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Abstract
Multiple works have proposed to probe language models (LMs) for generalization in named entity (NE) typing (NET) and recognition
(NER). However, little has been done in this direction for auto-regressive models despite their popularity and potential to express a
wide variety of NLP tasks in the same unified format. We propose a new methodology to probe auto-regressive LMs for NET and NER
generalization, which draws inspiration from human linguistic behavior, by resorting to meta-learning. We study NEs of various types
individually by designing a zero-shot transfer strategy for NET. Then, we probe the model for NER by providing a few examples at in-
ference. We introduce a novel procedure to assess the model’s memorization of NEs and report the memorization’s impact on the results.
Our findings show that: 1) GPT2, a common pre-trained auto-regressive LM, without any fine-tuning for NET or NER, performs the tasks
fairly well; 2) name irregularity when common for a NE type could be an effective exploitable cue; 3) the model seems to rely more on
NE than contextual cues in few-shot NER; 4) NEs with words absent during LM pre-training are very challenging for both NET and NER.
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1. Introduction

Before transformer LMs (Devlin et al., 2019), the state-
of-the-art NER was based on training recurrent neural net-
works, such as bidirectional LSTM (BiLSTM) with a Con-
ditional Random Field (CRF) layer, from scratch (Yadav
and Bethard, 2018). The widely adopted approach with
transformers has been to fine-tune them for the desired task,
thus specializing their general linguistic knowledge, ac-
quired during pre-training. While LMs fine-tuned for NER
have achieved impressive results on standard benchmarks
(Akbik et al., 2019), multiple works have emphasized their
limitations with regard to their generalization capacity to
new textual genres (e.g. clean versus noisy text), NE type
sets (e.g. NE types belonging to new domains such as mu-
sic or e-commerce) and new NEs, unseen during training
(Lin et al., 2020b).
To gain more insights into the NER generalization ability
of LMs, multiple studies have been conducted. Probing has
been designed for BiLSTM-CRF LMs (Augenstein et al.,
2017; Taillé et al., 2020; Fu et al., 2020) or masked LMs
such as BERT (Petroni et al., 2019; Jiang et al., 2020).
Yet, little has been done for auto-regressive models such
as GPT2 despite their popularity and potential to express a
wide variety of NLP tasks in the same unified format (Raf-
fel et al., 2020).
Additionally, although the past probing studies have broad-
ened the knowledge about how LMs generalize in the NER
context, multiple improvements could be brought to exist-
ing methodologies. First, the impact of pre-training LMs on
the results has never been assessed. Second, the proposed
setups test generalization by relying on large annotated
datasets which are manipulated in different ways to cre-
ate test and train splits. However, when assessing general-
ization in relation to human linguistic behavior (Levesque,
2014), which we claim as more realistic, these datasets are
insufficient and different testing conditions should exist.

Humans can easily recognize NEs based on prior domain
and common sense linguistic knowledge, or by leveraging
contextual cues in text (Lin et al., 2020a). Humans can per-
form new linguistic tasks quite well even when exposed to
a few examples or very simple instructions (Brown et al.,
2020). When it comes to technology creation, human lin-
guistic behavior could lead to infinite examples, many of
them new to everyone, including to the systems’ designers
(Webber et al., 2020).
Hence, datasets used in past studies cannot capture this
variability for a realistic testing unless continuously up-
dated. However, like humans, LMs have gained diverse
domain and linguistic knowledge, and developed general
pattern recognition abilities from experience, during pre-
training (Brown et al., 2020). Given these, the research
question we investigate is:
Can the knowledge gained during pre-training be leveraged
by auto-regressive LMs at inference to adapt to diverse NE-
related tasks, when queried with a few examples at most
and simple natural language instructions?

Contributions. Inspired by testing conditions related to
human linguistic behavior, we design a probing methodol-
ogy centered on meta- or ”in-context” learning. It entails
the task specification via the text input used to prompt the
model, without performing any gradient updates (Brown et
al., 2020). First we study NEs of various types individually
by defining a zero-shot transfer strategy for NET. We design
a novel method to assess NE memorization by the model
and report the memorization’s impact on the results. Our
memorization method could be used to sample (un)popular
NEs (Shwartz et al., 2020), but also, beyond the NE context,
with other types of n-grams. Second, we model NER as a
machine reading comprehension (MRC) task and probe the
model by providing a few examples at inference (e.g., the
model should extract spans of text from input, as answers
to simple queries). We also test NER with (un)memorized
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NEs and gain insights on the role of context, i.e. text around
NEs. We use four datasets: CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003), WNUT2017 (Liu, 2014), MIT
Movie (Liu, 2014) and extensive lists of NEs from DBpedia
(Auer et al., 2007). These datasets contain clean and noisy
text, and regular NEs such as people names and irregular
NEs such as creative work titles.
Our study1 joins other efforts that looked into NET and
NER generalization but that, compared to us, achieved this
by manipulating datasets during fine-tuning / testing or tar-
geted other types of LMs. To our knowledge, we are the
first to extensively probe pre-trained auto-regressive LMs
as they are for these tasks and ensure testing conditions re-
lated to human linguistic behavior.

