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Abstract
In this paper, we present a far-field speaker recognition benchmark derived from the publicly-available DiPCo corpus. This
corpus comprises three different tasks that involve enrollment and test conditions with single- and/or multi-channel recordings.
The main goal of this corpus is to foster research in far-field and multi-channel text-independent speaker recognition. Also,
it can be used for other tasks such as dereverberation, denoising, and speech enhancement. In addition, we release recipes
implemented with Kaldi and SpeechBrain libraries to facilitate further research. We validate the evaluation design with a
single-microphone state-of-the-art speaker recognition system (i.e. ResNet-101). The results show that the proposed tasks are
very challenging. And we hope these resources will inspire the speech community to develop new methods and systems for
this challenging domain.
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1. Introduction
Speaker Recognition refers to the authentication of the
claimed users from their voice (Bimbot et al., 2004).
Speaker recognition systems have been used in several
applications such as speaker diarization (Rouvier and
Meignier, 2012), forensics (Campbell et al., 2009) or
voice dubbing (Gresse et al., 2017). Although the state-
of-the-art DNN-based systems perform well in adverse
environments, still there are some challenges that re-
duce their performance dramatically. Far-field speaker
recognition is among the well-known challenges facing
speaker recognition systems. The far-field challenge is
intertwined with other challenges because the far dis-
tance signal will be impacted more by other distortions
such as noise and reverberation. Having a real-world
evaluation benchmark for far-field speaker recognition
is highly demanded by the speech community. Over
the years, a few far-field corpus or far-field challenges
have emerged.
In (Qin et al., 2020), a Far-Field Speaker Verifica-
tion Challenge (FFSVC) was proposed with a special
focus on far-field distributed microphone arrays under
noisy conditions in real scenes. In FFSVC three tasks
are proposed: far-field text-dependent speaker verifi-
cation from a single microphone array, far-field text-
independent speaker verification from a single micro-
phone array, and far-field text-dependent speaker veri-
fication from distributed microphone arrays.
The VOiCES challenge (Nandwana et al., 2019) fo-
cuses on the robustness of the replayed speech in
the presence of reverberation and background noises.
VOiCES corpus was collected by recording played au-
dio from high-quality loudspeakers in real rooms, cap-
turing natural reverberation. The retransmitted cor-
pus is LibriSpeech which is used as the clean speech
source, while television, music, or babble played si-
multaneously from another loudspeaker as background

noise. The main deficiency of VOiCES is that it doesn’t
match real-world scenarios.

In (Garcia-Romero et al., 2019), the authors propose
a speaker recognition benchmark derived from the
CHIME-5 challenge. The benchmark comprises four
tasks for enrollment and test conditions with single-
speaker and/or multi-speaker recordings. Additionally,
it supports performance comparisons between close-
talking vs. distant/far-field microphone recordings and
single-microphone vs. microphone-array approaches.
Unfortunately, despite its attractiveness, it has never
been released to the public.

In this paper, we present a novel benchmark that com-
plements previous works and aims at fostering research
in multi-channel speaker recognition. The speaker
recognition benchmark is derived from the publicly
available DiPCo corpus (Van Segbroeck et al., 2019),
which was initially designed to foster research in the
field of noise-robust and distant microphones for au-
tomatic speech recognition. Here we reuse these data
to build a speaker evaluation dataset to explore the
performance of speaker verification systems for con-
versational speech in noisy environments and multi-
microphone distant/far-field. In addition, we release
Kaldi and SpeechBrain 1 recipes to facilitate further re-
search.

The paper is organized as follows. Section 2 present
the DiPCo corpus and the far-field speaker verification
benchmark derived from the DiPCo corpus. We present
in Section 3 the three different tasks. Experiments and
results are presented in Section 4 before concluding in
Section 5.

1https://dipco-sre.univ-avignon.fr/

https://dipco-sre.univ-avignon.fr/
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2. Dataset
2.1. Summary of the DiPCo corpus
The Dinner Party Corpus (DiPCo) is a speech database
that replicates the scenario where a group of people is
having an interactive conversation while having dinner
in a simulated home environment. The corpus consists
of multiple sessions recorded in the same room over
multiple days and with different groups of participants.
More precisely, the corpus contains the collection of 10
sessions in which 4 persons have a natural conversation
over dinner and has a total of 32 unique speakers.
At the beginning of each session, participants were get-
ting food at the buffet and then moved to the dining ta-
ble. All participants are seated around a dining table,
and in each session, music playback started at a given
time mark.

Figure 1: Layout of the room in which the sessions
were recorded (figure source : (Van Segbroeck et al.,
2019)).

