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Abstract
In human-human conversations, Context Tracking deals with identifying important entities and keeping track of their
properties and relationships. This is a challenging problem that encompasses several subtasks such as slot tagging, coref-
erence resolution, resolving plural mentions and entity linking. We approach this problem as an end-to-end modeling
task where the conversational context is represented by an entity repository containing the entity references mentioned
so far, their properties and the relationships between them. The repository is updated turn-by-turn, thus making training
and inference computationally efficient even for long conversations. This paper lays the groundwork for an investigation
of this framework in two ways. First, we release Contrack, a large scale human-human conversation corpus for context
tracking with people and location annotations. It contains over 7000 conversations with an average of 11.8 turns, 5.8 entities
and 15.2 references per conversation. Second, we open-source a neural network architecture for context tracking. Finally
we compare this network to state-of-the-art approaches for the subtasks it subsumes and report results on the involved tradeoffs.
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1. Introduction
Computers and mobile phones have changed how peo-
ple communicate. A large amount of today’s interper-
sonal communication happens in messaging apps on
mobile devices or on chat and discussion services on
the internet. Consequently, this has piqued the inter-
est of the research community in developing assistive
technologies for human-human conversations. Repre-
senting the current status of a conversation in a succinct
and semantically complete way is a central component
of such technologies. At the core of this endeavor lies
the task of tracking the entities mentioned in a conver-
sation, their properties and the relationships that are be-
ing expressed about them. In this paper, we frame this
task, which we call Context Tracking, as an online ma-
chine learning problem, where the model is expected to
track the current status of the conversation at any time.
This formulation extends and complements existing re-
search in three key areas.
First of all, in this framework the model ingests the
messages of a conversation turn by turn and updates a
growing repository of detected entity references in each
turn. This allows for fast inference because the model
only needs to ingest a single message and the repos-
itory instead of the entire conversation history. That
is important particularly for long conversations, where
ingesting the entire dialogue history is not feasible.
Second, the repository of entity references serves as
a condensed storage of the semantic knowledge con-
veyed in the conversation. In this sense, context track-
ing serves the same purpose for open-domain conver-
sations that dialog state tracking does for task-oriented
conversations. While the current formulation only
deals with tracking entity references, the same frame-

work can be used to track relationships between entities
or to build personal knowledge graphs. Once it can cap-
ture a large enough share of semantic information, the
repository could be used to address higher-level tasks
such as reasoning (Chen et al., 2020), question answer-
ing (Huang et al., 2019) or summarization (Huang et
al., 2020).
Third, since the framework aims at extracting a rich
set of semantic information, it unifies existing NLP
tasks such as entity recognition, slot tagging, corefer-
ence resolution and resolving plural mentions in one
formulation. This means it is more parameter-efficient,
because it shares parameters across multiple tasks. Re-
cent research on large neural networks (Brown et al.,
2020; Raffel et al., 2020) has raised the prospect that
larger networks with multiple endpoints may even im-
prove predictive accuracy over single-task approaches.
In this paper, we take the first steps towards a sys-
tematic investigation of Context Tracking and lay the
groundwork for further research. The most impor-
tant part of this effort is the new Contrack dataset,
which contains over 7000 social open-domain conver-
sations with annotations for people and location enti-
ties with an average of 11.8 turns, 5.8 entities and 15.2
references per conversation. It is publicly available
and can be downloaded at https://github.com/
google-research-datasets/contrack.
In the second part of the paper we present a simple
baseline model for Context Tracking. The model is
a straightforward adaptation of a Transformer-based
(Vaswani et al., 2017) neural network to the peculiar-
ities of Context Tracking. Its conceptual simplicity
makes it well suited to serve as a benchmark for
further work. We release the code for this baseline

https://github.com/google-research-datasets/contrack
https://github.com/google-research-datasets/contrack
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implementation as Open Source. It is available at
https://github.com/google-research/
google-research/tree/master/contrack.
The third part of the paper reports the results of exper-
iments we performed with the baseline model. These
experiments give some insights on which parts of Con-
text Tracking are solved easily and which parts require
more research. We also compare the dataset and base-
line model to other approaches for related tasks to get a
sense of the tradeoffs involved with modeling multiple
endpoints concurrently in turn-by-turn fashion.