Findings. Pre-trained GPT2, a common auto-regressive
LM, appears to perform the tasks fairly well without any
fine-tuning for NET or NER, especially on regular NEs
or memorized during pre-training. These models, as they
are, already know quite a lot about NEs and encode NER
patterns. Our finding is particularly important given that
past works study NET and NER generalization of existing
LMs without explicitly considering the impact of model
pre-training. Then, compared to other studies that claim
named entity irregularity to be problematic (Augenstein et
al., 2017), we show that when frequently present for a cer-
tain NE type it can become, in fact, an effective exploitable
cue. We also show that the model seems to rely more on
NE cues than on context cues in few-shot NER, and that
the model’s exposure to the NE’s words weighs much more
than the exposure to the exact NE in zero-shot NET.

2. Background and Related Work
2.1. NE Generalization in Current Models
The common way to perform NER nowadays relies on
training or fine-tuning a deep neural network using a rel-
atively large annotated dataset and often aims at extracting
a few regular NE types such as person, location and organi-
sation (Yadav and Bethard, 2018; Akbik et al., 2019; Lison
et al., 2020). Although recent LMs have yielded impressive
results, NER generalization to all types of textual genres
is still an issue, in particular, in informal text, frequently
found on social media or in chat-bot interactions. This type
of text can often lack proper formatting, e.g. word cap-
italization, and contain unusual grammatical structures or
jargon (Aguilar et al., 2018; Guerini et al., 2018).
Another challenge is NER generalization to diverse and
growing NE type sets, belonging to new domains such as
movies, music or e-commerce (Ma et al., 2016; Guerini et
al., 2018; Lin et al., 2020b). These types are often more
heterogeneous (e.g. groups in WNUT includes sport teams
and music bands (Aguilar et al., 2018)); lack name reg-
ularity (e.g. creative work titles are not necessarily noun
phrases (Lin et al., 2020b)); can be composed of common
words or of words which are typically from other languages
(e.g. the film ”Demolition Man” (Derczynski et al., 2017)).
Then, NER generalization to new NEs, unseen during train-
ing is another challenge. This is common in the real-world

1Code is available at https://github.com/deezer/net-ner-
probing.

where a system learns from a limited number of examples
per type while NE mentions are expected to shift in time
(Augenstein et al., 2017).

These challenges have been addressed by relying on new
training datasets with each new case. However, collecting
thousands of human annotations for new genres, NE types
or NE mentions is expensive and time-consuming (Augen-
stein et al., 2017; Lin et al., 2020a). Other recent works
rely on existing NE resources, such as gazetteers and dic-
tionaries, to either perform NER in a distant or weak su-
pervision setup (Lison et al., 2020; Shang et al., 2018), or
to train NET classifiers adaptable to unseen NEs (Guerini
et al., 2018). Constraining the model to rely more on con-
text than on NEs have also appeared promising to achieve
generalization (Mengge et al., 2020; Lin et al., 2020a).

Other efforts towards NET and NER generalization share
the same rationale as us—the challenges in collecting an-
notations with each new case and the human linguistic be-
havior, and design zero- or few-shot learners to perform the
tasks (Zhou et al., 2018; Zhang et al., 2020; Yang and Kati-
yar, 2020; Ding et al., 2021; Aly et al., 2021). There are
several major differences with our study. First, our goal
is not to propose a new NET or NER model, but to probe
pre-trained LMs as meta-learners without modifying their
weights or leveraging external knowledge. Second, assum-
ing that our probing methodology is exploited as a basic
NET and NER model, its input is much more constricted
(lists of NEs and NE types in NET, a few NEs in context
for NER) compared to the other works which make use of a
wide range of resources such as: knowledge bases, defini-
tions of entity types in a taxonomic and/or natural language
forms, NEs in context even for NET, or datasets of seen NE
types with many examples.

2.2. Probing Studies for NER Generalization

Lin et al. (2020b) propose an extensive use of randomiza-
tion tests to study the extent to which a fine-tuned LM relies
on: name regularity—regular (e.g. persons) versus irregu-
lar names (e.g. creative works); on mention coverage—
the ratio of overlapping NEs in train and test data; and
on context diversity—unique sentences for each NE type.
Fu et al. (2020) investigate the popular NER architecture,
LSTM-CRF, from various views including NE and con-
textual coverage. Also, they study the impact of the re-
lations among NE types on model learning. A BiLSTM-
CRF is also studied in (Taillé et al., 2020), but the focus is
on bench-marking different contextualized or static embed-
dings for generalization to new NE mentions and domains.