In this corpus, all participants have been simultane-
ously recorded with a single-channel close-talking (1
close-talking) and far-field microphone devices (5 far-
field microphones). Figure 1 shows the floor plan and
layout of the room and Table 1 gives the distance mea-
sure between the participants and the microphone array
devices (in mm). The far-field devices were equipped
with a microphone array consisting of 7 microphone
channels. The 7-microphone array was configured as
illustrated in Figure 2. The 6 microphones were uni-
formly placed on the perimeter of a circle of radius 35
millimeters, the 7th microphone was placed at the cen-
ter of the circle.
All audio was distributed at a 16 KHZ sampling rate.
The close-talk recordings of all speakers were man-
ually transcribed and sentence boundaries were pro-
vided. The microphone recordings per session were all
time-synchronized.

2.2. Derived far-field speaker corpus
To create the derived far-field speaker corpus, we used
the 10 sessions assigned to the dev and test partition of
the DiPCo corpus.

Persons Device
1 2 3 4 5

1 1600 2240 3825 2900 1760
2 1990 2130 3950 3100 1760
3 1820 1520 2900 2030 2780
4 1300 1120 3100 2520 2820

Table 1: Distance between the participants and the mi-
crophone array devices (in mm).

Figure 2: Configuration of the 7-microphone array (fig-
ure source : (Van Segbroeck et al., 2019)).

The extraction of enrollment and test segments is based
on the segmentation given in the DiPCo corpus. In the
DiPCo corpus, the segment is defined as a continuous
audio chunk where the utterance segment boundaries
are determined by a transcriber that searches a logical
timestamp, such as the beginning of a new sentence.
Leveraging this segmentation, we removed all overlap-
ping speech regions so that each segment contains the
voice of only one speaker. And finally, we removed
all the segments with less than 3 seconds of voice and
those that exceed 8 seconds of voice. Because doing
speaker recognition for very short utterances becomes
very challenging and it is not easy to differentiate the
effect of noise and duration. In the same manner, for
very long utterances even for far-field utterances, there
is enough information for recognition.
For enrollment, we only use the segment audio from the
close-talking recordings. And for the test, we use the
different segment audios from the far-field microphone.
Figure 3 shows the total duration of the enrollment ut-
terances selected for each of the 31 speakers.
We note that we dismissed participant P13 because the
close-talk microphone recording is noisier than others
due to a microphone issue in the DiPCo corpus.
In order to create a more challenging far-field speaker
recognition benchmark, we selected the pairs with the
same gender (male and female) and the same native-
ness (native and non-native) in trials. In other words,
there are no cross-gender trials and no cross-nativeness
trials.
In addition to this far-field speaker recognition bench-
mark, metadata is available to enable more analysis of
the performance. The types of metadata include gen-
der, the distance between the participants and the mi-
crophone array devices, and the recording environment
(noise, laughter, music).
The corpus and metadata are available through
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Figure 3: Total duration of the enrollment utterances selected for each of the 31 speakers in the corpus.

the website: https://dipco-sre.
univ-avignon.fr/.

3. Tasks description
Our goal in this paper is to investigate the effect of
single-channel and multi-channel speaker recognition
in the context of far-field. We define three tasks based
on three different conditions.
We note that the enrollment condition is the same for all
three different tasks. The enrollment segments are ex-
tracted from the close-talking microphone. One speech
segment is used to build the speaker model. In the
test condition, the number of speech segments (and the
source of the microphone) is different for each task.
The test segments are extracted from the far-field mi-
crophone.
The three tasks from the far-field speaker benchmark
are the following:

• Task-1 - Far-field speaker recognition from sin-
gle microphone: The task corresponds to the
single-channel test segment. One speech segment
is used to build the model of the target speaker.
The test segments are extracted from one of five
far-field microphones and at each time the 7th
channel is selected (the one which is placed at the
center of the circle).

• Task-2 - Far-field speaker recognition from sin-
gle microphone array: This task corresponds to
the multi-channel test segment. Seven speech seg-
ments are used to build the model of the target
speaker. The test segments are extracted from one
of five far-field microphones and we selected all
the channels.

• Task-3 - Far-field speaker recognition from dis-
tributed microphone: This task corresponds to
the multi-microphone test segment. Four speech
segments are used to build the model of the target
speaker. The test segment is extracted from four
of five far-field microphones and at each time the
7th channel is selected.

Table 2 provides some information about the trial con-
ditions for the three tasks, including the target and im-
postor trial counts.

4. Baseline system
This section provides baseline results for the three dif-
ferent tasks of the far-field speaker recognition bench-
mark derived from the DiPCo corpus.

4.1. Training and Evaluation datasets
The x-vector extractors are trained on the VoxCeleb2
dataset (Chung et al., 2018). Only the development
partition of VoxCeleb2, which contains speech excerpts
from 5,994 speakers with a 16 KHz sampling rate, is
used.
Firstly, the trained x-vectors are assessed on the Speak-
ers in the Wild (SITW) core-core task (McLaren et al.,
2016) and Voxceleb1-E Cleaned with a 16 KHZ sam-
pling rate. We show these results to provide an indica-
tion of the strength of the baseline system. Note that the
development set of VoxCeleb2 is completely disjoint
from the VoxCeleb1 dataset (i.e. no common speak-
ers).
Finally, the trained x-vectors are assessed on the three
different tasks of the far-field speaker benchmark de-
rived from the DiPCo corpus.
We report results in terms of Equal Error Rate (EER)
and the minimum detection cost function (minDCF)
with Cmiss = 1, Cfa = 1 and Ptarget = 0.01.