2. Related Work
Context tracking or dialogue state tracking has been a
well studied problem in task-oriented systems (Mrkšić
et al., 2017; Rastogi et al., 2017), where the context
is tracked in terms of the slots of the underlying task
or API. However, a slot based representation is not
suitable for human-human conversations because they
tend to cover multiple domains making enumeration of
slots impractical. Models like Meena (Adiwardana et
al., 2020) and DialoGPT (Zhang et al., 2020) model
human-human conversation using a latent representa-
tion of the dialogue context. Such a representation is
not suitable for applications where an explicit or inter-
pretable representation of context is desired.
The availability of public datasets has played a cen-
tral role in driving this area of research. Many
datasets for coreference resolution have focused on
either document based coreferences, like OntoNotes
(Ralph Weischedel et al., 2013) (discussed by Pradhan
et al. (2012)), ACE (Doddington et al., 2004) or con-
versations about specific tasks like MuDoCo (Martin et
al., 2020b) and CoQA (Reddy et al., 2019). Despite
their scale and popularity, these datasets are not simi-
lar to human-human conversations as it is known that a
large portion of human-human conversation centers on
chit-chat, socialization and personal interests (Dunbar
et al., 1997). Datasets like Persona Chat (Zhang et al.,
2018), Daily Dialog (Li et al., 2017) and others contain
social conversations in different settings, but they are
not suitable to be used for context tracking as they are
not focused on references to entities in the conversa-
tions.
A variety of data driven techniques have been studied
for semantic parsing and resolving ambiguities aris-
ing commonly in natural language (Yadav and Bethard,
2018; Lee et al., 2017; Sevgili et al., 2020). With
growing interest in Conversational AI and owing to the
availability of public datasets (Chen and Choi, 2016;
Gopalakrishnan et al., 2019; Martin et al., 2020a),
some of these techniques have been successfully ap-
plied to human-human conversations. Chen and Choi
(2016) studied the problem of coreference resolution
and linking mentions to a fixed set of entities, whereas
Zhou and Choi (2018) investigated the problem of re-
solving plural mentions, which refer to multiple en-
tities. Obtaining structured information from conver-

sations has also been explored by El-Assady et al.
(2017) for generating a graphical representation of en-
tities mentioned in a conversation through pairwise co-
occurence, and by Li et al. (2014) for constructing a
user centric personal knowledge graph from conversa-
tions.
These techniques separately address various important
aspects of context tracking and representation of the
entities mentioned in the conversation. Our frame-
work combines the several important pieces of these
works including coreference resolution, plural men-
tions, named-entity recognition, and attribute classifi-
cation.

3. The Context Tracking Modeling Task
In the context tracking task the model processes con-
versations incrementally, one turn at a time. The model
keeps track of the context within a repository of en-
tity references. In order to disambiguate references in
later turns, the repository also needs to store data about
grammatical gender, group membership and other con-
text data. In this section, we first describe the elements
that are stored in the repository. Afterwards, we discuss
the dataset we collected for this task.

3.1. Context Representation
The conversation context is represented by a repository
containing all entity references seen so far in the con-
versation. An entity reference is a span of tokens that
refers to an entity. When adding an entity references to
the repository we store the following information:

• A unique entity ID. This numerical ID uniquely
identifies the entity or group of entities present in
the entity repository. If two references refer to the
same entity, they have the same entity ID.

• A list of explicit entity properties. Properties spec-
ify relevant information about the entity such as
the type of entity (e.g. people or location), gram-
matical gender, and whether the reference is a plu-
ral form. One could include other signals relevant
for disambiguation or for downstream tasks that
rely on this information.