Compared to these, we focus on pre-trained auto-regressive
LMs as-is and not on fine-tuning / training them and, im-
plicitly, on the impact of train / test datasets. To our knowl-
edge, this is the first detailed study designed for pre-trained
LMs as NET and NER meta-learners without modifying
them or using external resources. We study many gener-
alization angles: seen versus unseen NEs–referred also as
memorized versus unmemorized NEs in the paper, regular
and irregular NEs, diverse genres including noisy text, and
reliance on context versus NE cues.

https://github.com/deezer/net-ner-probing
https://github.com/deezer/net-ner-probing
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3. Proposed Probing Methodology
We divide our study in NET in a zero-shot transfer followed
by NER in a few-shot settings. This allows us to acquire
knowledge first about names and then about NEs in context.

3.1. NET in a Zero-shot Setup
Auto-regressive LMs estimate the empirical distribution
from the training data, where each training example x is
a sequence of tokens x = (s1, s2, ..., sn). Given the se-
quential nature of the language, it is common to factorize
the distribution p(x) with the Bayes’ rule and express it as
a product of conditional probabilities of each sequence’s
token si given the previous tokens:

p(x) =

n∏
i=1

p(si|s1, ..., si−1) (1)

On a new task, the model infers p(output|input) or more
completely written p(output|input, task). Brown et al.
(2020) merge the input and task in a single natural lan-
guage query and express output as the predicted next se-
quence of tokens. For instance, we could write a query for
NET as ”Sentence: is Italy a person, location or organisa-
tion? Answer:”. The predicted NE type is then the token
among ”person”, ”location”, or ”organisation” which the
model estimates as most likely to follow.
Alternatively, we could frame NET as the most likely state-
ment among multiple competing ones such as ”Anne is a
person”, ”Anne is a location”. In this case, the sequence
with the lowest perplexity is the one that the model is less
surprised to see, hence describing the most likely NE type.
The perplexity of a sequence x, using a model θ, is:

PPLθ(x) = exp{− 1

n

n∑
i=1

log pθ(si|s<i)} (2)

We adopt this latter approach as it provides a simple task
framing in zero-shot settings and perplexity can be effi-
ciently computed by relying on a single model call. Thus,
given a NE mention e and a NE type set T , the most likely
type te ∈ T for e is:

te = argmin
t∈T

PPLθ(query(e, t)) (3)

where query(e, t) is the template ”e is a t” (e.g. ”Cinderella
is a city” or ”Cinderella is a character”).

Assessing generalization. The model’s generalization to
NEs unseen or rare during training is essential for a human-
centered setup. Thus, assessing how the model performs
on (un)memorized NEs could provide a more realistic un-
derstanding of its performance. Previous works that led
such investigation, trained models from scratch (Lin et al.,
2020b; Taillé et al., 2020), so could keep track of (un)seen
NEs during training. As we focus on pre-trained LMs and
have no access to their training data, we devise a method to
assess if the model has memorized a NE or not.
Carlini et al. (2019) propose a test for unintended mem-
orization of rare sequences based on perplexity. Given all
possible sequences for a matter at hand (or a very large sam-
ple, S) prefixed by the same query (e.g. prefix ”the random

number is ” and S = {281265011, 281265017...}), rank
them by PPLθ and use ranks to compute exposure:

exposureθ(x) = log2 |S| − log2 rankθ(x) (4)

For x ∈ S, the exposure metric is negatively correlated with
the rank, i.e. the lower the rank the higher the exposure,
thus likely memorization.
This test is a helpful point of departure, but less appli-
cable to our task as-is. Without a very large set of NEs
for each type, the estimates could be inaccurate, especially
when only few sequences have lower perplexity than a tar-
get one (Carlini et al., 2019). Also, we noticed experimen-
tally (see Figure 1) that the mean perplexity tended to de-
crease with the number of tokens per NE2, a phenomenon
most likely related to the open-vocabulary language model-
ing over sub-word units3. Thus, with the method of Carlini
et al. (2019), NEs would have a higher chance to be flagged
as memorized when they are tokenized in more tokens.
As originally stated, our goal is to evaluate the model’s
behavior with (un)memorized NEs. Thus, we want to be
able to assign NEs to two groups when we are confident of
their (non-)memorization, while ignoring NEs in the gray
area. We changed the previously shown test to rely directly
on probabilities of NE’s tokens, obtained when calling the
model with NEs as input, prefixed by a fixed string. The
test we propose is further summarized:
If NE words are known (e.g. ”Great” and ”Britain” are in
the model’s vocabulary) and their sequential transitions are
unsurprising (e.g. p(Britain|Great) is large), then the model
has likely seen the NE during training. Formally, we define
two exposure metrics for these two aspects as follows:

exposurewordθ (x) =
∏

(i,j)∈Wx

testwordθ (x, i, j)

testwordθ (x, i, j) =

{
1 if i = j
pθ(sj |s<j) if i < j

(5)

exposuretransθ (x) = min
i∈Tx

pθ(si|s<i) (6)

where Wx consists of tuples marking the start and end in-
dices of each word in x (a word can have multiple tokens)
and Tx has indices marking the transitions (the index of
each new word). In Equation 5, we identify two cases when
a word can be considered known by the LM. It is directly
mapped on a token in the LM’s vocabulary V or, when it is
split in multiple tokens, the last token becomes an indicator
of its memorization. In Equation 6, to test whether the se-
quential association of words is unsurprising to the model,
we take the minimum probability of the tokens marking the
start of each new word.

