
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 1400–1407
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

1400

Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans

Katrin Ortmann
Department of Linguistics

Fakultät für Philologie
Ruhr-Universität Bochum

ortmann@linguistics.rub.de

Abstract
The traditional evaluation of labeled spans with precision, recall, and F1-score has undesirable effects due to double penalties.
Annotations with incorrect label or boundaries count as two errors instead of one, despite being closer to the target annotation
than false positives or false negatives. In this paper, new error types are introduced, which more accurately reflect true anno-
tation quality and ensure that every annotation counts only once. An algorithm for error identification in flat and multi-level
annotations is presented and complemented with a proposal on how to calculate meaningful precision, recall, and F1-scores
based on the more fine-grained error types. The exemplary application to three different annotation tasks (NER, chunking,
parsing) shows that the suggested procedure not only prevents double penalties but also allows for a more detailed error analy-
sis, thereby providing more insight into the actual weaknesses of a system.

Keywords: Evaluation, F-score, labeled spans, double penalties, error analysis

1. Introduction
Evaluation in NLP serves two main purposes: (i) deter-
mining how good a system is at a given task and com-
paring its performance to other systems, and (ii) ana-
lyzing the errors a system makes to be able to improve
it. For 1:1 mapping tasks like POS tagging, the proce-
dure is clear-cut. Every token receives exactly one tag,
and the number of correctly assigned tags is compared
to the incorrect tags and reported as accuracy, possibly
accompanied by a confusion matrix.
For tasks that include the annotation of spans or do not
require every token to receive an annotation, e.g., tok-
enization, named entity recognition (NER), or chunk-
ing, the incorrect annotations can be further divided
into false positives (FP, i.e., superfluous annotations)
and false negatives (FN, i.e., missing annotations). Sys-
tem performance, in this case, is measured by com-
paring the two types of incorrect annotations with the
number of true positives (TP), and the results are re-
ported as recall (Eq. 1; ‘how many annotations that
should be present are actually there’) and precision
(Eq. 2; ‘how many of the annotations that are present
are actually correct’). Usually, there is a trade-off
between precision and recall because improving one
likely worsens the other.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

The harmonic mean of precision and recall, better
known as F1-score, is consulted to compare different
systems based on a single number (Eq. 3).

F 1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

There are certain issues with these evaluation metrics,
though (cf., e.g., Shao et al. (2017) for the task of word
tokenization). The focus of this paper will be on the
yet unsolved problem of double penalties for the anno-
tation of labeled spans. When labeled spans are evalu-
ated in the traditional way, in trivial cases as displayed
in example (1), one (missing) annotation counts as one
true positive or one error, respectively.

(1)
Target: | A | | A | _
System: | A | _ | A |

1 TP 1 FN 1 FP

However, if a system annotates a span that overlaps
with the correct annotation but is not identical to it,
one annotation is counted as two errors as in example
(2) because the target annotation is missing (FN), while
another annotation is present (FP).

(2)
Target: | A | | A |
System: | B | | A |

1 FN + 1 FP 1 FN + 1 FP

This phenomenon is especially undesirable since the
annotations in (2) are closer to the target annotation
than completely missing or superfluous annotations,
i.e., FNs and FPs, as in (1). Optimizing a system
based on these metrics could thus encourage the sys-
tem to skip difficult or uncertain cases because missing
an annotation (FN) is punished less than getting it al-
most right (FN+FP). Intuitively, these close-to-correct
errors should be punished equally or maybe even less
than the errors in (1), and not vice versa.
Also, the traditional evaluation with only two error
categories does not provide information about the ac-
tual weaknesses of a system, which is critically im-
portant for improving performance (Braşoveanu et al.,