• Group membership. Some references are plural in
nature, for example when referring to a group of
people with they. Such plural references (which
we call groups in the following) are added in the
repository, and the group membership field enu-
merates the known entities which are members of
a group.

• Implicit context data. Additionally, the repository
can optionally contain signals encoding informa-
tion that is relevant to an entity but which cannot
be easily captured by an explicit property. These
signals could either be distributed (e.g. an em-
bedding of surrounding tokens to the most recent

https://github.com/google-research/google-research/tree/master/contrack
https://github.com/google-research/google-research/tree/master/contrack
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Alice:

Bob:

alice0 bob1

alice0 bob1 mom2 dad3 paris4

Model

mom2

dad3

paris4

Model

they5

there4

pops3

ID: 2
Type: Person
Gender: female
Context: [embedding]

ID: 4
Type: Location
Context: [embedding]

ID: 5
Type: Group
Members: [mom (2), dad (3)]
Context: [embedding]

ID: 3
Type: Person
Gender: male
Context: [embedding]

Turn 1:

Turn 2:

How did mom and dad like the vacation in Paris?

They loved it there. Pops did not want to leave.

Figure 1: Inspecting the contrack representation for two turns of an example conversation. The model is expected
to identify tokens which refer to entities and outputs semantic data about them. The entity references output in turn
one are passed as input to the model in the second turn.

reference) or discrete (e.g. a bag of salient words
co-occurring with mentions of the entity).

Figure 1 illustrates this representation on two turns of
an example conversation between Alice and Bob about
their parents’ vacation. Before the conversation starts,
the repository contains two entity references referenc-
ing the conversation participants Alice and Bob. When
Alice sends the first message “How did mom and dad
like the vacation in Paris?”, the model identifies three
new entities, one each for the person entities mom and
dad and one for the location paris. It serially assigns
unique numerical IDs two, three and four to these new
entities respectively, since the IDs zero and one are al-
ready taken. Note that the references also contain prop-
erties such as type and grammatical gender. In the next
turn the repository contains five entity references.
For the next message “They loved it there. Pops did
not want to leave.”, the model is expected to identify
three new entity references. The first one is they, which
is a group containing the two members mom (ID two)
and dad (ID three). The references there and pops refer
to existing entities and are thus labeled with the corre-
sponding IDs. This annotation conveys that pops and
dad refer to the same entity, as do there and paris.

3.2. Dataset Collection and Details
Real human to human casual conversations contain per-
sonal data and are hard to obtain. Hence, there is a
need to collect a synthetic dataset which offers the same
challenges as a real human-human conversation corpus.
Our data collection procedure, outlined below, ensures
that the conversations are natural, cover a variety of
topics and mention different entities while minimizing
annotation errors.

3.2.1. Scenario Generation
Our conversations are seeded by manually created sce-
narios which are short summaries of the content of the
conversation to be generated. Here is a sample sce-
nario:

Jeffrey’s siblings, Nate and Marie are going
to visit him and he asks Beverly for sugges-
tions on where to take them. She asks him
what they like to do and what they had done
the last time they visited. She comes up with
a few suggestions and they finally decide on
a plan.

The scenarios are created by a separate group of ex-
pert crowd workers. They were asked to focus on va-
riety and to leave certain details unspecified to facili-
tate creation of multiple conversations from each sce-
nario. Scenarios enable us to control the broad topic of
the conversation, to ensure that a variety of settings are
captured and that relevant entities are mentioned.