2The trend was similar per number of words or characters.
3Among the NEs with large number of tokens and lower per-

plexity, we often noticed NEs from other languages than English
and with more words (e.g. L’Hospitalet-près-l’Andorre). Given
the previous ones, the probability of many of these sub-tokens is
quite high (e.g. p(s|L’Hospitalet-prè) = 0.993), which results in
low perplexity. This could be an effect of the model memorizing
some rare or foreign words, but not necessarily the NE.
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Figure 1: Mean and standard deviation of log perplexity computed with GPT2 for large lists of persons (left), locations
(middle) and organisations (right) from DBpedia. Values are grouped by the number of tokens per NE.

For the final decision, NEs with exposure values higher
or lower than some established thresholds could be as-
signed to the memorized / unmemorized NE groups. These
thresholds could be defined considering the NE set and the
model’s vocabulary size (more details in Section 4). An
advantage of our method over (Carlini et al., 2019) is that
we do not need access to a very large set for each NE type,
the token probabilities being sufficient to establish the NE
exposure / degree of memorization.

3.2. NER in a Few-shot Setup
We frame NER as a MRC task (Mengge et al., 2020; Li et
al., 2020), but, instead of fine-tuning / training a pre-trained
LM for MRC, we exploit it in a few-shot setup. As de-
tailed in Section 1, the few-shot setup has been considered
closer to human linguistic behavior and has shown compet-
itive results in other NLP tasks such as question answering,
translation, and classification (Brown et al., 2020). Zhao et
al. (2021) have also tested information extraction for slot-
filling with some slots targeting NEs (e.g. the director of a
movie). Yet, they assume that each sentence contains that
type of slot, without assessing the case when no NEs exist
in the sentence.
Similar to past works, we use a query to formulate the task
and insert examples, which are used only at inference, with-
out triggering updates of the pre-trained model weights.
We show in Figure 2 a query generated from WNUT2017
dataset for the entity type product. The query has two parts:
a prefix and a test sentence. The prefix is appended to each
sentence and introduces the examples (0-7). We provide 4
examples, two with NEs and two without. We use the token
”none” to mark the absence of a NE of the target type. The
second part with the last two lines (8-9) introduces the test
sentence, for which NER is performed.
Previous works have shown that the query choice has a sig-
nificant impact on the task’s accuracy (Li et al., 2020). In
the few-shot learning case, the set of examples and their or-
der can lead to different results too (Zhao et al., 2021). For
instance, the model might tend to predict the majority to-
ken or the one nearest to the end of the query. To overcome
this, Zhao et al. (2021) propose a procedure to calibrate the
LM’s output probabilities by taking into account the LM’s
bias towards certain outputs. Specifically, in the generation
task, an affine tranformation and softmax is applied to p̂, the
set of probabilities of the first token: p̂cal = softmax(Wp̂).
W is estimated from p̂cf , the probabilities obtained when

0: Sentence: I don’t like to be stuck at home
1: product: none
2: Sentence: Where is Gelato Gilberto?
3: product: none
4: Sentence: Well, I was gonna buy a Zune HD
5: product: Zune HD
6: Sentence: BEAUTY TIPS: SK-II UV Cream
7: product: SK-II UV Cream
8: Sentence: CVS sells their own epipen
9: product:

True Answer: epipen

Figure 2: NER query and the expected generated answer.
Lines 0-7 are examples (two negatives, two positives) and
lines 8-9 are the test sentence.

feeding in the model a ”content-free” input such as ”N/A”,
as W = diag(p̂cf )−1. We use the same calibration proce-
dure and run each experiment multiple times, with varied
examples as demonstration. As for the query format, we
stick to the one shown in Figure 2 and leave for future work
the exploration of other formats.