1401

2018; Manning, 2011). Instead, a manual error analy-
sis would be necessary to distinguish between the two
very different error types in example (2).
As most researchers are likely aware of this prob-
lem (cf., e.g., Jurafsky and Martin (2021)), there have
been various attempts to deal with it, e.g., by perform-
ing qualitative error analyses (Braşoveanu et al., 2018;
Manning, 2011), counting overlapping tokens or char-
acters (Potthast et al., 2010), or introducing partial an-
notation scores or relaxed evaluation metrics (Röder et
al., 2018; Ji and Nothman, 2016). However, there is no
universal solution yet, and the traditional metrics are
still widely used for evaluating labeled spans despite
their drawbacks.
This paper suggests an approach to a more fair evalua-
tion of labeled spans that prevents double penalties for
a single annotation and, at the same time, allows for
a more fine-grained error analysis. First, Section 2.1
introduces new error types that help to distinguish be-
tween different kinds of overlapping spans. Section 2.2
then discusses ways to calculate precision, recall, and
F1-scores based on these error types. Afterwards, Sec-
tion 3 presents an algorithm for the identification of
the different error types in flat and multi-level annota-
tions. Finally, in Section 4, the results of the traditional
evaluation method are compared to the fair evaluation
for different types of annotations. The paper concludes
with a discussion in Section 5.

2. Fair evaluation
The enterprise of this paper was inspired by Manning
(2006), who explicitly brings up the problem of double
penalties in NER evaluation. Similar to the remarks
above, he argues that one should not optimize NER
systems for F1 because the metric is dysfunctional for
sparse annotations. Although he focuses on named en-
tity recognition, the same also holds for other types of
labeled spans, e.g., chunks or syntactic constituents. As
an alternative, Manning (2006) suggests the distinction
of different error types, which will be picked up and
expanded upon in the next section (2.1). From his con-
siderations, it remains unclear, though, how these er-
ror types should be used to compare different NLP sys-
tems, which is the topic of Section 2.2.

2.1. Error types
The traditional evaluation only considers true positives
(TP), false positives (FP), and false negatives (FN).
However, example (2) already pointed out that a re-
striction to the latter two error types does not reflect
the actual annotation quality in the case of overlapping
spans. FPs and FNs should therefore be used exclu-
sively to refer to 1:0 and 0:1 mappings as displayed in
example (1). For cases in which the system annotation
overlaps with the target annotation but is not identical
to it, Manning (2006) suggests the distinction of three
additional error types:

LE (labeling error): Identical span, different label

BE (boundary error): Identical label, different (over-
lapping) span

LBE (labeling-boundary error): Different label, dif-
ferent (overlapping) span

The three additional error types are illustrated in ex-
ample (3).1 As intended, their application resolves the
problem of double penalties because one annotation
now counts as one error instead of two. Moreover, they
enable a more detailed error analysis and allow to dis-
tinguish between entirely missing or superfluous anno-
tations and almost correct annotations, which are of-
ten more frequent than actual FPs and FNs (Manning,
2006; Ortmann, 2021a; Ortmann, 2021b).

(3)
Target: | A | | A | | A |
System: | B | | A | | B |

1 LE 1 BE 1 LBE

In the case of boundary errors, it is possible to make
the evaluation even more fine-grained by distinguish-
ing whether the system’s annotation is smaller (BEs) or
larger (BEl) than the target span or whether it overlaps
with it (BEo). Example (4) displays the three sub-types
of boundary errors, which provide even more details
on a system’s weaknesses, indicating possible starting
points for improvement.2

(4)
Target: | A | | A | | A |
System: | A | | A | | A |

1 BEs 1 BEl 1 BEo

Annotations that overlap with two (or more) spans,
at least one of which has the same label, should be
counted as BE and not LBE. In total, for n target anno-
tations and m system annotations, the number of true
positives plus errors always lies between max(n,m)
and n + m. Both examples in (5) should thus yield
three errors.

(5)
Target: | A | B | | A | B | B |
System: | A | B | B | | A | B |

2 BEs + 1 BEo 2 BEl + 1 BEo

1In the literature, even more error types have been intro-
duced. While some of them are only relevant to a specific
annotation type (e.g., Braşoveanu et al. (2018) with an error
taxonomy for Named Entity Linking), other categories like
errors in the gold standard (Manning, 2011) can only be rec-
ognized with a manual analysis. For practical reasons, these
error types are not discussed further in this paper. But if their
frequency is known for a given data set, they could be inte-
grated into the analysis and calculation of metrics similar to
the error types presented here.

