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Abstract
Inserting fillers (such as “um”, “like”) to clean speech text has a rich history of study. One major application is to make dialogue
systems sound more spontaneous. The ambiguity of filler occurrence and inter-speaker difference make both modeling and
evaluation difficult. In this paper, we study sampling-based filler insertion, a simple yet unexplored approach to inserting
fillers. We propose an objective score called Filler Perplexity (FPP). We build three models trained on two single-speaker
spontaneous corpora, and evaluate them with FPP and perceptual tests. We implement two innovations in perceptual tests,
(1) evaluating filler insertion on dialogue systems output, (2) synthesizing speech with neural spontaneous TTS engines. FPP
proves to be useful in analysis but does not correlate well with perceptual MOS. Perceptual results show little difference
between compared filler insertion models including with ground-truth, which may be due to the ambiguity of what is good
filler insertion and a strong neural spontaneous TTS that produces natural speech irrespective of input. Results also show
preference for filler-inserted speech synthesized with spontaneous TTS. The same test using TTS based on read speech obtains
the opposite results, which shows the importance of using spontaneous TTS in evaluating filler insertions. Audio samples:
www.speech.kth.se/tts-demos/LREC22
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1. Introduction
Spontaneous TTS has improved much recently due to
usage of neural TTS engines. We can now gener-
ate conversational speech phenomena such as hesita-
tions, disfluencies (Székely et al., 2019b; Székely et
al., 2019a) and breathing (Székely et al., 2020) in such
TTS alone. A major hurdle in applying such TTS
to a spoken dialogue system is that dialogue systems
are mainly trained on written texts, which do not con-
tain fillers such as “um” and “like”, that are common
in the speech corpora spontaneous TTS systems are
trained on (Székely et al., 2019a). This means that
these systems can not take advantage of the potential
of latest spontaneous TTS. Fillers are important for
conversational systems, apart from making the speech
sound more spontaneous, they can be used to commu-
nicate planning problems (Levelt, 1983), handle turn-
taking (Maclay and Osgood, 1959) and communicate
personality (Gustafson et al., 2021). A recent speech-
to-speech chat-bot system was trained on 2000 hours
of transcribed telephone conversations (Nguyen et al.,
2022). The speech part of the corpus was enough to
reproduce non-verbal vocalizations, but the amount of
text was not enough to achieve semantic consistency
in the dialogue. Another solution would be to insert
fillers into responses from a chat-bot system trained on
a large text-based dialogue corpus. However, filler in-
sertion is a difficult problem due to the ambiguity of
fillers in natural speech (Dall et al., 2014).
There are previous attempts at developing filler inser-
tion methods, e.g. (Sundaram and Narayanan, 2003;
Adell et al., 2012; Dall et al., 2014). These studies
have focused exclusively on prediction-based filler in-

sertion, that is to predict a single filler insertion pattern
for an input sentence. The inherent ambiguity of fillers
suggests that there are more than one “correct” inser-
tion pattern for a given sentence. In this respect, the
language modeling-based sampling approach is much
faster and gives varied insertion patterns at each pass.
But surprisingly, this simple approach to the best of our
knowledge has not been studied in prior literature.

This work focuses on building language models to
learn the contextual distribution of fillers and then use
them for insertion with the sampling approach detailed
in section 4. We propose an objective metric called
filler perplexity (FPP ) and evaluate its correlation
with perceptual preference in sampling-based filler in-
sertion. We also address two issues in the perceptual
evaluation of filler insertions in general, (1) no evalu-
ation on sentences generated by a dialogue system, a
major intended application for filler insertion, (2) no
evaluation using neural spontaneous TTS. The second
shortcoming especially needs to be addressed as the
state-of-the-art neural spontaneous TTS has achieved
high naturalness regardless of presence of fillers in the
input. Thus, it is not even clear whether or not filler
insertion adds any value at all to the system if TTS can
sound spontaneous without changing the input text it-
self. We use a Tacotron2-based state-of-the-art neural
spontaneous TTS to synthesize speech audio (Székely
et al., 2019b) and test two hypotheses in perceptual
studies: (a) Which model is the best at filler insertion?
(b) Does a good filler insertion model help spontaneous
TTS sound more spontaneous and natural?

