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Fiona Anting Tan1, Ali Hürriyetoğlu2, Tommaso Caselli3, Nelleke Oostdijk4,
Tadashi Nomoto5, Hansi Hettiarachchi6, Iqra Ameer7, Onur Uca8,

Farhana Ferdousi Liza9, Tiancheng Hu10

1 Institute of Data Science, National University of Singapore, Singapore, 2 Koc University, Turkey,
3 Rijksuniversiteit Groningen, Netherlands, 4 Radboud University, Netherlands,

5 National Institute of Japanese Literature, Japan, 6 Birmingham City University, United Kingdom,
7 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico,

8 Department of Sociology, Mersin University, Turkey, 9 University of East Anglia, United Kingdom,
10 ETH Zürich, Switzerland

tan.f@u.nus.edu, ahurriyetoglu@ku.edu.tr, t.caselli@rug.nl, nelleke.oostdijk@ru.nl,
nomoto@acm.org, hansi.hettiarachchi@mail.bcu.ac.uk, iqra@nlp.cic.ipn.mx, onuruca@mersin.edu.tr,

f.liza@uea.ac.uk, tianhu@ethz.ch

Abstract
Despite the importance of understanding causality, corpora addressing causal relations are limited. There is a discrepancy
between existing annotation guidelines of event causality and conventional causality corpora that focus more on linguistics.
Many guidelines restrict themselves to include only explicit relations or clause-based arguments. Therefore, we propose an
annotation schema for event causality that addresses these concerns. We annotated 3,559 event sentences from protest event
news with labels on whether it contains causal relations or not. Our corpus is known as the Causal News Corpus (CNC). A
neural network built upon a state-of-the-art pre-trained language model performed well with 81.20% F1 score on test set,
and 83.46% in 5-folds cross-validation. CNC is transferable across two external corpora: CausalTimeBank (CTB) and Penn
Discourse Treebank (PDTB). Leveraging each of these external datasets for training, we achieved up to approximately 64% F1
on the CNC test set without additional fine-tuning. CNC also served as an effective training and pre-training dataset for the
two external corpora. Lastly, we demonstrate the difficulty of our task to the layman in a crowd-sourced annotation exercise.
Our annotated corpus is publicly available, providing a valuable resource for causal text mining researchers.

Keywords: causality, event causality, text mining, natural language understanding

1. Introduction

Causality is a core cognitive concept and appears in
many natural language processing (NLP) works that
aim to tackle inference and understanding (Jo et al.,
2021; Dunietz et al., 2020; Feder et al., 2021). Gen-
erally, a causal relation is a semantic relationship be-
tween two arguments known as cause and effect, in
which the occurrence of one (cause argument) causes
the occurrence of the other (effect argument) (Barik et
al., 2016).
Figure 1 depicts examples of sentences expressing
causality, and ones that do not. Notice that causality
can be expressed in various ways: The first causal ex-
ample is signaled by the explicit causal marker “due
to” while the second example has causality indicated
by alternative lexicalizations such as “created”. In the
last example, an implicit causal relation exists between
the verbless clause and the matrix clause, conveying
that the dissatisfaction with the package leads to the
workers’ sit-in. For sentences without causality, they
must be missing either a cause or effect argument, or
both.
Causal Question Answering and Generation applica-
tions (Dalal et al., 2021; Hassanzadeh et al., 2019;
Stasaski et al., 2021) are some immediate downstream

Figure 1: Annotated examples from Causal News Cor-
pus. Causes are in pink, Effects in green and Signals
in yellow. Note that both Cause and Effect spans must
be present within one and the same sentence for us to
mark it as Causal.

Natural Language Understanding (NLU) applications
popular in NLP today. Despite the importance of iden-
tifying causality in text, datasets are limited (Asghar,
2016; Xu et al., 2020; Tan et al., 2021; Yang et al.,
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2021) and oftentimes, different researchers craft their
datasets with different rules, leaving users with no
proper way to compare models across datasets.
Our work is directed at annotating parts of the multilin-
gual protest news detection dataset (Hürriyetoğlu et al.,
2021a; Hürriyetoğlu et al., 2021b; Hürriyetoğlu, 2021)
for event causality. Our contributions1 are as follows:

• We created the Causal News Corpus (CNC),
which is a corpus of event sentences annotated
with binary labels indicating whether each sen-
tence contains a causal relationship or not2.

• We showed that a neural network built on a state-
of-the-art pre-trained language model could pre-
dict the causality labels with 81.20% F1, 77.81%
Accuracy, and 54.52% Matthews Correlation Co-
efficient on test set.

• We crafted annotation guidelines that align with
existing event causality and linguistic schemes.
Our experiments show that our dataset is indeed
compatible with other causality corpora.

• We observed that the layman struggles to replicate
the annotations by our experts in a crowd-sourced
annotation exercise, demonstrating the difficulty
of our task.

The rest of the paper is organized as follows: Section
2 reviews the literature on event causality. Section 3
describes the compilation and annotation of the corpus.
Section 4 describes the baselines we created for causal
event sentence classification and the experiments that
were conducted on CNC and two other datasets. Sec-
tion 5 outlines experiences from a crowd-sourcing an-
notation exercise. Finally, Section 6 concludes the pa-
per and discusses potential avenues for future work.

2. Related Work
The extraction of causality from text remains a signif-
icant challenge because semantic understanding of the
context and world knowledge is oftentimes needed. In
computational linguistics, a lot of effort has been put
into extracting causal knowledge from text automati-
cally (Blanco et al., 2008; Do et al., 2011; Kontos and
Sidiropoulou, 1991; Riaz and Girju, 2013).
Previous work has focused on event causality, cre-
ating corpora like CausalTimeBank (CTB) (Mirza et
al., 2014) from news, CaTeRS (Mostafazadeh et al.,
2016) from short stories and EventStoryLine (Caselli
and Vossen, 2017) from online news articles. Such

1Our corpus and model scripts are available on-
line at https://github.com/tanfiona/
CausalNewsCorpus.