4.2. Implementation details of x-vector
extractor

The x-vector extractor used in this paper is a vari-
ant based on ResNet-101. The architecture of the x-
vector extractor is described in Table 3. The extractor
is trained with 4-second chunks of training samples and
their augmented version with noise and reverberation
as described in (Snyder et al., 2018) which is avail-
able as a part of a Kaldi recipe. As input, we used
60-dimensional filter-banks. The x-vectors are 256-
dimensional and the loss function is angular additive
margin with a scale equal to 30 and margin equal to 0.4.
The size of the feature maps are 128, 128, 256, and 256
for the 4 ResNet blocks. We use stochastic gradient de-
scent with a momentum equal to 0.9, a weight decay
equal to 2.10−4, and an initial learning rate equal to
0.2. The batch size was set to 128, training on 4 GPUs
in parallel. The implementation is based on PyTorch
and the model training takes about 2 days. In order to

https://dipco-sre.univ-avignon.fr/
https://dipco-sre.univ-avignon.fr/
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# Pairs #Positive Pairs # Utterances Segment length (s)
Task-1 900,000 150,000 4,405 3.51/5.03/7.99
Task-2 900,000 150,000 4,405 3.51/5.03/7.99
Task-3 900,000 150,000 30,835 3.51/5.03/7.99

Table 2: Statistics of the far-field speaker recognition(Task 1-3). # Pairs refers to the number of evaluation trials
pairs, # Positive Pairs refers to the number of evaluation trials positive, # Utterances refers to the total number of
unique speech segment in the test set and # Segment length are reported as min/mean/max.

remove silence and low energy speech segments, a sim-
ple energy-based VAD is used based on the C0 compo-
nent of the acoustic feature.

Layer name Structure Output
Input – 60 × 400 × 1
Conv2D 3 × 3, Stride 1 60 × 400 × 128

ResBlock-1


3× 3, 128
3× 3, 128
3× 3, 128

SE, [128, 60]

× 3 , Stride 1 60× 400× 128

ResBlock-2


3× 3, 128
3× 3, 128
3× 3, 128

SE, [128, 30]

× 4, Stride 2 30× 200× 128

ResBlock-3

3× 3, 128
3× 3, 256
3× 3, 256

× 23, Stride 2 15× 100× 256

ResBlock-4

3× 3, 256
3× 3, 256
3× 3, 256

× 3, Stride 2 8× 50× 256

Pooling – 8× 256
Flatten – 2048
Dense1 – 256
Dense2 (Softmax) – N
Total – –

Table 3: The ResNet-101 architecture. In the last
row, N is the number of speakers. Batch-norm and
ReLU layers are not shown. The dimensions are
(Frequency×Channels×Time). The input is comprised
of 60 filter banks from speech segments. During train-
ing we use a fixed segment length of 400 frames.

4.3. Results
Table 4 shows the performance obtained by the base-
line system on VoxCeleb1-E Cleaned and SITW. These
datasets are extensively used in speaker recognition
area. We show these results to provide an indication
on the strength of the baseline system. We observe that
the system obtain on VoxCeleb1-E Cleand and SITW
an EER close to 1% and a DCF close to 0.1.

EER(%) DCF
VoxCeleb1-E 1.02 0.115
SITW 1.15 0.100

Table 4: Performance obtained by the baseline system
on Voxceleb1-E Cleaned and SITW.

Table 5 shows the performance on the derived DiPCo
corpus across the three different tasks. We observe
that the baseline system obtained on the Task-1, Task-2
and Task-3 an EER respectively of 5.84%, 4.89% and

3.65%. The EER is more important for the Task-1 be-
cause the test is constituted of one speech segment. We
can see that this corpus is extremely challenging. The
EER is 3 to 6 times greater than VoxCeleb1-E Cleaned
or SITW.

EER(%) DCF
Task-1 5.84 0.369
Task-2 4.89 0.308
Task-3 3.65 0.263

Table 5: Performance obtained by the baseline system
across the three different tasks of the derived DiPCo
corpus.

5. Conclusions
This article provides details on the derived DiPCo far-
field speaker recognition benchmark. This corpus is
publicly available and is designed to foster robustness
against the artifacts introduced by far-field and multi-
channel recordings. Also, this corpus can be read-
ily used for dereverberation, denoising and speech en-
hancement. We release a Kaldi and SpeechBrain sys-
tem to facilitate further research. The performance ob-
tained by the state-of-the art system shows that the dif-
ferent proposed tasks are extremely challenging. We
hence encourage the research community to develop
new methods and systems for this challenging domain.
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