We use single-speaker corpora instead of a multi-
speaker corpus as in many prior studies (Dall et al.,
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2014; Tomalin et al., 2015). This allows modeling in-
dividual speaking style both in filler insertion and TTS.
Our results show that there is little difference be-
tween filler insertion models including comparison
with ground-truth according to MOS from perceptual
tests. 3-gram filler model obtains the highest MOS and
improves the perceived colloquialness of chat-bot out-
put when both filler-inserted and no-filler output are
synthesized with spontaneous TTS. Running the same
filler/no-filler evaluation with read speech TTS obtains
opposite results: in this test the filler-inserted speech
is clearly preferred with spontaneous TTS but not with
read speech TTS. Subjective listening experiments re-
veal that read speech TTS is unable to voice fillers well.
This shows the importance of evaluating filler inser-
tions with spontaneous TTS, a shortcoming of most
previous filler insertion studies.

2. Related Work
Dialogue generation has rapidly evolved from seq2seq
(Sutskever et al., 2014) to pre-trained models like GPT-
2 (Zhang et al., 2020). These are pre-trained on large
unlabeled text corpora like Reddit (Adiwardana et al.,
2020; Roller et al., 2021) or manually selected corpora
like DailyDialog (Li et al., 2017). Recent studies have
introduced knowledge that allows chat-bots to better
answer factual questions (Dinan et al., 2018), or to dis-
play more consistent personalities (Zhang et al., 2018).
Text style transfer has been introduced to control the
linguistic style of textual output (Hu et al., 2020).
In human dialogue, filled pauses are used as turn-taking
cues (Clark and Tree, 2002; Gravano and Hirschberg,
2011), to improve language comprehension (Fraundorf
and Watson, 2011; Corley et al., 2007), to commu-
nicate the speaker’s feeling of knowing (Brennan and
Williams, 1995) and to provide cues to speaker traits
(Laserna et al., 2014). This is usually lacking in dia-
logue generation as the models are typically trained on
written or cleaned dialogue corpora that do not include
spontaneous speech phenomena such as fillers.
There have been many studies on inserting fillers to
clean TTS prompts, where a number of methods have
been used: training a model on a limited domain cor-
pus of transcribed human utterances (Sundaram and
Narayanan, 2003); using rule-based systems (Cohn et
al., 2019); training an n-gram filler insertion model on
read speech corpora supplemented with spontaneous
speech (Andersson et al., 2010); using a lattice-based
approach weighting an RNN-based and an n-gram
based speaker independent language model (Tomalin
et al., 2015); using data mixing approaches combined
with unique phone labels for filled pauses (Dall et al.,
2016); and using conditional random fields and lan-
guage models to insert disfluencies into text aimed at
TTS (Qader et al., 2018). One prior study (Székely
et al., 2019c) showed that a TTS trained on a spon-
taneous corpus can convincingly insert fillers by itself
while synthesizing speech audio without explicit text-

based training.
The previous studies have largely framed filler inser-
tion as a single prediction problem(Tomalin et al.,
2015; Dall et al., 2014), that is to predict a single in-
sertion pattern for an input sentence. Thus, calculating
F1 with precision and recall on the test set is a natu-
ral choice for objective evaluation. Single prediction
has not been questioned despite that filler occurrence is
ambiguous in natural speech (Dall et al., 2014).
The perceptual evaluation in previous studies is done
with either no TTS (Qader et al., 2018; Tomalin et al.,
2015), i.e. participants only read filler-inserted sen-
tences and rate them, or with speech synthesized by
earlier TTS methods such as concatenative (Adell et
al., 2012) or HMM-based TTS (Dall et al., 2014). Only
one study (Adell et al., 2012) used a spontaneous TTS
in evaluation, but the underlying TTS engine is con-
catenative with some rule-based aspects to voice fillers.
The choice of multi-speaker corpus is another char-
acteristic of prior studies. Data from many different
speakers is pooled together to form one large corpus
which is used to train a single model (Dall et al., 2014;
Tomalin et al., 2015). This approach gives more data
but assumes uniform filler pattern across speakers, an
assumption challenged by our inter-speaker analysis.
Instead, we use two English spontaneous speech cor-
pora, each containing only one speaker which ensures
more consistent filler insertion patterns for the mod-
els to learn from and which also allows us to inves-
tigate differences in filler usage across speakers. We
also train spontaneous TTS on each of the two corpora.
This, along with filler models trained on the same cor-
pus, results in a complete pipeline of filler insertion–
TTS that is capable to transferring a speaker’s own
speaking style to unseen text input.

