeDict dictionaries, double lines mark lan-
guages with discourse marker inventory

Figure 6: MUSE dictionaries, double lines mark lan-
guages with discourse marker inventory
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Figure 7: Apertium+FreeDict+MUSE dictionaries conjoint graph, reduced to languages relevant for the evaluation
of predicted discourse relations.
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