2Annotation of the corpus is an ongoing effort: We also
aim to add information like cause-effect-signal span mark-
ings and causal types, and these additional information will
also be made public once available.

corpora include rich event features like event class at-
tributes and temporal expressions in TimeML annota-
tion format. However, these corpora are typically lim-
ited in size. For example, EventStoryLine (ESL) has
1,770 causal event pairs, CaTeRS has 488 causal links,
while CTB has 318 causal event pairs. Our work con-
tributes to this strand of literature by providing more
data: We have identified 1,957 causal event sentences,
each of which can contain multiple event pairs.
There is also a discrepancy between such event causal-
ity corpora and other causality corpora. Penn Discourse
Treebank (PDTB) (Prasad et al., 2008; Webber et al.,
2019; Prasad et al., 2006) is a corpus that annotates
semantic relations (including causal relations) between
clauses, expressed either explicitly or implicitly. This
corpus is large (e.g. PDTB-3 has over 7, 000 exam-
ples for the CONTINGENCY.CAUSE sense alone) and
is potentially useful for training an accurate event sen-
tence classifier. Therefore, we believe that it will be
beneficial to align the annotation guidelines of these
two corpora types. We did so by constructing event
causality annotation guidelines using linguistic rules
adapted from PDTB-3. However, our corpus differs
from PDTB-3 by focusing on event sentences and ac-
cepting more fine-grained arguments that do not neces-
sarily form a clause. This approach of including more
varied constructions of causality is similar to the work
by BECauSE 2.0 (Dunietz et al., 2017).
When discussing causality in text, many corpora only
focus on explicit relations (Girju and Moldovan, 2002;
Dunietz et al., 2017). An explicit causal relation refers
to an example where the cause-and-effect relation is ex-
pressed by means of a clear connective or some other
causal signal. An example was presented earlier in
the first sentence of Figure 1. Rule-based approaches
(Girju and Moldovan, 2002; Khoo et al., 2000; Sakaji
et al., 2008) have been shown to work well on such con-
structions. For example, researchers have used such
approaches to semi-automatically curate datasets for
cause-effect related tasks (Cao et al., 2016; Heindorf
et al., 2020; Stasaski et al., 2021). However, in the real
world, implicit relations are more common but more
challenging to identify (Hidey and McKeown, 2016).
Therefore, in our work, we do not limit ourselves to a
pre-defined list of connectives but rather, include causal
examples in more varied linguistic constructions for
more realistic use cases. With respect to this, we differ
from CTB, which only annotated explicit causal exam-
ples.

3. Compilation & Annotation
3.1. Data Source
CNC builds on the datasets featured in a series of work-
shops directed at mining socio-political events from
news articles: Automated Extraction of Socio-political
Events from News (AESPEN) in 2020 (Hürriyetoğlu
et al., 2020b; Hürriyetoğlu et al., 2020a) and Chal-
lenges and Applications of Automated Extraction of

https://github.com/tanfiona/CausalNewsCorpus
https://github.com/tanfiona/CausalNewsCorpus
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Socio-political Events from Text (CASE) in 2021 (Hür-
riyetoğlu et al., 2021a; Hürriyetoğlu et al., 2021b; Hür-
riyetoğlu, 2021). The data was based on randomly sam-
pled articles from multiple sources and periods, and all
annotations were performed by two annotators, adjudi-
cated and spot-checked by a supervisor, and corrected
further semi-automatically (Hürriyetoğlu et al., 2021c;
Yörük et al., 2021). In total, 869 news documents and
3,559 English sentences were available. We annotated
all 3,559 sentences in this paper. We utilized the dataset
from CASE 2021 directly and some sentences were not
well processed. We noticed that a few examples were
actually comprised of more than one sentence and titles
were still included in the texts. In our next data release,
we will redo the parsing of these examples.

3.2. Guidelines
CNC includes annotations for binary causal event clas-
sification in sentences; We labeled sentences to be
Causal or Non-causal. Sentences must contain at least
a pair of events, defined as as things that happen or oc-
cur, or states that are valid, following TimeML (Saurı
et al., 2006). For causality, we utilized the definition
of CONTINGENCY from PDTB-3, which assigns this
label for samples where “one argument provides the
reason, explanation or justification for the situation de-
scribed by the other” (Webber et al., 2019). The fol-
lowing four senses were recognized as Causal:

• CAUSE: Arg1 and Arg2 are causally influenced
but not in a conditional relation. Example connec-
tives are “because” and “since”.

• PURPOSE: One Arg describes the goal while
the other Arg describes the action undertaken to
achieve the goal. Example connectives are “in or-
der to” and “so that”.

• CONDITION: One Arg presents an unrealized sit-
uation, that when realized, would lead to the sit-
uation described by the other Arg. Example con-
nectives are “if” and “as long as”.

• NEGATIVE-CONDITION: One Arg presents an
unrealized situation, that if it does not occur,
would lead to the situation described by the other
Arg. Example connectives are “till” and “un-
less”.

Since our work is event-based, the senses that provided
reasons for the speaker to utter a speech, or the hearer
to have a belief (i.e. +SPEECHACT or +BELIEF types)
were treated as Non-causal.
A major difference between our approach and PDTB is
that we permitted non-clausal elements such as phrases
in our annotation scheme as arguments as long as these
spans meet our definition of event. PDTB is a discourse
bank that restricts its argument spans to discourse rela-
tions. As noted by Dunietz et al. (2017), causal spans
of multiple linguistic forms are excluded from PDTB.