3. Corpus and TTS
Two different spontaneous speech corpora were used in
the experiments. The first is from the audio recordings
of the Trinity Speech-Gesture Dataset (TSGD) (Ferstl
and McDonnell, 2018), comprising of 25 impromptu
monologues by a male actor, on average 10.6 minutes
long. The actor is speaking in a spontaneous, col-
loquial style. The second dataset is a 9-hour single-
speaker corpus (Székely et al., 2019b), from a public
domain conversational podcast, called the ThinkCom-
puters Corpus (TCC). The speaker uses an extempo-
raneous conversational style, speaking freely using a
prepared outline.
Both corpora are transcribed using ASR, and subse-
quently manually corrected. In order to maximize the
utterance length in the corpora and to enable insertion
of inhalation breaths in the TTS, we used a data aug-
mentation method called breath group bigrams, which
essentially consists of segmenting a speech corpus into
stretches of speech delineated by breath events, and
then combining these breath groups in an overlapping
fashion to form utterances no longer than 11 seconds
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filler word TSGD TCC
um 0.0108 0.0246
uh 0.0121 0.0208
like 0.0925 0.0028
you know 0.0048 0.0084

Table 1: Frequency of filler words in the two corpora.

(Székely et al., 2020). This method also makes it pos-
sible to learn contextual information beyond respira-
tory cycles during TTS training. Voices were trained
with the neural TTS engine Tacotron 2 (Shen et al.,
2018). We used a PyTorch implementation1, training
each voice for 200k iterations on top of the pre-trained
model released by NVidia. For vocoding, we fine-tuned
the pre-trained universal model of HiFi-GAN (Kong et
al., 2020) on the respective corpora.
Extracting filler words from the text transcripts can be
done with direct matching for “um” and “uh”, while
“like” and “you know” have non-filler instances thus
need extra attention. We use POS tags extracted with
Stanza (Qi et al., 2020) to differentiate filler vs non-
filler occurrences of these two words as we find that
when “like” and “know” are tagged as verbs, they are
less likely to be fillers. The frequency of fillers are
shown in Table 1. The speaker of the TSGD dataset is
a heavy user of the filler “like” which presents a chal-
lenge to the perceptual test as we later find that people
tend to rate more “like” insertion as bad, irrespective
of context or synthesized speech quality. Each cor-
pus is divided into utterances by combining the pre-
viously mentioned breath groups with a max length
threshold of 40 characters. We then divide sentences
into train/dev/test sets on a 0.90/0.05/0.05 ratio for each
dataset.

4. Sampling-based Filler Insertion
4.1. Problem Setup
We consider filler insertion as an auto-regressive lan-
guage modelling task. Language modelling aims at
learning a probability distribution of the current token
xt over the vocabulary set X given prior tokens in the
sequence x0, ..., xt−1 (where xi ∈ X ∀ i), modelling:

P (xt|x0, ..., xt−1).

The learned auto-regressive distribution allows a lan-
guage model to generate new sequences by condition-
ing on some given context sequence and sampling from
the output probability distribution. This process is
modified to achieve filler insertion by sampling for only
filler tokens as illustrated in Figure 1.
We denote the set of fillers as FL = {fl0, ..., f ln}
where FL ⊂ X . In our study, FL =
{um, uh, like, you know} (the filler instances of “like”
and “you know” are considered different tokens than
non-filler instances of the same words in the modelling
vocabulary). Assume an input sequence x0, ..., xT free

1https://github.com/NVIDIA/tacotron2
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Figure 1: Single sampling filler insertion step.

of fillers. We denote the output sentence of the model
(with zero or more inserted fillers) as x′

0, ..., x
′
T ′ , where

T ′ ≥ T . First, we put x′
0 = x0. Note that we

front-append the starting token [START] to input sen-
tence prior to the insertion process, thus x′

0 = x0 =
[START]. This allows us to learn the distribution of the
filler words at the beginning of the sentence without
any context. We then sample from the language model
distribution at time step t,

xsampled
t ∼ P (X|x′

0, ..., x
′
t−1),

where x′
0, ..., x

′
t−1 is the sub-sequence of the output

prior to t (with zero or more filler words inserted). If
xsampled
t ∈ FL, then x′

t = xsampled
t , which is an inser-

tion. Otherwise, xsampled
t /∈ FL, i.e. no insertion, then

x′
t is taken from the next token in the input sequence. In

some cases, we also explicitly model no insertion token
[NO INSERTION] to simplify modeling. An example
run of this sampling-based filler insertion process on a
sentence is shown in Figure 2.
In perceptual evaluations described in section 5, we
additionally enforce an upper limit on the number of
fillers inserted per-sentence for all models. We do this
by repeatedly sampling full insertion patterns on an in-
put sentence until getting an insertion pattern that has
the number of fillers ≤ upper limit. Note that we do not
stop sampling mid-sentence when the limit has been
reached, instead we choose the first full sampled inser-
tion pattern with the number of fillers less than the up-
per limit. Our approach can be seen as sampling from
the subset of the distribution of all full insertion pat-
terns that meet the upper limit requirement. We enforce
this upper limit because we find that the most common
failure mode of the sampling-based insertion is insert-
ing too many fillers or run-on insertion such as “... [um]
[um] [um] ...”. For all experiments in the perceptual
evaluation, we enforce an upper limit of 3 fillers per
sentence.