3.2.2. Wizard-of-Oz Setup
We developed a web application for collecting con-
versations for a given scenario by pairing two crowd
workers together. For the last third of the dataset,
we switched to using a single crowdworker for play-
ing both roles in a conversation (similar to findings of
Byrne et al. (2019)), as we found that it improved ef-
ficiency without a loss in quality. After an initial fil-
tering of these conversations, the crowd workers anno-
tated them by identifying spans which represent entity
references. For each entity, the workers annotated the
type of the entity and resolved all pronouns or noun
phrases referring to this entity.
Over the course of the data collection for both tasks, we
monitored the quality of data using heuristics like mea-
suring the word overlap between the scenario and the
chat, repeated turns for chat collection and comparing
with known pronoun properties (e.g., the word “them”
refers to a group etc.). We used these methods to up-
date the list of good quality crowd workers who were
used for subsequent data collection.
Finally, we had an additional round of verification on
the annotated data to verify the annotations and to rate
the chats on a scale of 1-5 for their naturalness and co-
herence. In addition chats with non-fluent English and
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Figure 2: The number of tokens spans which are most
frequently annotated as entity references.
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Figure 3: Distribution of number of turns per conversa-
tion. The majority of conversations have 10-14 turns.

grammatical mistakes not expected in a casual conver-
sations were also given a low score. Chats with a score
of 4 or 5 were retained and chats with a score of 3 were
sent for rating by another crowd worker. Finally, we re-
moved chats with scores less than 4 and we sent chats
with annotation errors back for re-annotation. To in-
crease the diversity of entities mentioned in our data
and to prevent the model from overfitting on the names
in the training set, we also release an augmented set
of conversations in which we replace people names in
the conversations with names randomly chosen from a
very large collection.
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Figure 4: Distribution of number of entities per turn.
Around 8% of the turns have no entities while 11% of
turns have 5 or more entities.

3.2.3. Dataset Statistics
The resulting Contrack Dataset is a human to human
casual conversation dataset containing 7245 conversa-
tions with annotations for entities. Currently we have
annotations for entities representing people and loca-
tions. The annotations contain signals for grammatical
gender and group membership for people entities, and
grammatical count and group membership for location
entities. In total, we have 85,538 turns in the dataset
with an average of 11.5 tokens per turn. Figure 2 pro-
vides statistics of the most frequently annotated token
spans in the dataset. Figures 3 and 4 show the distribu-
tion of number of turns per conversations and the dis-
tribution of number of entities per turn respectively.

4. The Contrack Baseline Model
In this section, we present a simple model for context
tracking to demonstrate the feasibility of the proposed
approach and to act as a baseline for future studies on
this dataset. The model takes an utterance and an entity
repository as input, and outputs a list of entity refer-
ences which will be added to the repository. One ma-
jor challenge is the reference co-occurrence problem,
which occurs whenever a new entity is introduced and
then referred to in the same turn by another token span
(e.g. karen and her in “have you heard karen totaled
her car”). It is a challenge because the entity ID for
the reference her needs to be the same as the entity ID
for karen, which has not been assigned yet. Our base-
line model provides a simple solution to this problem,
while jointly modeling all context tracking subtasks.

4.1. Model Architecture
The model solves the reference co-occurrence problem
by dividing the computation into two stages. The first
stage identifies all references to new entities that have
not been mentioned in the conversation so far. These
newly mentioned entities are sequentially assigned new
entity IDs, so that the rest of the model can refer to
them in subsequent computation. For example, The
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Figure 5: Architecture for each of the two computation
stages in the context tracking baseline model.

second stage performs the rest of the tasks including
assigning entity IDs to the other entity references, pre-
dicting properties of a reference (e.g. gender, plurality
etc.) and group memberships for references referring
to a group of entities (e.g. they, us etc.).
Both stages have the same underlying architecture,
which is shown in Figure 5. The network takes two
sequences as inputs. The first sequence r1, . . . , rn en-
codes the entity repository, where each element repre-
sents a single entity reference. The second sequence
u1, . . . , um corresponds to the input utterance, with
each element refers to a token in the utterance. The
vector representation of these sequences are obtained
by concatenating the embedded representation of vari-
ous features as described in the following section. The
input sequences are fed to a 1-layer transformer en-
coder, which fuses the representations of the two se-
quences to generate the sequence t1, . . . , tn+m. The
outputs tn+1, . . . tn+m are then fed to a feed forward
network to generate output logits e1, . . . , em of appro-
priate dimension, from which all the required outputs
are obtained as described in the Context Tracking sec-
tion below.