2Depending on the intended application, it would also be
possible to distinguish whether one of the system boundaries,
left or right, is identical to the target boundary to provide
even more insight into the actual errors. The same distinc-
tions could be made for labeling-boundary errors, but they
would not provide much additional information since label
and span of the system annotation both differ from the target.
Therefore, LBE sub-types are not considered here.

1402

2.2. Precision, Recall, F1-score
The fine-grained distinction of error types as described
in Section 2.1 solves the problem of double penalties
and enables a more detailed error analysis. However,
the raw number of errors is unsuitable for compar-
ing different systems, especially across different data
sets. Instead, it would be desirable to include these
error types in the calculation of precision, recall, and
F1-score. In Ortmann (2021b), I argued that the ad-
ditional error types refer to an existing annotation and
should therefore count as false positives for the calcu-
lation of F1-scores. Read et al. (2012), instead, count
these kinds of errors as false negatives to prevent dou-
ble penalties. For the resulting F1-score, the decision
makes no difference since, mathematically, F1 only de-
pends on the number of true positives and errors (cf.
Eq. 4).

F 1 =
2 ∗ Prec ∗Rec

Prec+Rec
=

2 ∗ TP
(2 ∗ TP) + errors

(4)

However, counting the overlapping errors as either FPs
or FNs makes recall and precision values hard to inter-
pret in a meaningful way. As each of the error types
indicates a (partly) missing target annotation and, at
the same time, a (partly) incorrect system annotation,
it seems more appropriate to count the new error types
as half FP and half FN (cf. Eq. 5).

1LE = 1BE = 1LBE = 0.5FP + 0.5FN (5)

As explained above, this does not change the F1-score,
but it renders precision and recall values more mean-
ingful again.

Weighted Evaluation Depending on the application,
it could also be useful to make the evaluation more nu-
anced by introducing specific weights for different er-
ror types. For example, boundary errors could be con-
sidered less severe, e.g., in a search context because
the target span is still found by the system. In this case,
BEs could, for example, be counted as 50% true posi-
tives as in equation (6).

1BE = 0.5TP + 0.25FP + 0.25FN (6)

When different types of boundary errors are distin-
guished, the evaluation could be even more differenti-
ated (cf., e.g., Eq. 7) to more precisely reflect true anno-
tation quality in precision and recall. It is important to
note, though, that contrary to equation (5), the weight-
ing in equations (6) and (7) also affects F1-scores be-
cause it increases the total number of TPs.

1BEs = 0.5TP + 0.5FN

1BEl = 0.5TP + 0.5FP (7)

1BEo = 0.5TP + 0.25FP + 0.25FN

3. Algorithm
For traditional evaluation with only two error cate-
gories (false positives and false negatives), the algo-
rithm to identify error types is simple. If a target span
was recognized by the system, it counts as TP. Spans
only present in the system output are FPs, and target
spans missing in the system annotation are FNs (cf. Al-
gorithm 1). The different categories can be identified
for individual labels or all labels overall.

Algorithm 1: Traditional error type identification
Input: A set of target spans T and system spans S.
Spans are triples of label l, begin b, and end e
Output: Number of TP, FP, and FN per label and
overall

1: Count every span t ∈ T ∩ S as TP for lt
2: Count every span t ∈ T \ S as FN for lt
3: Count every span s ∈ S \ T as FP for ls
4: Sum up TPs, FPs, and FNs across labels
5: Return results per label and overall

Identifying the fine-grained error types is more compli-
cated. In particular, there are the following difficulties:

(i) One target span can overlap with more than one
system span and vice versa. Nevertheless, the
number of TPs plus errors should always lie be-
tween max(n,m) and n+m for n target and m
system annotations, i.e., every system annotation
and every target annotation should count exactly
once. To achieve this, spans are removed from the
input list as soon as their first matching counter-
part is found. To ensure that other potential coun-
terparts are also matched to the correct span, the
algorithm must keep track of the already matched
tokens in each span. In combination, these two
steps allow matching multiply overlapping spans
to their correct counterparts without counting any
span twice.