4.2. Filler Perplexity
We propose a modified perplexity measure for objec-
tive evaluation of filler insertion models. Assume a
corpus X = x0x1...xT and a language model with pa-
rameters θ that is trained on the corpus, then perplexity
is defined as,

PP (X, θ) = n

√
1

Pθ(x0x1...xT )
,

for which the auto-regressive expansion is,

https://github.com/NVIDIA/tacotron2


1963

[START] for the most part peopleinput:
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filler insert [NO_INSERTION]
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...

[START]output um for the most part you know people

Figure 2: Sampling filler insertion on a sentence.

PP (X, θ) =

T

√
1∏t=0,...,T

Pθ(xt|x0, ..., xt−1)
, (1)

The model with smaller perplexity is considered to fit
the corpus better. The intuition is the same as maxi-
mum likelihood estimation (MLE), i.e. a good model
should assign ground truth data with high probability.
However, in the filler insertion setting, we are mainly
concerned with how well a model learns contextual
distribution of fillers and not other words in vocabu-
lary. This can be reflected by a filler perplexity measure
modified from the original perplexity measure as,

FPP (X,FL∗, θ) =

T

√
1∏t=0,...,T

Pθ(fl∗t |x0, ..., xt−1)
, (2)

Here, fl∗ ∈ FL∗ = FL ∪
{[NO INSERTION]}, and in this study,
FL∗ = {um, uh, like, you know, [NO INSERTION]}.
[NO INSERTION] is the no-filler token given at posi-
tions without fillers. For example, the filler perplexity
FPP of the sentence “I am um happy” is,

FPP (“I am um happy”, FL∗, θ) =
T

√
1

P
, (3)

P = Pθ([NO INSERTION]|[START])·
Pθ([NO INSERTION]|[START], “I”)·
Pθ(“um”|[START], “I”, “am”)·
Pθ([NO INSERTION]|

[START], “I”, “am”, “um”)·
Pθ([NO INSERTION]|

[START], “I”, “am”, “um”, “happy”).

FPP is proportional to the product of model perplex-
ity at filler positions (FPP1 ) and non-filler positions

(FPP0 ). Let TFL = {t ∈ {0, ..., T}|fl∗t ∈ FL} de-
note the time steps that are filler, and let T[NI] = {t ∈
{0, ..., T}|fl∗t = [NO INSERTION]} denote the set of
time steps that are not fillers, then the full filler perplex-
ity is proportional to,

FPP (X,FL∗, θ) ∼

|TFL|

√
1∏t∈TFL Pθ(flt|x0, ..., xi−1)

·

|T[NI]|

√
1∏t∈T[NI] Pθ([NO INSERTION]|x0, ..., xt−1)

= FPP1(X,FL, TFL, θ)·
FPP0(X,T[NI], θ), (4)

The subscripts 1 and 0 of FPP1 and FPP0 re-
flect that FPP1 is calculated on filler positions TFL

while FPP0 on non-filler positions T[NO INSERTION].
A low FPP1 means that the model gives high prob-
ability to the correct filler insertions at the correct
insertion positions. The second part FPP0 calcu-
lates model perplexity on non-filler positions. A low
FPP0 suggests that the model gives high probability
to [NO INSERTION] token at the correct non-filler po-
sitions. Thus, a low FPP0 model is good at not in-
serting fillers at positions where fillers are not appro-
priate. As seen here, looking at FPP through FPP1

and FPP0 helps us understand model performance in
greater detail than a single FPP score. This also re-
veals a potential trade-off in modeling filler insertion.
A low FPP0 model could be biased towards no filler
insertion overall which leads to a high FPP1 . The
opposite is true when a low FPP1 model is biased to-
wards inserting fillers irrespective of position and thus
has a high FPP0 . Such a trade-off is analogous to the
trade-off between precision and recall in an F1 score.