Assessing generalization. Assessing if the LM can gen-
eralize to unmemorized NEs is a more humanlike setup for
evaluation. We could select two sets of sentences with our
memorization test, and report performance on each sepa-
rately. However, splitting smaller datasets as WNUT2017
would not allow for reliable conclusions, nor to analyse the
role of the context (i.e. the other parts of the sentence) be-
cause sentences would be different in the dataset splits. As
Lin et al. (2020b) highlighted, we should aim at NER mod-
els that rely more on context for generalization, rather than
memorizing NEs, in particular for irregular NE types such
as creative work titles. Thus, it is relevant to allow for the
study of context.
For these reasons, the experiment design we propose is to
fix the examples in the query prefix (0-7 in Figure 2), and
compute performance on three variations of the test sen-
tence (8-9 in Figure 2): test as-is (the original sentence),
test seen and test unseen. To obtain test seen, we ran-
domly sample NEs to replace the existing ones in the orig-
inal sentence from a list of memorized NEs identified with
our memorization test. For test unseen, we replace NEs
by choosing among random lowercase strings, which do
not exist in the English language, thus are not memorized.
The hypotheses are: 1) if the model relies more on context
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Dataset Type NE types NET NER
CoNLL-2003 clean person, location, organisation X X
MIT Movie noisy person, creative work X X
WNUT2017 noisy person, location, corporation, group, product, creative work X X

DBpedia clean person, location, organisation, creative work X

Table 1: Overview of the datasets used in each task. For NET, we consider NE mentions from all dataset (train, test, and
dev if available). NER is evaluated on test sets while the train sets are used only to sample examples for the query.

for NER then the performance on test as-is and test unseen
should be similar; 2) if the model relies more on NE cues
then the performance on test seen should be much larger
than on test as-is.

4. Experiments
We apply the proposed methodology to a medium-sized
GPT2. A larger model like GPT3 yielded better results as a
meta-learner in past experiments (Zhao et al., 2021). How-
ever, we have decided to use the proposed probing method-
ology with a model that was easily accessible and had lower
memory requirements, leaving the extension to other auto-
regressive models as future work.

Datasets. CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003) and WNUT2017 (Derczynski et al., 2017), com-
monly found in NER benchmarks, are kept as they are. The
MIT Movie dataset (Liu, 2014), originally created for slot
filling, is modified by ignoring some slot types (e.g. genre,
rating) and merging others (e.g. director and actor in per-
son, and song and movie title in title) in order to keep con-
sistent NE types across all datasets. MIT movie dataset
contains only lowercase text, sometimes with typos, thus
falling under the noisy text genre as WNUT2017. For NET,
we consider the NE mentions from each dataset in its en-
tirety (train, test, and dev if available). We also collected
large lists of different NE types from DBpedia (Auer et al.,
2007). These are particularly interesting because Wikipedia
has not been included in the GPT2 training corpora (Rad-
ford et al., 2019). The NER experiments are run only on
test sets while the train sets are used for sampling examples
for the query. A summary of the datasets and the tasks in
which they are used is presented in Table 1.

Probing NET. For NET, we create prompts starting from
NE types and choose as predicted value the type which
leads to the lowest perplexity as presented in Section 3.1.
In practice, we use multiple keywords for each NE type
starting from their definition. We also include character
for person; company, group, institution, club, and corpora-
tion for organization; place, city, and country for location.
As the perplexity decreases with the number of tokens as
shown in Figure 1, we choose all keywords such that they
are part of the model vocabulary. Thus, creative work is
replaced by work, title, movie, song, and book. We do not
include other keywords for product, corporation and group
in WNUT2017.
For the exposure computation, we prefix NEs with the de-
fault unknown token when retrieving probabilities. The
thresholds for word and transition exposures are established
per dataset. For the lower limit, we consider the size of the
GPT2 vocabulary (≈ 50K); thus, assuming a uniform word

distribution4, each token would have a 2e-05 probability
to be generated next. CoNLL-2003 has many one-word
NEs with rare transitions. For this reason, we focus only
on exposurewordθ to establish if a NE is memorized (≥ .8)
or not (≤ 1e-04). The rest of NEs are not classified. In
contrast, in MIT Movies, NEs are often composed of mul-
tiple words common in English-language, thus present in
the model’s vocabulary. In this case, exposuretranθ is more
informative for selecting memorized NEs (≥ .001) and un-
memorized NEs (≤ 1e-05).
We sample the two groups from the DBpedia lists using ei-
ther exposurewordθ or exposuretranθ . In this way, we inves-
tigate the impact of knowing words vs. recognizing word
transitions on a much larger sample. We ignore one-word
NEs from MIT Movies and DBpedia because they are rare
or often spurious. Finally, we only run the NET experiment
on the complete WNUT2017 dataset because the number
of NEs for each entity type is too small to allow reliable
memorized vs. unmemorized split.
Probing NER. We opt for a maximum of training exam-
ples in the query that can be kept in memory, in our case 16.
Out of these, 9 contain NEs of the targeted type and 7 are
randomly chosen from the rest of the dataset. We run each
experiment three times with different random seeds to com-
pute variance. The test set is slightly modified too: for each
NE type, we keep all positive sentences and sample nega-
tive sentences such that the ratio positive-negative is about
2:1. The maximum number of tokens asked when querying
the model is set to 15. The calibration we apply follows the
steps described in (Zhao et al., 2021).
We design the NER meta-learner to extract one NE of the
prompted type at a time, leaving the case of multiple NEs
per text as future work. Because a test sentence can men-
tion multiple NEs of the same type, we consider a gener-
ated answer to be correct if it matches one of the existing
NEs. In computing scores, we rely mostly on exact NE
matching with some exceptions. The evaluation is insensi-
tive to the letter case (e.g. ’none’ and ’None’ are consid-
ered equivalent). Also, we noticed that the model tends to
add spaces for NEs written together such as in social me-
dia mentions. To cover these cases, we consider that the
prediction is equal to the ground-truth, if their Levenshtein
distance divided by the true NE length is lower than 0.2.
When no NEs should be extracted but the model generates
another string that does not have any words in common with
the input, we consider it a correct prediction even if it’s not
explicitly ”none”5.