(ii) There are cases in which one span could corre-
spond to different error types, e.g., BE and LBE,
as in example (5). As described in Section 2.1,
BEs should be preferred over LBEs. The algo-
rithm will therefore proceed in four incremental
steps, starting with easy to identify spans with 1:1
mappings (TPs and LEs, step 1), followed by
boundary errors (step 2), and labeling-boundary
errors (step 3), and finally the remaining 1:0 and
0:1 mappings (FNs and FPs, step 4).

(iii) Per-label evaluation is also less straightforward
for the more fine-grained error types. There are
two main problems:

1. Which error type should be assigned to multi-
ply overlapping spans? In the following, each
span is counted as the first matching error type.

1403

Algorithm 2: Identification of fine-grained error types in labeled spans
Input: A list of target spans T and system spans S, sorted by span length from shortest to longest. Each

span is a 4-tuple of label l, begin b, end e, and a set of included tokens toks (1..n). b = e for spans
of length 1.

Output: Number of TP, FP, LE, BE, BEs, BEl, BEo, and FN per label and overall

Function definitions:
Let BEtype(t, s) return the correct type of BEs, BEl, and BEo for spans t and s
Let getBE(t, s ∈ S) return the most similar span s ∈ S for t with lt = ls and |tokst ∩ tokss| ≥ 1
Let getLBE(t, s ∈ S) return the most similar span s ∈ S for t with lt 6= ls and |tokst ∩ tokss| ≥ 1
Let updatetoks(tokst, tokss) set tokst = tokst \ tokss and tokss = tokss \ tokst
Let move(t, T →M) remove t from T and add it to M

Step 1: Count 1:1 mappings (true positives and labeling errors)
1: Count identical spans t ∈ T = s ∈ S as TP for lt and remove t from T and s from S
2: Count spans with lt 6= ls, bt = bs, and et = es as LE for lt and remove t from T and s from S

Step 2: Count boundary errors
3: Create empty lists M t and M s for matched spans

4: For each t ∈ T :
5: Count getBE(t, s ∈ S) as BEtype(t, s) for lt
6: Update matches with updatetoks(tokst, tokss), move(t, T →M t), and move(s, S →M s)

7: For each t ∈ T :
8: Count getBE(t, s ∈M s) as BEtype(t, s) for lt
9: Update matches with updatetoks(tokst, tokss) and move(t, T →M t)

10: For each s ∈ S:
11: Count getBE(s, t ∈M t) as BEtype(t, s) for lt
12: Update matches with updatetoks(tokst, tokss) and move(s, S →M s)

13: Calculate BE = BEs + BEl + BEo

Step 3: Count labeling-boundary errors
14: For each t ∈ T :
15: Count getLBE(t, s ∈ S) as LBE for lt
16: Update matches with updatetoks(tokst, tokss), move(t, T →M t), and move(s, S →M s)

17: For each t ∈ T :
18: Count getLBE(t, s ∈M s) as LBE for lt
19: Update matches with updatetoks(tokst, tokss) and move(t, T →M t)

20: For each s ∈ S:
21: Count getLBE(s, t ∈M t) as LBE for lt
22: Update matches with updatetoks(tokst, tokss) and move(s, S →M s)

Step 4: Count false positives and negatives
23: Count every t ∈ T as FN for lt
24: Count every s ∈ S as FP for ls

Step 5: Return results per label and the overall sum across labels

2. Should LE and LBE count as errors for the tar-
get or the system label? One possible solution
is to put the focus on the target labels, i.e., to
evaluate how the target labels were annotated
by the system. In this case, all errors (except
false positives) count for the label of the tar-
get span they are matched to. The resulting
error distribution then gives a detailed picture
of how well the target spans were identified
by the system. If the focus is on the system
annotation, the same process could be applied

to the system labels. A confusion matrix can
represent both directions at the same time.