4.3. Filler Insertion Models
We build 3 models for filler insertion: n-gram (n=3,
with KN smoothing) (Kneser and Ney, 1995)), LSTM-
LM (Sundermeyer et al., 2012) and modified GPT-2
(Radford et al., 2019). We use the NLTK implementa-
tion for the n-gram language model which comes with
KN smoothing built in (Bird and Loper, 2004). To
choose the hyperparameter n, we calculate FPP with
varying n from 1 to 5 as shown in Figure 3. We found
that increasing n results in higher perplexity scores in
all three categories with the exception of n=1. This is
reasonable because as n increases, the context length
increases, it becomes more difficult to match context
seen in test time with what the model has seen during
training. Thus, the higher-n models tend to miss more
fillers at test time resulting in higher FPP1 . However,
this has little effect on FPP0 as it sees little change
as n increases. This result suggests using n=2. How-
ever, through informal tests, we found that n=3 gives
slightly better insertion perceptually, so we choose n=3
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Figure 3: FPP measures vs n-gram n. All measures
increase monotonically as n (context length) increases
except for n=1 (no-context, just frequency itself).

for our study. We note that the choice of n=3 is differ-
ent from prior studies where a larger n was used, n=4
(Dall et al., 2014), n=6 (Tomalin et al., 2015). This
difference could be due to different corpora being used
in the studies. We build an LSTM-LM by first build-
ing a vocabulary from the training set with rare word
threshold set to 2. The LSTM-LM has 2 hidden layers
with 1024 hidden units per layer, the word embedding
has dimension 128. It is trained with a between-layer
dropout of 0.5 and learning rate 1e-6.
GPT-2 (Radford et al., 2019) is a large-scale language
model trained auto-regressively on a large text corpus
from various online sources. It can be fine-tuned to
down-stream language tasks efficiently (Radford et al.,
2018). We can not simply fine-tune GPT-2 on the spon-
taneous corpus to model fillers due to GPT-2 being
pre-trained on written text without explicit differentia-
tion between fillers and non-fillers, especially for “like”
and “you know” which have both filler and non-filler
instances in a spontaneous corpus. We add another
output branch to GPT-2, a single 5-way softmax pre-
diction layer that predicts the probability of four filler
words plus the probability of no filler insertion, which
is used for filler insertion instead of GPT-2’s own lan-
guage modelling output branch. However, the model
is trained with combined loss of the original language
modelling branch and the added filler modeling branch
to adapt the model to the spontaneous corpus better.

4.4. Results of FPP Evaluation
The calculated perplexity scores including the full
FPP and its two factored components on the test set
of the two corpora are shown in Table 2. Both the 3-
gram model and the modified GPT-2 obtain low FPP0

scores on the two datasets, suggesting that they are very
certain about locations where there should not be any

filler insertion. This is a major reason why their FPP
is low as there are more non-fillers than fillers (Table
1). However, the modified GPT-2 is also better at mod-
eling insertion location than the 3-gram model as it ob-
tains a lower FPP1 score on both datasets and low-
est of the three on TCC dataset. It also obtains the
lowest FPP on both datasets. This could be because
of its much larger model capacity and large-scale pre-
training that helps it fit to novel texts well. However,
the 3-gram model obtains a level of FPP similar to
GPT-2. LSTM-LM is an outlier as it obtains relatively
low FPP1 but very high FPP0 . This suggests that
it considers all locations to be possible insertion loca-
tions with substantial probability. It also receives the
highest FPP with a large margin, suggesting that it
simply does not fit the datasets well. This is potentially
due to the fact that it has to learn good word embed-
dings from scratch and the corpora are not big enough
to do that.
To understand between-speaker differences, we calcu-
late filler perplexity cross-corpus, that is we apply mod-
els trained on one corpus to the other. The results are
shown in Table 3. We highlight two aspects of the re-
sults. The TSGD-trained models obtain lower FPP
and FPP0 cross-corpus than on TSGD’s own test set.
However surprising, this could be explained by lower
cross-corpus FPP0 which means that the models are
conservative about inserting fillers at unseen context,
and since there are more non-filler positions than fillers,
a low FPP0 has a bigger influence on FPP than a
higher FPP1 . But we also note that this phenomenon
is not present in TCC-trained models. The second in-
teresting aspect is that FPP1 increases significantly for
all models in the cross-corpus setting. This demon-
strates that the usage of fillers by the two speakers are
different. Either they do not use the same fillers at par-
ticular positions, or they use fillers at different posi-
tions.

5. Perceptual Study
5.1. Evaluation Setup
5.1.1. Evaluation 1: Model Comparison
We evaluate the synthesized speech with filler-inserted
text from the three models with carefully designed user
studies. A single mean opinion score (MOS) test takes
in one input sentence. We apply three models to in-
sert fillers by the aforementioned sampling method. We
then add a fourth grounding stimulus, which is ground-
truth (resynthesized with the same vocoder as the TTS)
for in-data sentences and no filler insertion for chat-
bot sentences. The difference between the two types of
sentences is described later in this section. The filler-
inserted sentences are fed into the same TTS trained
on the same dataset that the filler insertion models are
trained on. The four stimuli (3 from filler models and 1
grounding stimulus) are presented side-by-side in ran-
dom order to listeners. Subjects are asked the to rate
how natural each sample sounds on the scale of 1-5. To
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TSGD TCC
Models FPP1 FPP0 FPP FPP1 FPP0 FPP
3-gram (KN smoothing) 42.97 1.14 1.68 61.60 1.05 1.32
LSTM-LM 7.53 16.76 16.01 11.96 22.34 21.89
Modified GPT-2 34.46 1.08 1.64 10.06 1.03 1.17