For instance, in PDTB, verb signals like “caused” are
not annotated in the sentence “Speculation about Con-
iston has caused the stock to rebound from a low of
$145.”. Consequently, PDTB also did not annotate the
spans before and after “caused” as Cause and Effect
arguments. Given our focus on news events, more ex-
pressions of causality are required for proper interpre-
tation. Therefore, on top of PDTB-approved clauses,
we allowed for the following to be recognized as an
argument: noun phrases (including nominalizations)3,
and verb phrases (including ones that fall outside of a
coordinated structure, provided that the corresponding
span of its relation is a noun phrase that would com-
plete the verb phrase to form a clause). In general,
these relaxations of rules allowed us to annotate more
fine-grained arguments, including ones within clauses.
To ground our annotations, we utilized the five tests
for causality based on the work by Grivaz (2010) and
Dunietz et al. (2017). In Table 1, we report some exam-
ples to illustrate the applications of the causality tests
and the resulting classification labels. Additional de-
tails and examples are provided in Appendix A.

Five Tests for Causality

1. Why: The example is not causal if the reader is
unable to construct a “Why” question regarding
the Effect.

2. Temporal order: The example is not causal if the
Cause does not precede the Effect in time.

3. Counterfactual: The example is not causal if the
Effect is equally likely to occur or not occur with-
out the Cause.

4. Ontological asymmetry: The example is not
causal if the reader can readily swap the Cause and
Effect claims in place.

5. Linguistic: The example is likely to be causal if
it can be rephrased into “X causes Y” or “Due to
X, Y.”

CAUSE types Quoting the PDTB-3 annotation
manual (Webber et al., 2019), “CAUSE.REASON
(CAUSE.RESULT) is used when Arg2 (Arg1) gives
the reason, explanation or justification, while Arg1
(Arg2) gives its effect”. Within the CAUSE sense,
we noticed that its sub-senses, CAUSE.REASON and
CAUSE.RESULT, fit into the five tests framework well.
In particular, we were able to construct a question like
“Why did <effect>?”, and answer with “Because
(of) <cause>.” in an extractive manner.
However, we required some relaxations in the construc-
tion of the “Why” test to be able to include other senses
into our corpus. We highlight the relaxations as fol-
lows:

3Some examples of noun phrases describing event argu-
ments: “the fire” and “the protest in May”.
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Sentence Causality Tests Label

Why?
Temporal
Order Counterfact.

Ontological
Asymmetry Linguistic

The protests spread to 15
other towns and resulted

in two deaths and
the destruction of property .

✓ ✓ ✓ ✓ ✓ Causal

Chale was allegedly chased
by a group of about 30
people and was hacked to death
with pangas, axes and spears .

✗ ✓ ✗ ✓ ✗
Non-
causal

The strike will continue
till our demands are conceded .

✓ ✓ ✓ ✓ ✓

Causal
(Neg.
Cond.)

Table 1: Examples illustrating the applications of the Tests for Causality (Grivaz, 2010; Dunietz et al., 2017).
Cause in pink, Effect in green; potential Cause in gray. Signals are not marked.

PURPOSE types We permitted the answer to include
additional words like “In order to (achieve the goal of)
<cause>”. In this setting, the cause is a goal, or a
justification for the effect action. See Appendix A Ex-
ample (3).

CONDITION types We allowed the relaxation of the
question to include modal terms, for example: “Why
could/would <effect> occur?”. See Appendix A
Example (7).

CAUSE.NEGRESULT and NEGATIVE-CONDITION
types Quoting the PDTB-3 annotation manual (Web-
ber et al., 2019), “CAUSE.NEGRESULT is used
when Arg1 gives the reason, explanation or justifi-
cation that prevents the effect mentioned in Arg2”.
For CAUSE.NEGRESULT and NEGATIVE-CONDITION
senses, we allowed a further relaxation of the ques-
tion to include “prevent” or “cause-to-end” terms, as
in: “Why was <effect> prevented?”, “Why could
be <effect> prevented?” or “Why did <effect>
end?”. See Appendix A Example (8).
For samples with multiple sentences, we annotated
each sentence independently, that is, we do not con-
sider cross-sentence causality. We acknowledge that by
omitting cross-sentence examples, we potentially lose
out between a 1/10 to a 1/5 of additional causal ex-
amples, based on proportions estimated from CTB and
ESL respectively. Titles were also not annotated.

3.3. Workflow
Five annotators and one curator were involved in the
annotation effort. Figure 2 summarizes the different
annotation iterations to build CNC.

3.3.1. Initial Training
The initial training phase for annotators corresponds to
Round 1 in Figure 2. Guidelines were presented at the
beginning of the annotation phase, and examples out-
side of CNC dataset were ran through with annotators.

Figure 2: Summary of annotation workflow. n: sam-
ple size for the subset. a: number of annotators for the
subset. κ: Krippendorff’s Alpha score for samples per
round. Round 1 was a trial training round where anno-
tations were discarded. All subsequent rounds were for
the training set except Round 6 which was for the test
set.

We found it difficult to arrive at a consensus on the final
label across annotators during this initial discussion.
This experience motivated us to update our guidelines
after each round of annotation to continually improve
annotators’ understanding of the guidelines.

3.3.2. Guidelines Refinement
The difficulty in achieving alignment across annotators,
especially at the initial stages, arose from the following
three issues: Firstly, since our task challenges literacy,
comprehension, and cognitive understanding of a sen-
tence, it is a complex and involved task. Thus, a sig-
nificant amount of time is required for careful reading
of the annotation manual and examples to improve fa-
miliarity. Secondly, sensitivity to causal cues and sig-
nals (including implicit signals) takes time to develop,
and might not be apparent to some until later rounds.
Thirdly, different annotators rely on different guide-
lines or feedback mechanisms to improve their accu-
racy to identify causal labels faithful to the guidelines.
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Therefore, we were motivated to update our guidelines
in an iterative fashion after each annotation round to
refine the descriptions and include more examples that
would help improve alignment across annotators. A
group discussion always followed at the end of each
annotation round for annotators and curator to share
feedback and agree on the final guidelines. We also al-
lowed annotators to skip examples if they were unable
to come up with a suitable label.
For any major changes in guidelines that might affect
previous rounds of annotations, the curator identified
such examples and discussed with all annotators before
the final annotation is amended. In total, 33 examples
had their labels changed in this manner.