(iv) In evaluating hierarchical annotations (e.g., con-
stituency trees), it is common practice to compare
the annotated spans and labels while ignoring the
hierarchical structure.3

3For the evaluation of tree structures, other approaches
also exist that take into account the complete paths within
the tree, e.g., the leaf-ancestor metric or dependency-based
metrics, cf. Rehbein and van Genabith (2007). Although

1404

For example, an NP is considered correct if it
spans across the correct tokens, independently
of the presence or absence of intervening nodes
like adjective phrases, etc. The same also ap-
plies to other multi-level annotations, e.g., several
stacked entities. Hence, the traditional evaluation
from Algorithm 1 works just the same for nested
spans as for flat annotations.

The identification of the fine-grained error types,
specifically BEs and LBEs, in nested structures
is more complicated because it is not always clear
which spans should be compared with each other.
While the classification is likely no problem for
humans in most of the cases, an algorithm will
sometimes only approximate the optimal match
of system and target spans if it shouldn’t become
too complex or slow. Here, two practical deci-
sions are made:

1. It is known that systems are usually more ac-
curate at identifying shorter spans compared to
longer ones (cf. Bastings and Sima’an (2014)
on constituency parsers). Therefore, in each
step, the algorithm starts with the shortest span
to speed up the search for the correct match of
system and target annotation.

2. If one span can be matched to two (or more)
other spans, the most similar one is considered
first. Similarity, here, is defined as the maxi-
mum number of shared tokens and the fewest
differing tokens. If multiple spans are equally
similar, the shortest one is chosen. If multi-
ple spans are still equally similar, the first one
in the input is taken, which corresponds to the
left-most one if sentences are read from left to
right.

Based on the previous considerations, Algorithm 2
identifies the fine-grained error types from Section 2.1
in flat and hierarchical spans. The resulting error
counts can be used to calculate precision, recall, and
F1-score as detailed in Section 2.2. Table 2 in the next
section shows an example of the algorithm’s output.
A reference implementation of the algorithm as well
as the data sets and detailed results from Section 4
can be found in this paper’s repository at https:
//github.com/rubcompling/FairEval.

4. Examples
To illustrate the application and results of the new eval-
uation algorithm, in this section, it is applied to differ-
ent tasks that require the identification of labeled spans:
NER, chunking, and topological field parsing.

these metrics are more robust against differences in annota-
tion schemes, the PARSEVAL metric (Black et al., 1991) is
still commonly used for parser evaluation.

1. Named Entity Recognition

• Annotation: Named entities are phrases that refer
to entities such as people or places by means of a
proper name (Tjong Kim Sang and De Meulder,
2003). The annotation is sparse, i.e., the major-
ity of tokens do not receive a label. Multi-level
annotations are possible but not considered here.

• NLP tool: The NER component of the
Stanza pipeline (Qi et al., 2020) with the
germeval2014 model.4

• Data: The test partition of the GermEval 2014
data set (Benikova et al., 2014). Since Stanza does
not support multi-level annotation, only top-level
entities from the four main classes are evaluated,
yielding 6.178 named entities.

2. Chunking

• Annotation: Chunks are non-recursive, non-
overlapping constituents from a sentence’s parse
tree (Sang and Buchholz, 2000). Contrary to
NER, most tokens receive a label. The annotation
is non-hierarchical per definition.

• NLP tool: The neural sequence labeling tool
NCRF++ (Yang and Zhang, 2018)5 with a model
from Ortmann (2021b). The model was trained on
the German newspaper corpus TüBa-D/Z (Telljo-
hann et al. (2017); 80% training, 10% develop-
ment data)6 with characters, tokens, and POS tags
as features and pre-trained word embeddings.

• Data: The remaining 10% of the TüBa-D/Z cor-
pus with 101.304 chunks of 16 different types.