Table 2: Perplexity measures on in-data test set.
TSGD(trained)⇒TCC(tested) TCC(trained)⇒TSGD(tested)

Models FPP1 FPP0 FPP FPP1 FPP0 FPP
3-gram (KN smoothing) 698.12 1.12 1.59 4845.79 1.08 2.68
LSTM-LM 19.49 18.92 18.94 42.77 18.99 19.92
Modified GPT-2 54.52 1.06 1.35 47.92 1.03 1.54

Table 3: Cross-corpus perplexity measures.
TSGD TCC

Models in-data chat-bot in-data chat-bot
3-gram (KN smoothing) 3.61± 0.12 3.39± 0.13 * 3.78± 0.11 * 3.34± 0.12
LSTM-LM 3.55± 0.12 3.26± 0.12 3.65± 0.10 3.26± 0.13
Modified GPT-2 3.60± 0.12 3.36± 0.13 3.63± 0.12 3.19± 0.13
GT (in-data) / no-filler (chat-bot) 3.55± 0.12 3.30± 0.13 3.64± 0.11 3.29± 0.13

Table 4: MOS score. n=30 for both datasets (two separate groups of testers). 10 sentences for each sub-category
(column). p=0.05 confidence intervals are shown. * if better than the worst in related-sample t-test with p < 0.05.

encourage listeners to make judgements based on both
content and audio, the text transcripts of the stimuli are
also provided on the same page, where the filler inser-
tion is marked with brackets.
To thoroughly evaluate the filler insertion models, we
form two separate groups of test sentences by choos-
ing 10 filler-word-removed sentences from the test set
of TSGD and TCC, which we refer to as in-data test
sentences. We also chose 10 sentences from chat-bot
generated texts (Zhang et al., 2020; Adiwardana et al.,
2020; Roller et al., 2021; See et al., 2019). We form
one MOS test for each sentence. Thus, both TSGD and
TCC tests have 20 input sentences with 10 in-data and
10 chat-bot. For each test, the 10 in-data sentences and
the 10 chat-bot sentences are mixed and presented in
a randomized order for each user. This setup enables
evaluating the difference between the two categories of
sentences, in addition to comparing the models. Only
one sampled insertion from each model is evaluated for
each input sentence, so the randomness in sampling
may add noise to the evaluation. However, we found
that sampled insertion patterns on the same input sen-
tence often coincide. It is of course possible to add
more tests for the same input sentences. However, we
decided against this, to limit listeners’ exposure to rep-
etitious sentences, which can be exasperating and result
in less reliable ratings. The randomness introduced by
sampling is mitigated by having 20 distinct test sen-
tences per test.

5.1.2. Evaluation 2: Does filler insertion make
TTS for chat-bots sound more
spontaneous?

A major motivation for this work lies in improving
spontaneous TTS for conversational systems by insert-

ing fillers to the response generated from a dialogue
system. We design a user study using the same 10 chat-
bot sentences from Evaluation 1. For each sentence,
we synthesize two versions, one has no fillers and the
other one is filler-inserted by the best model (3-gram)
from Evaluation 1. Listeners are asked to choose which
version sounds more conversational and which version
sounds better overall (two separate questions). Sub-
jects can choose one of the two versions for preference
or choose “neither”. We ask overall preference mainly
to find out if adding fillers makes the resulting speech
worse and if there is no clearly worse speech, we expect
subjects to choose the “neither” option, since both sam-
ples are synthesized with the same TTS. We use two
sampled insertions on the same input sentence, yield-
ing 20 total tests for each dataset and 40 test pages in
total, We are able to increase the number of tests to 40
from 20 in Evaluation 1 because choosing preference
between 2 samples is a simpler task. All stimuli were
presented in randomized order 2.
Finally, as a reference we performed the same listening
test where all samples were synthesized using a state-
of-the-art speech synthesis system (Battenberg et al.,
2020), trained on the read speech corpus LJSpeech (Ito
and Johnson, 2017).