4This assumption is strong, but used only to establish an order
of magnitude for the unmemorized exposuretransθ .

5The model can generate strings such as null or ”.”
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Dataset NE Type All Memorized Unmemorized
F1 F1 (ZOE) Count F1 Count F1 Count

CoNLL-2003 person 0.90 0.90 3613 0.93 695 0.86 619
location 0.66 0.80 1331 0.74 546 0.37 80

organisation 0.70 0.74 2401 0.74 770 0.63 289
macro-average 0.75 0.81 7345 0.81 2011 0.62 988

MIT Movie person 0.80 - 2866 0.82 605 0.81 369
creative work 0.60 - 2122 0.64 402 0.58 256

macro-average 0.70 - 4988 0.73 1007 0.69 625

Table 2: Zero-shot NET F1-scores. Results obtained with ZOE on CoNLL-2003 are also shown.

Metric NE Type M UM Count
exposurewordθ person 0.88 0.64 10000

location 0.81 0.63 10000
organisation 0.76 0.67 10000
creative work 0.69 0.36 10000

macro-average 0.78 0.58 40000
exposuretranθ person 0.83 0.78 10000

location 0.83 0.75 10000
organisation 0.78 0.71 7014
creative work 0.63 0.55 6012

macro-average 0.77 0.70 33026

Table 3: Zero-shot NET results on DBpedia NEs. M stands
for Memorized and UM for Unmemorized. The Metric
column reports the exposure metric used to select memo-
rized and unmemorized NE lists.

Validation. As previously mentioned, out goal is not to
propose a new NET or NER model, but to probe pre-trained
LMs as meta-learners without modifying their weights or
leveraging external knowledge. However, as a sanity check
to understand if the model used in this way actually works,
we position the model’s performance with respect to the
performance of other baselines.

For NET on CoNLL-2003, we include a zero-shot baseline,
ZOE (Zhou et al., 2018), which derives NE types by having
as input the NE mention in a sentence and a taxonomy of
NE types with the corresponding definition for each type.
ZOE is designed for clean text and uses Wikipedia as the
taxonomy of NE types. For these reasons, we cannot ap-
ply it to the other noisy datasets or to DBpedia, which is
extracted from Wikipedia. Nonetheless, we also report the
performance of a weighted random guess NET classifier for
WNUT2017.

For NER, we report the results of the best supervised base-
line of the shared WNUT2017 task, UH-RiTUAL (Aguilar
et al., 2017). UH-RiTUAL relies on a neural network
to extract feature representations that are further fed in a
CRF classifier. The feature extractor model is trained in a
multi-task fashion on two objectives, NE segmentation and
NE classification, and leverages as input character embed-
dings, Part-of-Speech tag embeddings, word embeddings
and gazetteers.

A recent comprehensive study on few-shot NER (Huang
et al., 2021) benchmarks multiple methods entailing train-
ing (prototype-based, self-training). We also report their
score range for each dataset (CoNLL-2003, MIT Movie and
WNUT2017) and compare them to our results.

NE Type F1 F1 (random guess) Count
person 0.79 0.40 1317

location 0.63 0.19 616
corporation 0.16 0.07 231

group 0.44 0.13 412
product 0.46 0.11 353

creative work 0.46 0.11 361
macro-average 0.49 0.17 3290

Table 4: Zero-shot NET F1-scores on WNUT2017.