3.3.3. Final Annotation
In Round 2, we achieved a Krippendorff’s Alpha (κ)
score of 29.77% across five annotators. After the sec-
ond annotation round, we split the five annotators into
two groups to cover more data within our time frame.
Concurrently, we also noticed an improvement in the
agreement scores to 48.08%. By the third annotation
round, the guidelines had no further changes. Surpris-
ingly, we noticed agreement scores fell to 26.15% in
Round 4. This could be due to the much larger dataset
presented to annotators in this round, causing reduced
focus. In fact, we noticed the main reason for the drop
arose from one annotator in the first group. Exclud-
ing his contribution, the agreement increased to a rea-
sonable score of 39.34%. After working out misun-
derstandings, the subsequent two rounds of annotations
achieved consistent agreement scores of 36.95% and
48.55%. Across all rounds, our dataset has an agree-
ment score of 34.99%.
In our final corpus, every example was annotated by at
least two annotators. If only one annotation is present
because the other annotator skipped that example, the
curator’s vote is final. The curator also resolved any
ties present throughout the annotation exercise. In the
end, we obtained 3,559 annotated sentences, with 1,957
marked as Causal and 1,602 marked as Non-causal.
This is reflected in the first row of Table 2, alongside
data sizes for two other external datasets we experi-
mented with in the next section. We followed the train-
test split of our data source, and also provide the break-
down of data sizes by class labels in Table 2.

Causal Non-causal Total
CNC 1,957 1,602 3,559
CNC Training 1,781 1,467 3,248
CNC Test 176 135 311
PDTB-3 9,917 18,358 28,275
CTB 318 1,418 1,736

Table 2: Data sizes by class label.

4. Experiments
In this section, we present a battery of baseline mod-
els and results of causal sentence classification on the
CNC data and the two existing news corpora, PDTB-3
(Webber et al., 2019) and CTB (Mirza et al., 2014).

4.1. Evaluation Metrics
For all experiments, we evaluated the predictions
against true labels using five evaluation metrics: Preci-
sion (P), Recall (R), F1, Accuracy (Acc) and Matthews
Correlation Coefficient (MCC) (Matthews, 1975). For-
mulas are provided below in Equations (1) to (5), where
TP / TN / FP / FN stands for True Positive/True Neg-
ative/False Positive/ False Negative respectively. All
metrics were calculated using the scikit-learn
(Pedregosa et al., 2011) package.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 =
2× P ×R

P +R
(3)

Acc =
TP + TN

TP + TN + FP + FN
(4)

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(5)

4.2. Models
4.2.1. Dummy Baselines
To create naive baselines, we obtained dummy predic-
tions using two approaches. For the first row indicated
by “All Causal” of Table 3, we predicted all examples
to be Causal, which is the majority label of our dataset.
Notice that the Recall score is perfect (100%), because
all Causal examples will be identified if we predict all
as Causal. However, Precision is low (56.59%), be-
cause all Non-causal examples were wrongly identi-
fied as Causal. In the subsequent discussions, we fo-
cus our key evaluation metrics to be F1, Accuracy and
MCC. For the second row, we randomly assigned the
Causal or Non-causal labels to each example based on
the ground truth distribution from CNC’s training set,
averaged over 1, 000 runs.

4.2.2. Neural Network Baselines
We constructed a baseline model by fine-tuning the pre-
trained Bidirectional Encoder Representations from
Transformers (BERT) model (Devlin et al., 2019). In
particular, we used bert-base-cased from Hug-
gingface (Wolf et al., 2020) with AdamW Cross En-
tropy Loss. The learning rate was 5e − 05 with linear
scheduling. Train batch size was 32, and number of
epochs was 10. The model pipeline is as follows: Tok-
enized sentences aree run through a BERT transformer
module. The pooled output is obtained by taking the
hidden state corresponding to the first token. Finally, a
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# Training Set F1 P R Acc MCC
1 All Causal 72.28 56.59 100.00 56.59 0.00
2 Random 55.72 56.61 54.92 50.66 0.00
3 CNC Training 81.20 78.01 84.66 77.81 54.52
4 PDTB-3 55.43 81.32 42.05 61.74 32.09
5 PDTB-3 Bal 64.45 77.60 55.11 65.59 34.75
6 CTB 27.36 80.56 16.48 50.48 17.49
7 CTB Bal 64.05 75.38 55.68 64.63 32.13

Table 3: Metrics from predictions on CNC Test Set using various settings. F1, Precision (P), Recall (R), Accuracy
(Acc) and Matthews Correlation Coefficient (MCC) are reported in percentages (%). Highest score per column is
indicated in boldface.

binary classification head is applied to obtain the pre-
dicted logits.
Additionally, we constructed a Long-Short Term Mem-
ory (LSTM) model (Hochreiter and Schmidhuber,
1997) with fastText embeddings (Bojanowski et al.,
2017). The LSTM model performed on par with the
BERT model for F1 but had lower MCC values than the
BERT model. Overall, the BERT model outperformed
the LSTM model. Details about the LSTM baseline
and its evaluations are in Appendix B. Our subsequent
analyses focuses on the BERT baseline.

4.3. Training on CNC
From the third row in Table 3, when we trained on our
training set and applied on the test set, we achieved a
reasonable F1 score of 81.20%, Accuracy of 77.81%,
and MCC of 54.52%, each exceeding the dummy base-
lines scores reflected in the first two rows. This finding
demonstrates that our annotations are internally con-
sistent and reliable for a simple baseline model to learn
effectively.