5.2. Results of the Perceptual Evaluation
5.2.1. Results of Evaluation 1: Model Comparison
We recruited 30 native speakers of English through
the crowdsourcing platform Prolific for the two model
comparison tests on TSGD and TCC, totalling 60
testers. Results are shown in Table 4. The 3-gram

2Audio samples from both Evaluation 1 and 2 are avail-
able at www.speech.kth.se/tts-demos/LREC22.

www.speech.kth.se/tts-demos/LREC22
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Figure 4: Correlation between FPP and MOS.

model outperforms others in both datasets in both
datatypes (in-data and chat-bot). These results suggest
that 3-gram not only performs well on in-data test sen-
tences but also generalizes well to unseen chat-bot sen-
tences. It is surprising that ground-truth (GT) scored
lowest in TSGD and second to lowest in TCC. We be-
lieve that this is due to users not liking fillers when
asked to explicitly listening to them. The GT speech
in TSGD has a lot more fillers than the model inserted
versions (for which we set an upper limit of 3 fillers
per sentence), which may have negatively impacted its
scores. This hypothesis is supported by an ANOVA
analysis on the results (Table 5), which shows that the
rating is negatively correlated with the number of fillers
irrespective of model with p < 0.002.
The ANOVA also reveals that there is little significant
difference between models, which agrees with the pair-
wise statistical test results in Table 4. Even though 3-
gram scores highest on average, the difference is not
significant in most cases. This is partially due to the
fact the input test sentences come from the test set of
filler insertion modeling but are included in training set
of the TTS, thus in some cases the TTS is able to repro-
duce the prosody of the GT. However, in other cases
TTS still produces good spontaneous prosody differ-
ent than GT suggesting the neural TTS engine’s strong
generalization ability. This brings all samples to similar
level of naturalness prosody-wise and makes it differ-
ent to differentiate different filler insertion patterns on
the same input sentence.
We quantify the correlation between all three FPP
measures and the MOS scores with Pearson-r as shown
in Figure 4. FPP1 is strongly correlated with MOS.
The correlation between FPP and FPP1 and MOS
is corpus-dependent. We note that the correlation be-
tween FPP1 and MOS is consistently close to 1 in
both datasets. However lower FPP1 suggests that the
model is better at modeling filler positions 3, thus we
would expect a negative correlation between FPP1

and MOS. This result indicates that for a model to ob-
tain high perceptual MOS, it needs to have a level of
bias towards fewer insertions, i.e. having higher FPP1

. This is confirmed by our finding that increasing the

3Lower is better for all FPP , FPP0 , FPP1 .

number of fillers inserted regardless of model has a
negative impact on MOS (Table 5).

We can reliably compare MOS obtained for the two cat-
egories, in-data and chat-bot, because sentences from
both categories are mixed together and randomly shuf-
fled for each user (section 5.1.1). It can be seen in Ta-
ble 4 that filler-inserted in-data sentences obtain over-
whelmingly higher MOS than filler-inserted chat-bot
sentences irrespective of filler insertion models or train-
ing corpus, a result further confirmed in ANOVA Table
5 where chat-bot sentences have a significant negative
coefficient to rating (p < 0.001). This could be ex-
plained by the fact that the TTS is trained on the same
dataset as the in-data sentences but not chat-bot sen-
tences, thus the TTS would sound more natural for in-
data sentences. This result suggests that filler insertion
alone is not enough to make chat-bot sentences sound
more natural with spontaneous TTS, and a full-scale
text style transfer (Fu et al., 2018) maybe needed.

5.2.2. Results of Evaluation 2: Filler vs. No-filler
30 listeners from Prolific completed this study. The re-
sults are shown in Table 6. The results using sponta-
neous TTS trained on the two datasets (TSGD, TCC)
show that there is a clear preference of filler-inserted
speech being more conversational. This shows that
filler insertion makes chat-bot sentences sound more
conversational. It is important to point out that the
raters are simply given two utterances and asked to
choose which one is more conversational. They are not
told that the two side-by-side compared TTS utterances
differ in one inserted fillers while the other not. They
are also not given transcripts which could easily expose
this fact. The overall preference results in the two spon-
taneous TTS show that filler-inserted speech is pre-
ferred in the TCC dataset, while the no-filler inserted
speech has higher preference in the TSGD dataset. This
could be explained by the type of fillers they inserted,
the TCC-model mostly inserted “uh” and “um”, while
the TSGD model mostly inserted “like”. Even though
“like” can be used to mark a more casual conversa-
tional style, many think that it is a marker of lack of
intelligence that people should best avoid (Tree, 2006).
Furthermore, the preference towards no-filler speech in
TSGD does not obtain more than 50%. This suggests
that filler insertion makes the voice sound more conver-
sational without significant deterioration in perceived
overall speech quality in either dataset.