3. Topological Field Parsing

• Annotation: Topological fields are linear syntac-
tic structures on the clause level of German sen-
tences.7 Fields can be understood to form a tree
structure, i.e., the annotation is hierarchical, and
most tokens receive a label.

• NLP tool: The unlexicalized Berkeley parser
(Petrov et al., 2006)8 with a model from Ortmann
(2020). It was trained on 80% of the TüBa-D/Z
corpus (Telljohann et al., 2017).9

• Data: 10% of the TüBa-D/Z corpus with 63.824
fields of 13 different types.

4Stanza version 1.2, https://stanfordnlp.
github.io/stanza/

5https://github.com/jiesutd/NCRFpp
6Release 11.0, chunked version
7For an overview of the topological field model, see,

e.g., Cheung and Penn (2009), Ortmann (2020), or Wöllstein
(2018, in German).

8https://github.com/slavpetrov/
berkeleyparser

9Release 11.0, CoNLL-U Plus version

https://github.com/rubcompling/FairEval
https://github.com/rubcompling/FairEval
https://stanfordnlp.github.io/stanza/
https://stanfordnlp.github.io/stanza/
https://github.com/jiesutd/NCRFpp
https://github.com/slavpetrov/berkeleyparser
https://github.com/slavpetrov/berkeleyparser

1405

Precision Recall F1

NER Trad. 86.66 83.51 85.05
Fair 90.42 87.23 88.80

Chunks Trad. 97.20 96.39 96.79
Fair 97.86 97.86 97.86

Topol. Trad. 93.41 94.27 93.84
Fields Fair 94.78 95.92 95.35

Table 1: Results for traditional vs. fair evaluation of the
different annotation tasks in percent.

Figure 1: Distribution of error types for the three anno-
tation tasks according to traditional vs. fair evaluation.

The results for traditional vs. fair evaluation of the three
annotation tasks are displayed in Table 1. F1-scores dif-
fer between 1–3.7 percentage points. The largest differ-
ence is observed for the recognition of named entities,
while the difference is smallest for chunks. Except for
NER, recall values differ slightly more between evalu-
ation methods than precision. With respect to the la-
bels, the largest differences are found for entities of
type ORG, adjective and foreign language chunks, and
coordination and post-fields.
Figure 1 shows the distribution of error types for the
three annotation tasks according to traditional and fair
evaluation. For NER and chunking, the traditional eval-
uation identifies 44% of the errors as FP and 56% as
FN, while for topological field parsing, FPs are more
frequent with 54% compared to 46% FNs. However,
when the more fine-grained error types are considered,
the rate of actual false positives and negatives shrinks
substantially. The highest proportion of actual FNs is
observed for the sparse NER annotation and the high-
est proportion of actual FPs for the hierarchical fields.
For chunking, actual FPs and FNs together make up

Figure 2: Confusion matrices for the (main) labels of
each annotation task. Only errors are included, i.e., the
diagonal displays boundary errors. False positives and
negatives are shown in the bottom row and the right-
most column, respectively. The remaining cells repre-
sent labeling and labeling-boundary errors.

only 2% of all errors.
On the other hand, boundary errors, which traditionally
count as two errors (1 FP and 1 FN), make up between
14% (NER) and 59% (chunking) of the errors. In most
of these cases, the system annotation includes the tar-
get span (57%–73%) or vice versa (27%–42%). Errors
of type BEo are extremely rare. Interestingly, labeling
errors occur especially for the sparse named entities:
30% of the errors are due to entities that were recog-
nized correctly but assigned the wrong label. Labeling-
boundary errors are more frequent for chunking (34%).

1406

Label TP FP LE
BE

LBE FN Precision Recall F1BEs BEl BEo BEall
LOC 2132 81 56 29 28 0 57 40 98 93.12 92.43 92.78
ORG 1002 87 76 16 27 0 43 48 167 85.46 80.00 82.64
OTH 473 48 89 15 26 3 44 44 142 77.60 67.24 72.05
PER 1552 37 31 11 25 0 36 23 55 94.98 93.95 94.46

Overall 5159 253 252 71 106 3 180 155 462 90.42 87.23 88.80

Table 2: Raw frequencies of TPs and errors in the NER annotation per label and overall as output by Algorithm 2.
In addition, the rightmost columns show fair precision, recall, and F1 values for individual labels.