5. Results and Discussion
5.1. NET in a Zero-shot Setup
Tables 2 and 3 show that GPT2 without relying on any NE
context or other resources can perform NET quite well on
most NE lists. On CoNLL-2003, the results are even close
to those obtained by ZOE (Zhou et al., 2018), a much more
complex system. Higher scores are obtained for regular
types such as person or clean NEs (e.g. DBpedia NEs).
We see lower scores for creative work in MIT Movies and
location in CoNLL-2003, these being often confused with
person (in 53% of the cases) and organisation (in 29% of
the cases) respectively. The first confusion is not surprising
given that movie titles could contain character names while
character is included in person. The second confusion, lo-
cation-organisation, is already mentioned as a common is-
sue (Derczynski et al., 2017). Thus, most likely including
context would help to disambiguate such NEs that belong
to multiple types.
The NET performance on memorized NEs is, as expected,
larger than on unmemorized NEs. However, Table 2 shows
a much smaller drop on MIT Movie than on CoNLL-2003.
The difference between these NE lists lies in the criterion
we used in the memorization test, either focused on know-
ing NE’s individual words in CoNLL-2003 or transitions
between words in MIT Movie. This suggests that for a
better NET performance, the model’s exposure to the NE’s
words weighs much more than the exposure to the exact
NE, i.e. its word transitions. In other words, even if a spe-
cific NE was not seen during pre-training, but its compos-
ing words were present as part of other NEs, then the model
could still leverage this exposure in order to correctly clas-
sify the unseen NE in the proposed setup. This is further
confirmed on the larger DBpedia NE lists (Table 3).
Table 4 shows that the model in a zero-shot setup yields
significantly higher results than the random baseline on
WNUT2017 NEs; though, overall lower for this textual
genre, except for person and location. The Twitter-style
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NE type Test as-is UH-RiTUAL Test seen Test unseen Count
person 0.68±0.04 0.68 0.81±0.02 0.63±0.15 490

location 0.67±0.01 0.71 0.81±0.04 0.61±0.07 187
corporation 0.66±0.03 0.36 0.82±0.03 0.51±0.07 93

group 0.57±0.04 0.33 0.68±0.04 0.65±0.03 180
product 0.45±0.12 0.20 0.53±0.07 0.44±0.16 144

creative-work 0.63±0.03 0.16 0.75±0.02 0.55±0.02 184

Table 5: 16-shot NER F1-scores and standard deviations on the WNUT2017 dataset. The third column shows the results
obtained with the baseline UH-RiTUAL.

Dataset NE Type F1 Count
CoNLL-2003 person 0.74±0.09 1537

location 0.79±0.01 1899
organisation 0.73±0.01 1843

MIT Movie person 0.80±0.04 1908
creative work 0.43±0.08 906

Table 6: 16-shot NER F1-scores and the standard devia-
tions on CoNLL-2003 and MIT Movie datasets.

NEs may contain many words unseen by the model during
pre-training. Also, we noticed similar confusion patterns
as before: corporation or group (associated with organisa-
tion) with location, and creative work with person. Thus,
context seems again promising with both the typing of NEs
with new / rare words and the disambiguation for related
NE types.

5.2. NER in a Few-shot Setup
As presented in Tables 5 and 6, the pre-trained LM, without
any further fine-tuning or training can perform NER sur-
prisingly well in the designed few-shot settings, even on
noisy data. On WNUT2017, the noisiest dataset, we can
see that the model outperforms the supervised baseline for
all NE types apart from location. Similar to the baseline,
location and person are among the easiest to extract NE
types, while product is quite hard. In contrast, corpora-
tion and creative work types are recognized rather well. A
qualitative analysis of the predicted NEs for CoNLL-2003
shows that the model has more challenges with false pos-
itives. This suggests that more negative examples may be
needed at inference. For MIT Movie, the model often pre-
dicts ”none” for creative work, an issue that might be over-
come with better chosen positive examples.
Test (un)seen in Table 5 shows F1-scores when all NEs are
replaced by random strings (lists available in Appendix),
while fixing the context and the query examples. The scores
for Test as-is are lower than for Test seen and larger than
for Test unseen. Also, the score differences between Test
seen and Test as-is are larger than the ones between Test
unseen and Test as-is. These results lead to the rejection of
hypothesis 1 and confirmation of hypothesis 2 introduced
at the end of Section 3.2 and show that the model appears
to prioritize NEs cues more than context cues in few-shot
settings. Thus, when choosing query examples, one may
favour to focus more on providing diverse NE patterns for
an entity type than diverse context patterns.
As for NET, the impact of NE (un)memorization during
pre-training is significant, with some exceptions such as
product, for which F1-scores on Test as-is are almost the

same to F1-scores on Test unseen. We checked the NEs
sampled for the query and noticed frequent irregular names
for product. Previously, Lin et al. (2020b) showed that
name regularity is critical for generalization to new NEs.
However, while the placeholders we used for unmemo-
rized NEs were highly irregular, this irregularity when often
present for a certain NE type appears an exploitable cue.
The best F1-scores reported by Huang et al. (2021) are
in the range 0.65-0.90 on the original CoNLL-2003, 0.56-
0.67 on the MIT Movie with the original NE types and
0.38-0.51 on the original WNUT2017, depending if 5 ex-
amples or 10% of the data are used as shots. Our aver-
age F1-scores with 16 shots appear competitive on our sub-
sampled test sets: 0.75 for CoNLL-2003, 0.62 for MIT
Movie and 0.61 for WNUT2017, which appears to validate
the effectiveness of the pre-trained GPT2 probed for NER
under the proposed conditions.