4.4. Training on External Corpora
In this subsection, we check the transferability of exist-
ing event causality and causality corpora on CNC. To
conduct the experiment, we first trained on only the ex-
ternal corpus (i.e. PDTB-3 or CTB) and then applied
the trained model to predict causal labels on CNC test
set.
For PDTB-3, we trained on 28,275 examples (9,917
as Causal and 18,358 as Non-causal). We obtained
this number of examples by selecting all causal ex-
amples based on the four senses described in Section
3.2. Next, we added the Non-causal examples and per-
formed de-duplication such that if two examples from
the same document overlap in some part but have a dif-
ferent causal label, we dropped the Non-causal exam-
ple. Once the model is trained, we used it to predict
the causal labels of CNC test set. According to Row
4 of Table 3, there is some overlap in the annotation
schemes of PDTB and CNC. Therefore, the model was
able to achieve Accuracy and MCC scores of 61.74%
and 32.09%, which are higher than the first two dummy

baselines. However, the F1 score is only at 55.43%,
comparable to the Random baseline and worse than the
All-Causal assignment. The low F1 score is driven
by the low Recall score, which indicates that a model
trained on PDTB-3 is unable to detect most of the true
Causal examples. However, its high Precision score in-
dicates the model does return high-quality predictions.
The low Recall could be explained by the fact that we
included guidelines in our annotation schema that are
different from PDTB’s schema. For example, we were
not strict about arguments having to be a proper clause.
That is, for a sentence like “John caused the fire and
walked away.”, we would have marked it as Causal.
However, since “John” and “the fire” are not clauses,
PDTB would not mark this example as Causal. As a
result, a model trained on PDTB would also recognize
fewer causal constructions.

To tackle the issue of imbalanced class distribution
in PDTB-3, which might affect model performance,
we reran an experiment with randomly sampled Non-
causal examples to match the number of Causal ex-
amples. This corpus is referred to as “PDTB-3 Bal”
(n = 19, 834) in Row 5 of Table 3. All metrics, except
Precision, improved relative to the imbalanced PDTB-
3 setting.

We repeated the experiment with examples obtained
from CTB. For this corpus, we had 1,736 examples
(318 as Causal and 1,418 as Non-causal) to train with.
For sentences marked with “CLINK” in CTB, we de-
noted them as Causal. All remaining sentences were
marked as Non-causal. Note a possible complica-
tion arises because while all Non-causal examples are
single sentences, Causal examples might span across
a few sentences. Performance was dismal, returning
comparable or worse scores for F1 and Accuracy than
both dummy baselines. We hypothesized that this poor
outcome is a result of CTB’s extremely imbalanced
class distribution. Indeed, when we retrained on a bal-
anced sample, “CTB Bal” (n = 636), we observed per-
formance improvements across all metrics in the last
row of Table 3. A reasonable F1 score of 64.05%, Ac-
curacy of 64.63% and MCC of 32.13% was obtained,
similar to or slightly better than PDTB’s performance,
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despite CTB Bal being much smaller in size.
To conclude, we trained models on external corpora
and used them directly to make predictions on our
proposed CNC corpus. This demonstrates the trans-
ferability of existing causality corpora on our cor-
pus. Nonetheless, since both external corpora contain
multi-sentence examples and differ slightly in annota-
tion guidelines, some performance differences are ex-
pected.

4.5. Training & Testing on External Corpora
We continue to study the compatibility of CNC with
the two external corpora. In this section, we study
if a model trained on CNC will be helpful for event
sentence causality prediction on unseen datasets like
PDTB-3 and CTB.
For each of the three corpora, we trained on the whole
corpus and applied the trained model on the remain-
ing two corpora. For example, we trained on all exam-
ples from CNC (3,559 examples) and used the model
to predict labels for PDTB-3 and CTB Bal. We ex-
perimented with the balanced corpus of CTB because
the results of the experiments presented in Section 4.4
shown that the full CTB returns extremely poor perfor-
mance when used for training. We also included the
5-Fold cross-validation (CV) scores as a reference: For
each dataset, we randomly split the examples into five
validation sets, and for each round, the corresponding
remaining samples were used for training.
Table 4 reflects key experimental results. As expected,
for every corpus, the CV training setup always returns
the best performance. After which, for both PDTB-3
and CTB Bal, we noticed that a model trained on CNC
always returns a higher performance across metrics.
For example, when testing on CTB Bal, a model trained
on PDTB-3 achieved 60.79% while a model trained on
our corpus achieved 80.65% F1 score. We introduced a
metric called Transferability Rate (TRF), which com-
putes the mean score across test sets. TRF indicates
how well a model trained on a given corpus works on
average for unseen, external datasets. CNC obtained
the highest TRF across the three corpora for both F1
and MCC, reflecting good transferability.
Our findings once again demonstrate that there exists
some differences in the annotation schemes for causal-
ity, which reduces the transferability of trained models
between corpora. Nevertheless, our corpus is the most
transferable between the event causality (i.e. CTB)
and linguistic causality (i.e. PDTB) corpora studied.
Therefore, our annotation guidelines and dataset can
serve as a bridge between these two strands of causality
corpora.

4.6. Using CNC for Pre-Training
Since we believe CNC is transferable, we hypothe-
size that CNC will also be useful for training a pre-
trained model (PTM). Later, this PTM can be fine-
tuned onto any other causality-based corpora. We term

the BERT PTM updated on all examples of CNC as
‘CNC-PTM’. CNC-PTM was then fine-tuned on each
external dataset (i.e. PDTB and CTB Bal). We again
used the 5 CV setup4, but reduced the training epochs
to 2. We chose this low number in order to keep our
model intact. The fine-tuning step only serves to adjust
the model’s alignment to better fit the new data distri-
bution.
From Table 5, we indeed found improvements in the
average performance across folds for both PDTB and
CTB Bal. Logically, CNC-PTM is better initial-
ized for causal sentence classification than the general
bert-base-cased PTM for two reasons: (1) It had
access to more causal examples and, (2) Its structure
is more adapted for the classification task. Thus, per-
formance improvements are expected. These findings
again support our claim that CNC is generalizable to
out-of-distribution datasets. Therefore, it was useful
for updating a PTM.