So, although traditional evaluation suggests similar or
even identical error distributions for the three tasks, an
analysis of the fine-grained error types reveals that the
systems actually make very different kinds of errors.
While the NER system should be optimized especially
for assigning the correct label and reducing the number
of missing entities, the other two systems can gain more
by improving the accuracy of span boundaries.
Another advantage of fair evaluation concerns the re-
sults for individual labels (cf., e.g., Table 2 for NER).
While traditional evaluation only counts true positives
and (seemingly) missing and superfluous spans without
capturing the actual relation between system and tar-
get annotation, the fine-grained error structure of fair
evaluation also enables the creation of a confusion ma-
trix (cf. Figure 2). For system developers and linguists
alike, this matrix provides valuable information about
which labels are confused most often and which labels
contribute to which error types. For example, organi-
zations are the most frequently overlooked named en-
tities, noun chunks are the main source of boundary
errors, and middle fields are especially prone to have
incorrect boundaries or be false positives.

5. Discussion
Evaluation serves the purpose of comparing and im-
proving NLP systems, but optimizing systems for the
traditional metrics can lead to undesirable effects due
to double penalties for close-to-correct annotations.
This paper has presented an algorithm for the identifi-
cation of more fine-grained error types in flat and multi-
level annotations of labeled spans to ensure that every
annotation counts only once. The algorithm was sup-
plemented by a suggestion on how to calculate mean-
ingful precision, recall, and F1-scores based on these
error types. In combination, the described procedure
allows for a more realistic evaluation, which prevents
double penalties while at the same time providing more
information about possible improvements.
The exemplary application to three different annota-
tion tasks has illustrated that annotations, which look
the same through the lens of traditional evaluation, can
actually result from very different error distributions,
which entail an entirely different focus for system im-
provement.

Future studies should consider using the presented al-
gorithm to optimize systems for sensible metrics and
gain more insight into their actual weaknesses. How-
ever, the comparison has also shown that F1-scores are
higher according to the new evaluation method because
labeling and boundary errors are no longer multiply pe-
nalized. Since the objective of the algorithm is not to
make systems ‘look better’, results that are gained in
this way should be reported alongside established eval-
uation metrics to ensure comparability.

6. Acknowledgments
This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –
Project-ID 232722074 – SFB 1102 (Project C6). I am
grateful to Stefanie Dipper, Adam Roussel, and the
anonymous reviewers for their very helpful comments.

7. Bibliographical References
Bastings, J. and Sima’an, K. (2014). All fragments

count in parser evaluation. In Proceedings of the
Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), pages 78–82,
Reykjavik, Iceland, May. European Languages Re-
sources Association (ELRA).

Benikova, D., Biemann, C., Kisselew, M., and Padó,
S. (2014). Germeval 2014 named entity recognition
shared task: Companion paper.

Black, E., Abney, S. P., Flickinger, D., Gdaniec, C.,
Grishman, R., Harrison, P., Hindle, D., Ingria, R.,
Jelinek, F., Klavans, J., Liberman, M., Marcus,
M. P., Roukos, S., Santorini, B., and Strzalkowski,
T. (1991). A procedure for quantitatively compar-
ing the syntactic coverage of english grammars. In
Proceedings DARPA Speech and Natural Language
Workshop, pages 306–311, Pacific Grove, CA.

Braşoveanu, A. M., Rizzo, G., Kuntschik, P., Weich-
selbraun, A., and Nixon, L. J. (2018). Framing
named entity linking error types. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Cheung, J. C. K. and Penn, G. (2009). Topological
field parsing of German. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP: Volume 1 -

1407

Volume 1, ACL ’09, page 64–72, USA. Association
for Computational Linguistics.