6. Conclusion
We proposed a NET and NER probing methodology de-
signed for pre-trained auto-regressive LMs in zero- or few-
shot settings. Our goal was to investigate if such a model,
without any fine-tuning, could handle the tasks well while
generalising to noisy text, diverse NE types, and new NEs.
For this, we also defined a novel procedure to assess the
exposure of the model to various NEs to create sets of
(un)memorized NEs. Overall, we deemed our setup un-
der more realistic conditions inspired by human linguistic
behavior.
The results showed that a medium-size GPT2 in the pro-
posed settings was quite good at NET and NER and we
revealed multiple new insights, impactful for future work.
With pre-trained encoders, the exposure of the LM to NEs
should not be investigated in fine-tuning only while neglect-
ing the memorization during pre-training. We have pro-
posed an effective method to support future studies with
this. Also, a LM already pre-trained on a general task and a
large corpus could effectively bootstrap NER for new appli-
cations, especially when NEs are common constructs in a
language. Frequent name irregularity for a type in context
can become a regularity effectively exploited by the LM
in a few-shot NER. Context is important but with limited
impact in our studied setup. Finally, choosing good query
examples of NE patterns in context for few-shot NER and
extending the study to other auto-regressive or masked LMs
are still matters of investigation.

Appendix: Additional experiment details
In experiments, we used an NVIDIA GTX 1080 with 11GB
RAM. We show the running time for each experiment in
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Table 7.

Dataset NE type Time(s)
NET NER

CoNLL-2003 person 210 6371
location 85 6906

organisation 144 6202
MIT Movie person 131 4850

creative work 100 2713
WNUT2017 person 86 2759

location 49 1081
corporation 29 730

group 40 1372
product 38 1127

creative work 39 1502

Table 7: Running time in seconds for each experiment.

Lists of memorized and unmemorized NEs used to create
the test seen and test unseen datasets for assessing NER
generalization are presented further.
Memorized:

• person: Mary, Steve, Davis, Sam, Robert, Alex,
Michelle, James, Danny, Rose, Edward, Rob, Harry,
Tom, Paul

• location: Florida, Toronto, Syria, India, Houston,
America, France, Australia, Turkey, NEW YORK,
Chicago, Germany, Scotland, Washington, Ukraine

• corporation: Reuters, CNN, NBA, Uber, YouTube,
CBC, Netflix, Microsoft, Twitter, Facebook, Apple,
MAC, Tesla, Disney, Reddit

• group: Army, Chicago Blackhawks, Real Madrid,
CIA, Senate, ART, NBA, The Black Keys, Crystal
Palace, European Union, green day, Labor, Chelsea,
the warriors, Democrats

• product: Air Music Jump, Android, Linux OS, iOS,
Windows 7, Tesla, Google Music, SQL, Amazon
Prime, Nintendo plus, google pixel, iPhone, Xbox
360, Legendary Skin, Bio Spot

• creative work: Black Swan, Iron Man 2, Finding Big-
foot, Good Morning Britain, Teen Titans, Pac- Man,
Game of Thrones, La La Land, Last Christmas, Star
Wars, Doctor Who, the Twilight Zone, Pokémon, Star
Trek, Minecraft

Unmemorized:

• all: xgwqicng, kiooaiql, wpvqymid, rrmihdcg, ow-
blmgbx, tiybjelq, ytlbllnh, ybwifxxv, svlsskxx, jdtqy-
oov, tzrtffbu, jvwywjhy, hzhwhahw, gjrmquke, gmen-
qwpb

The thresholds set for pruning the exposure metrics in or-
der to select memorized NEs and unmemorized NEs are pre-
sented in Tables 8 and 9.

Dataset exposurewordθ exposuretransθ

DBpedia 1 -
- 0.01

CoNLL 0.8 -
MIT Movie - 0.001

Table 8: Thresholds used for pruning the exposure metrics
in order to select memorized NEs.

Dataset exposurewordθ exposuretransθ

DBpedia 1e-06 -
- 1e-06

CoNLL 1e-04 -
MIT Movie - 1e-05

Table 9: Thresholds used for pruning the exposure metrics
in order to select unmemorized NEs.
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Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin,
A., Wu, Y., and Miller, A. (2019). Language models as
knowledge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages
2463–2473, Hong Kong, China, November. Association
for Computational Linguistics.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAI blog.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67.

Shang, J., Liu, L., Gu, X., Ren, X., Ren, T., and Han,
J. (2018). Learning named entity tagger using domain-
specific dictionary. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2054–2064, Brussels, Belgium, October-
November. Association for Computational Linguistics.

Shwartz, V., Rudinger, R., and Tafjord, O. (2020). “you



1417

are grounded!”: Latent name artifacts in pre-trained lan-
guage models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 6850–6861, Online, November. Asso-
ciation for Computational Linguistics.
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