5. Crowd-Sourcing Annotations
We experimented with crowd-sourced workers using
Amazon Mechanical Turk (MTurk). We randomly se-
lected 50 examples, of which 25 were Causal and 25
were Non-causal. For each causal label, we selected 13
examples that were more complex (with the percentage
of the vote for the label being ≤ 0.75, while the re-
maining 12 examples were ‘easier’ examples with high
agreements). The annotation manual was provided to
the MTurk workers, and no restrictions were set on
the type of workers we allowed for. We requested for
five unique annotators to be assigned to each example.
Therefore, 250 annotations were received5, of which
we had 44 unique workers.
Kappa scores were low at 1.62%. Evaluation metrics
of these crowd-sourced annotations against our expert
labels are reflected in Table 6. The second row re-
flects predictions taken based on the majority vote (i.e.
mode out of five votes per example). The third row
reflects outcomes when we compared each of the 250
annotations with our true labels independently. In both
cases, performance of crowd-sourced workers is poor.
Since most annotators labelled examples as Causal, the
results are similar to the results from an All-Causal
dummy baseline (shown in the first row). In fact, in
terms of F1, Accuracy, and MCC, the workers’ scores
are close, if not worse than, the All Causal baseline.
As highlighted in Section 3.3, the task is challenging
and requires a thorough understanding of the annota-
tion guideline to do well. Given that MTurk provides
a low monitoring environment with no room for itera-

4For each external dataset and each fold, CNC-PTM was
fine-tuned on the training set and applied onto the validation
set. This means that for each external dataset, we would have
5 fine-tuned models at the end of the CV experiment.

5Although our dataset was balanced, crowd-sourced
workers returned a skewed distribution in votes: 192 votes
for Causal and 58 votes for Non-causal.
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Training Set Test Set
F1 MCC

CNC PDTB-3 CTB Bal TRF↑ CNC PDTB-3 CTB Bal TRF↑
CNC 83.46 58.38 80.65 74.16 61.71 30.68 59.11 50.50
PDTB-3 56.45 74.45 60.79 63.90 35.86 61.36 32.49 43.24
CTB Bal 59.10 49.21 83.41 63.90 32.10 17.48 65.01 38.20

Table 4: Metrics from predictions using different train and test sets. Diagonals per sub-table (i.e. when training
set and test sets are the same) refers to 5-folds CV experiments. F1 and Matthews Correlation Coefficient (MCC)
are reported in percentages (%). Transferability Rate (TRF) indicates how well a model trained on a given corpus
works for unseen, external datasets: For example, the TRF for CNC is given by the average of its performance on
PDTB-3 and CTB Bal, based on a particular metric (such as F1 or MCC). Highest score per column is indicated in
boldface.

Dataset PTM F1 P R Acc MCC
PDTB bert-base-cased 74.45 76.76 72.31 82.60 61.36

CNC-PTM 75.19 75.73 74.69 82.71 61.95
CTB Bal bert-base-cased 83.41 77.25 90.95 81.91 65.01

CNC-PTM 84.68 80.14 90.02 83.80 68.30

Table 5: Metrics from pre-trained model (PTM) experiments. F1, Precision (P), Recall (R), Accuracy (Acc) and
Matthews Correlation Coefficient (MCC) are reported in percentages (%). Highest score per column per dataset is
indicated in boldface.

F1 P R Acc MCC
All Causal 66.00 50.00 100.00 48.40 -3.89
Majority 61.97 47.83 88.00 46.00 -14.74
Each Vote 59.31 48.96 75.20 48.40 -3.79

Table 6: Metrics from crowd-sourced workers for a
subset of 50 examples. F1, Precision (P), Recall (R),
Accuracy (Acc) and Matthews Correlation Coefficient
(MCC) are reported in percentages (%). Highest score
per column is indicated in boldface.

tive feedback, it is understandable that crowd-sourced
workers perform poorly (close to random assignment)
at their tasks.
Nevertheless, this experiment provided a few learn-
ing points: Firstly, our manual annotations are not
easy to identify by a layman, and skilled annotators
are required. Similar to our annotation experience,
it is necessary to have repeated discussions and feed-
back sessions with annotators so as to improve agree-
ment scores. Secondly, compared to a BERT model
trained on internal examples or external examples an-
notated with similar logic, the layman identifies causal-
ity poorly6. Caselli and Inel (2018) argues that dis-
crepancies in the quality of crowd-sourced annotations
from experts should be used as an estimate on how
complex the task is. Together, these findings highlight
that our corpus is a unique and valuable resource, re-
quiring an immense amount of time and effort to create
with experts.

6In terms beating dummy baselines, especially for Accu-
racy and MCC metrics.

6. Conclusion
Causality is an important cognitive concept that de-
serves to have a corpus dedicated to the definition and
identification. CNC focuses on annotating causality in
text, and so far, we have created an annotation schema
to identify if event sentences contain causal relations or
not.
CNC’s annotation guidelines are constructed based on
linguistic rules, and covers a wider array of causal lin-
guistic constructions than previous works. We also
demonstrated transferability between CNC and exist-
ing datasets that include causal relations like CTB and
PDTB. Finally, the binary causal event classification
task is challenging: layman workers achieved poor per-
formance in our crowd-sourced annotation experiment.
Therefore, CNC, which has been annotated by experts,
is a valuable resource for researchers working in the
causality and event causality space. CNC could poten-
tially be relevant to NLU researchers working on down-
stream tasks too.
We are also organizing a shared task using CNC to pro-
mote the development of automatic causal text mining
solutions7. In our next dataset release, we will clean
some parts of our current dataset and perform addi-
tional curation of mispredicted examples in CV. We are
also in the midst of adding fine-grained annotations,
such as cause-effect-signal spans and causal concept la-
bels.

7Our shared task competition page is at https:
//codalab.lisn.upsaclay.fr/competitions/
2299.

https://codalab.lisn.upsaclay.fr/competitions/2299
https://codalab.lisn.upsaclay.fr/competitions/2299
https://codalab.lisn.upsaclay.fr/competitions/2299


2306

7. Acknowledgements
This project is supported by the National Research
Foundation, Singapore under its Industry Alignment
Fund – Pre-positioning (IAF-PP) Funding Initiative.
Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Re-
search Foundation, Singapore.

8. Bibliographical References
Asghar, N. (2016). Automatic extraction of causal re-

lations from natural language texts: a comprehensive
survey. arXiv preprint arXiv:1605.07895.