The results for the LJSpeech voice show clearly that
it cannot handle fillers well. Adding fillers makes it
sound worse and does not make it sound more conver-
sational. The preference for both conversational and
overall almost completely flipped when switching the
TTS from LJSpeech to spontaneous. This shows the
importance of evaluating filler insertion in high-quality
spontaneous TTS, otherwise the results may be nega-
tively affected by the shortcomings of the TTS.
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TSGD TCC
coef P> |t| coef P> |t|

Intercept 3.7536 0.000 3.8604 0.000
C(model)[T.LSTM-LM] -0.0899 0.192 -0.0933 0.160
C(model)[T.GPT-2] -0.0009 0.989 -0.1562 0.019
C(model)[T.GT/no-filler] -0.1086 0.116 -0.1069 0.121
C(datatype)[T.chat-bot] -0.2558 0.000 -0.4290 0.000
Filler count -0.0619 0.002 -0.0633 0.024

Table 5: ANOVA multi-factor analysis results, MOS ∼ C(model) + C(datatype) + filler count. C(model) = {3-
gram, LSTM-LM, GPT-2, GT(in-data)/no-filler(chat-bot)}. C(datatype) = {in-data, chat-bot}.

Filler model trained on TSGD
LJSpeech TTS TSGD TTS

conversational overall conversational overall
prefer no-filler * 65.1± 0.55% * 79.6± 0.46% 33.6± 0.54% * 47.3± 0.57%

neither 15.0± 0.41% 12.9± 0.38% 11.1± 0.36% 16.1± 0.42%
prefer filler-inserted 19.9± 0.46% 7.5± 0.30% * 55.2± 0.57% 36.6± 0.55%

Filler model trained on TCC
LJSpeech TTS TCC TTS

conversational overall conversational overall
prefer no-filler * 52.4± 0.57% * 67.9± 0.54% 23.1± 0.48% 34.1± 0.54%

neither 16.3± 0.42% 16.0± 0.42% 13.2± 0.39% 21.5± 0.47%
prefer filler-inserted 31.3± 0.53% 16.1± 0.42% * 63.7± 0.55% * 44.4± 0.57%

Table 6: Preference ratio on no-filler vs. filler-inserted chat-bot sentences. n=30, 20 sentences for each dataset
category. p=0.05 confidence intervals are shown. * if better than the next best alternative with p < 0.05.

6. Discussion

We observed that the neural spontaneous TTS gives
highly natural speech almost regardless of filler inser-
tion models. At the same time, regardless which filler
insertion model is used, the neural read speech TTS
lead to decreased overall quality and colloquialness.
This suggests that performance of filler insertion mod-
els is dependent on the TTS, and that the two parts
(filler insertion and TTS) should be developed in con-
junction if they are intended to be used in the same sys-
tem.

The perceptual study results show that increasing the
number of fillers has a significant negative impact on
MOS (Table 5). We believe that this is the result of
users being told to evaluate “filler-inserted speech”.
Such instruction, common in most filler insertion stud-
ies, directs listeners’ attention to fillers, the overuse
of which people generally dislike even in regular con-
versation with another human. Future work could try
other evaluation schemes such that fillers are implicitly
evaluated rather than explicitly, for example, during a
human-robot interaction.

We only tested the sampling-based approach to filler
insertion and did not compare with single-prediction
approaches such as lattice rescoring (Tomalin et al.,
2015). We leave this comparison to future studies.
However, we observe that sampled insertions on the
same sentence often coincide, suggesting that there are
only a few insertions with high probability, which im-
plies that our sampling approach likely arrives at simi-
lar results as prediction approaches.

7. Conclusions
We built sampling-based filler insertion models and
evaluated them with a proposed quantitative metric
filler perplexity FPP and perpetual evaluations. Three
models are built and trained on two single-speaker cor-
pora. FPP is useful in analyzing the models but does
not correlate well with perceptual MOS. The perceptual
study has two innovations that address shortcomings of
prior studies, (1) with chat-bot generated sentences in
test input and, (2) using a neural spontaneous TTS to
synthesize speech. The difference in MOS obtained
by different models (including a grounding stimulus)
is not statistically significant, partially due to high nat-
uralness of neural spontaneous TTS regardless of input
and ambiguity of what a good filler insertion is. This
suggests that evaluating filler insertion synthesized by
high-quality spontaneous TTS is hard with generic nat-
uralness criteria. In the filler/no-filler comparison test
with spontaneous TTS, filler-inserted speech is shown
to have higher perceived colloquialness, but the result
flips when using read speech TTS, potentially due to its
inability to voice realistic-sounding fillers. This shows
the importance of evaluating filler insertions with spon-
taneous TTS.
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