Ji, H. and Nothman, J. (2016). Overview of TAC-
KBP2016 tri-lingual EDL and its impact on end-to-
end cold-start KBP. In Proceedings of TAC.

Jurafsky, D. and Martin, J. H. (2021). Chapter 8: Se-
quence labeling for parts of speech and named enti-
ties. In Speech and Language Processing. Draft of
September 21, 2021.

Manning, C. (2006). Doing Named En-
tity Recognition? Don’t optimize
for F1. Retreived from https://
nlpers.blogspot.com/2006/08/
doing-named-entity-recognition-dont.
html.

Manning, C. D. (2011). Part-of-speech tagging from
97% to 100%: is it time for some linguistics? In
International conference on intelligent text process-
ing and computational linguistics, pages 171–189.
Springer.

Ortmann, K. (2020). Automatic Topological Field
Identification in (Historical) German Texts. In Pro-
ceedings of the The 4th Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
10–18.

Ortmann, K. (2021a). Automatic phrase recognition
in historical German. In Proceedings of the 17th
Conference on Natural Language Processing (KON-
VENS 2021), pages 127–136, Düsseldorf, Germany.

Ortmann, K. (2021b). Chunking historical German. In
Proceedings of the 23rd Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 190–199,
Reykjavik, Iceland (Online).

Petrov, S., Barrett, L., Thibaux, R., and Klein, D.
(2006). Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 433–440.

Potthast, M., Stein, B., Barrón-Cedeño, A., and Rosso,
P. (2010). An evaluation framework for plagiarism
detection. In Coling 2010: Poster Volume, pages
997–1005.

Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Man-
ning, C. D. (2020). Stanza: A Python natural lan-
guage processing toolkit for many human languages.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations.

Read, J., Velldal, E., Øvrelid, L., and Oepen, S. (2012).
Uio1: Constituent-based discriminative ranking for
negation resolution. In * SEM 2012: The First
Joint Conference on Lexical and Computational
Semantics–Volume 1: Proceedings of the main con-
ference and the shared task, and Volume 2: Proceed-
ings of the Sixth International Workshop on Semantic
Evaluation (SemEval 2012), pages 310–318.

Rehbein, I. and van Genabith, J. (2007). Treebank
annotation schemes and parser evaluation for Ger-
man. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 630–639, Prague.

Röder, M., Usbeck, R., and Ngonga Ngomo, A.-
C. (2018). Gerbil – benchmarking named entity
recognition and linking consistently. Semantic Web,
9(5):605–625.

Sang, E. F. T. K. and Buchholz, S. (2000). Introduc-
tion to the CoNLL-2000 shared task: Chunking. In
Fourth Conference on Computational Natural Lan-
guage Learning and the Second Learning Language
in Logic Workshop, pages 127–132.

Shao, Y., Hardmeier, C., and Nivre, J. (2017). Recall
is the proper evaluation metric for word segmenta-
tion. In Proceedings of the The 8th International
Joint Conference on Natural Language Processing,
pages 86–90, Taipei, Taiwan.

Telljohann, H., Hinrichs, E. W., Kübler, S., Zinsmeis-
ter, H., and Beck, K. (2017). Stylebook for the
Tübingen Treebank of Written German (TüBa-D/Z).
Seminar für Sprachwissenschaft, Universität Tübin-
gen, Germany.

Tjong Kim Sang, E. F. and De Meulder, F. (2003).
Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Wöllstein, A. (2018). Topologisches Satzmodell. In
Jörg Hagemann et al., editors, Syntaxtheorien. Anal-
ysen im Vergleich, pages 145 – 166. Stauffenburg,
Tübingen, 2., aktualisierte auflage edition.

Yang, J. and Zhang, Y. (2018). NCRF++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of ACL 2018, System Demonstrations, pages
74–79, Melbourne, Australia.

https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html

	Introduction
	Fair evaluation
	Error types
	Precision, Recall, F1-score

	Algorithm
	Examples
	Discussion
	Acknowledgments
	Bibliographical References