Barik, B., Marsi, E., and Öztürk, P. (2016). Event
causality extraction from natural science literature.
Res. Comput. Sci., 117:97–107.

Blanco, E., Castell, N., and Moldovan, D. (2008).
Causal relation extraction. In Proceedings of the
Sixth International Conference on Language Re-
sources and Evaluation (LREC’08).

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of the Association for Compu-
tational Linguistics, 5:135–146.

Cao, M., Sun, X., and Zhuge, H. (2016). The role
of cause-effect link within scientific paper. In Hai
Zhuge et al., editors, 12th International Conference
on Semantics, Knowledge and Grids, SKG 2016,
Beijing, China, August 15-17, 2016, pages 32–39.
IEEE Computer Society.

Caselli, T. and Inel, O. (2018). Crowdsourcing Sto-
ryLines: Harnessing the crowd for causal relation
annotation. In Proceedings of the Workshop Events
and Stories in the News 2018, pages 44–54, Santa
Fe, New Mexico, U.S.A, August. Association for
Computational Linguistics.

Caselli, T. and Vossen, P. (2017). The event StoryLine
corpus: A new benchmark for causal and temporal
relation extraction. In Proceedings of the Events and
Stories in the News Workshop, pages 77–86, Vancou-
ver, Canada, August. Association for Computational
Linguistics.

Dalal, D., Arcan, M., and Buitelaar, P. (2021). En-
hancing multiple-choice question answering with
causal knowledge. In Proceedings of Deep Learning
Inside Out (DeeLIO): The 2nd Workshop on Knowl-
edge Extraction and Integration for Deep Learning
Architectures, pages 70–80, Online, June. Associa-
tion for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Do, Q., Chan, Y. S., and Roth, D. (2011). Minimally
supervised event causality identification. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 294–
303.

Dunietz, J., Levin, L., and Carbonell, J. (2017). The
BECauSE corpus 2.0: Annotating causality and
overlapping relations. In Proceedings of the 11th
Linguistic Annotation Workshop, pages 95–104, Va-
lencia, Spain, April. Association for Computational
Linguistics.

Dunietz, J., Burnham, G., Bharadwaj, A., Rambow, O.,
Chu-Carroll, J., and Ferrucci, D. (2020). To test
machine comprehension, start by defining compre-
hension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 7839–7859, Online, July. Association for
Computational Linguistics.

Feder, A., Keith, K. A., Manzoor, E., Pryzant, R., Srid-
har, D., Wood-Doughty, Z., Eisenstein, J., Grimmer,
J., Reichart, R., Roberts, M. E., et al. (2021). Causal
inference in natural language processing: Estima-
tion, prediction, interpretation and beyond. arXiv
preprint arXiv:2109.00725.

Girju, R. and Moldovan, D. I. (2002). Text mining for
causal relations. In Susan M. Haller et al., editors,
Proceedings of the Fifteenth International Florida
Artificial Intelligence Research Society Conference,
May 14-16, 2002, Pensacola Beach, Florida, USA,
pages 360–364. AAAI Press.

Grivaz, C. (2010). Human judgements on causation
in French texts. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta, May. Euro-
pean Language Resources Association (ELRA).

Hassanzadeh, O., Bhattacharjya, D., Feblowitz, M.,
Srinivas, K., Perrone, M., Sohrabi, S., and Katz, M.
(2019). Answering binary causal questions through
large-scale text mining: An evaluation using cause-
effect pairs from human experts. In Proceedings of
the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 5003–5009.
International Joint Conferences on Artificial Intelli-
gence Organization, 7.

Heindorf, S., Scholten, Y., Wachsmuth, H., Ngomo,
A. N., and Potthast, M. (2020). Causenet: Towards
a causality graph extracted from the web. In Math-
ieu d’Aquin, et al., editors, CIKM ’20: The 29th
ACM International Conference on Information and
Knowledge Management, Virtual Event, Ireland, Oc-
tober 19-23, 2020, pages 3023–3030. ACM.

Hidey, C. and McKeown, K. (2016). Identifying
causal relations using parallel Wikipedia articles. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1424–1433, Berlin, Germany,
August. Association for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long



2307

Short-Term Memory. Neural Computation,
9(8):1735–1780, 11.
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Appendix
A. Annotated Examples

The following are some examples of the expected
causal label for each sentence, along with justifications
using the Five Tests highlighted in Section 3.2.

(1) His attackers allegedly drank his blood .

• Non-causal: There is only one event in this sen-
tence.

(2) The protests spread to 15 other towns and resulted
in two deaths and the destruction of property .

• Causal: This sentence contains causal events.

1. Why: Why were there “two deaths and the de-
struction of property”? Because “the protests
spread to 15 other towns”.

2. Temporal order: Protests must spread (Cause)
before deaths and destruction (Effect) can occur.

3. Counterfactual: Deaths and destruction (Ef-
fect) are unlikely to occur if the protests did not
spread (NegCause).

4. Ontological asymmetry: Using Cause as an
Effect to construct a question: Why did “The
protests spread to 15 other towns”? Because
of deaths and destruction – does not answer the
question.

5. Linguistic: “The protests spread to 15 other
towns” causes “two deaths and the destruction
of property”.

(3) The three-member Farlam Commission, chaired
by retired judge Ian Farlam, was established by
President Jacob Zuma to probe into the vio-
lence and the deaths of 44 people in wage-related
protests.

• Causal: This sentence contains causal event of
the PURPOSE sense.

1. Why: Why was “the three-member Farlam
Commision ... established by President Jacob
Zuma”? In order “to probe into the violence
and the deaths of 44 people in wage-related
protests”.

2. Temporal order: The probe purpose (Cause)
must occur before establishing the commission
(Effect).

3. Counterfactual: Establishing the commission
(Effect) is unlikely to occur if the President did
not have the goal to probe into the protests (Neg-
Cause).
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4. Ontological asymmetry: Using Cause as an
Effect to construct a question: Why did the
President “probe into violence and deaths of
people in wage-related protests”? Because the
Commission was established – does not answer
the question.

5. Linguistic: “to probe into the violence and the
deaths of 44 people in wage-related protests”
causes “The three-member Farlam Commission
, chaired by retired judge Ian Farlam , was es-
tablished by President Jacob Zuma”.

(4) Chale was allegedly chased by a group of about
30 people and was hacked to death with pangas,
axes and spears.

• Non-causal: This sentence exhibits temporal
events that have no causal connections. We
highlight the tests it fails below:

1. Why: Why was Chale “hacked to death with
pangas, axes and spears”? Because “Chale was
allegedly chased by a group of about 30 peo-
ple”. – This test fails since the Cause does not
really explain the reason for why there was the
Effect.

2. Counterfactual: The counterfactual is “The
hacking (Effect) is unlikely to occur if the chas-
ing did not take place (NegCause).” – This test
fails since hacking can occur without chasing.
In fact, without chasing, Chale might have been
hacked earlier.

(5) “I observed the attack on the police, I have
no doubt about it,” Modiba said during cross-
examination.

• Causal: This sentence contains a description of
an implicit causal event relation within a speech.

1. Why: Why did Modiba “have no doubt about
it”? Because Modiba “observed the attack on
the police”.

2. Temporal order: Modiba must observe
(Cause) before claiming he had no doubts (Ef-
fect).

3. Counterfactual: Modiba cannot claim that he
has no doubts (Effect) if he had not observed
the attack (NegCause).

4. Ontological asymmetry: Using Cause as an
Effect to construct a question: Why was it that
Modiba “observed the attack on the police”?
Because he had no doubt about it – does not an-
swer the question.

5. Linguistic: “I observed the attack on the po-
lice” causes “I have no doubt about it”.

(6) Both Anoop and Ramanan are also accused in the
case related to attack on the Nitta Gelatin office at
Panampilly Nagar last year.

• Non-causal: The inclusion of “also” in “also ac-
cused” renders that when constructing an an-
swer for the Effect, we need to explain why
they are accused in addition to someone else that
has already been accused. Therefore, when per-
forming the “Why” test, the answer seems in-
complete. Hence, we do not consider this sen-
tence to be causal.

1. Why: Why were “both Anoop and Ramanan
also accused in the case”? Because of the “at-
tack on the Nitta Gelatin office at Panampilly
Nagar last year .” – This does not answer the
question.

2. Linguistic: “attack on the Nitta Gelatin office
at Panampilly Nagar last year ” cause “Both
Anoop and Ramanan are also accused in the
case”. – This does not work.

(7) Striking mineworkers have threatened to halt all
mining operations if their employers do not ac-
cede to their pay demand.

• Causal: This sentence contains CONDITION re-
lations, which we interpret as causal.

1. Why: Why could “halt all mining operations”
occur? Because “their employers do not accede
to their pay demand”.

2. Temporal order: Their pay demands must be
acceded (Cause) before the halting of mining
operations (Effect).

3. Counterfactual: The halting of mining oper-
ations (Effect) is unlikely to occur if their pay
demands were acceded (NegCause).

4. Ontological asymmetry: Using Cause as an
Effect to construct a question: Why was it that
“their employers do not accede to their pay de-
mands”? We cannot find an answer span for this
question in the original Effect span.

5. Linguistic: “their employers do not accede to
their pay demand” causes “halt all mining oper-
ations”.

(8) The strike will continue till our demands are con-
ceded.

• Causal: This sentence contains NEGATIVE-
CONDITION relations, which we interpret as
preventive causal type.

1. Why: Why could the event that “the strike will
continue” be prevented? Because “our demands
are conceded”.
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Setting F1 P R Acc MCC
All Causal 72.28 56.59 100.00 56.59 0.00
Random 55.72 56.61 54.92 50.66 0.00
CNC Training 78.22 72.68 84.66 73.31 45.15
PDTB-3 56.68 66.41 49.43 57.23 16.90
PDTB-3 Bal 68.75 56.62 87.50 54.98 0.14
CTB 33.79 86.05 21.02 53.38 23.80
CTB Bal 65.23 71.14 60.23 63.67 28.15

Table 7: Metrics from predictions with the LSTM model on CNC Test Set using different training sets. F1,
Precision (P), Recall (R), Accuracy (Acc) and Matthews Correlation Coefficient (MCC) are reported in percentages
(%). Highest score per result column is indicated in boldface.

2. Temporal order: The demands must be con-
ceded (Cause) before preventing the strike from
continuing (NegEffect).

3. Counterfactual: The strike cannot be stopped
from continuing (NegEffect) if the demands are
not conceded (NegCause).

4. Ontological asymmetry: Using Cause as an
Effect to construct a question: Why was it that
“our demands are conceded”? Because “the
strike could be stopped” – does not answer the
question.

5. Linguistic: “Our demands are conceded” pre-
vents “the strike will continue”.

B. Other Baseline Models
As described in Section 4, in addition to the BERT
model, we constructed a LSTM model as one of our
baselines, considering its ability to account for long-
distance relations between words. In this model, firstly,
an embedding layer initialized with fastText’s Com-
mon Crawl 300-dimensional embeddings (Bojanowski
et al., 2017). We experimented with GloVe 300-
dimensional embeddings (Pennington et al., 2014) and
a concatenation of GloVe and fastText in our initial
experiments and selected fastText because it outper-
formed others. This layer is followed by two bi-
directional LSTM layers with a dense layer on top.
The final prediction is obtained via a softmax layer.
For our training parameters, we used a maximum se-
quence length of 128, batch size of 32, a learning rate
of 1e−3 with Adam optimizer and epochs of 20 with
early stopping patience of 5. The obtained results are
summarized in Table 7. We observed that performance
of this system is significantly lower than BERT for all
scenarios we tested. However, conclusions regarding
the transferability of PDTB-3 and CTB Bal onto CNC
(based on F1 and MCC scores) holds.
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