4.2. Input Feature Representation
The entity repository and utterance token sequences are
represented by concatenating the embedded represen-
tations of the input features. Some features are only
available for the entity reference repository, and hence
are set to 0 for the token sequence. These features are:
(i) ID - It is a one-hot vector encoding the ID that has
been assigned to an entity. (ii) Meta - A Boolean vec-
tor indicating whether the reference introduces a new,
previously unseen entity. (iii) Properties - Each cat-
egorical value of a property (e.g. gender=male) is as-
signed a Boolean value, and the Boolean representation
for all the values for all the properties are concatenated
together to represent the properties of an entity. (iv)
Membership - A Boolean vector which denotes which

entities are members of the referenced group. The vec-
tor is zero for non-group mentions. (v) Context - This
is a one-hot vector of size 2 indicating whether the un-
derlying entity is the sender or recipient of the message
and a binary vector indicating which of the preceding
turns a reference was part of.
A few other features are available for both the entity
reference repository and the utterance token sequence.
These are: (i) Type - Boolean value indicating whether
a sequence element is an entity reference or a token.
(ii) Signals - Boolean features which indicate if the un-
derlying element belongs to a predefined lexicon. The
reported model uses a single lexicon of first names.
(iii) Word2Vec - It contains the Word2Vec (Mikolov
et al., 2013) embedding of the underlying token. For
entity references, it contains the mean of the embed-
dings of the tokens which were marked as references to
that entity in earlier turns. (iv) BERT - It contains the
BERT (Devlin et al., 2019) embeddings for each ele-
ment. They are obtained by feeding the two sequences
to a BERT encoder, and then taking the average of all
wordpiece tokens corresponding to each element. The
Word2Vec and BERT embeddings respectively provide
a context free and context dependent representation of
the element, both of which are important for context
tracking.

4.3. Context Tracking
The context tracking model outputs logits which en-
code information about the entity references in the in-
put utterance. These references are added to the entity
repository to update it for the next turn. Each entity
reference contains four types of labels: (i) Entity ID: It
clusters the references referring to the same entity to-
gether. (ii) Meta: This is a Boolean label indicating
whether a reference corresponds to the first mention of
an entity. It can be used to identify the source entity
among the ones which share the same entity ID. (iii)
Properties: This contains predictions for each of the
labels such as gender, plurality, type etc. (iv) Group
memberships: For group references, it contains the en-
tity IDs for all the member entities. All these fea-
tures are converted to Boolean vectors similar to the
procedure described in the preceding section to obtain
ground truth labels without any loss of information.
Next, we describe how the model predicts output la-
bels in two stages and which loss function is used for
training.

Stage 1 - The first stage just identifies the spans cor-
responding to new entities in the input utterance. Each
of the output logit vectors ei, 1 ≤ i ≤ m, consists of
two elements, which are converted to Booleans using a
threshold of zero. The two Booleans respectively de-
note whether the underlying token is at the beginning
or inside a span referring to a new entity. The tokens
for which both these Booleans are zero are not part of
a new entity span. Once these spans are found, the next
available entity IDs are sequentially assigned to them,
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and their Meta attribute is also populated.

Stage 2 - The second stage calculates the rest of the
output labels. In addition to the inputs described in the
Input Feature Representation section above, represen-
tations of the token level outputs obtained from the first
stage (entity ID and Meta) are concatenated to the to-
ken vectors. A similar network as Stage 1 is then used
to convert the input sequences to 2K +P output logits
for each token. Here, K is the maximum number of
supported entities and P is the total number of values
taken by all the properties. These logits can be con-
verted to Boolean vectors by thresholding at 0. Those
logits specify the model outputs, with the first K logits
giving the entity IDs, followed by P logits determining
the value of each of the properties and the remaining
K logits giving group memberships. Please note that
no span annotations are needed in this stage because
the token level entity ID predictions identify the spans.
This means one can simply merge successive tokens
with the same predicted entity ID into a single refer-
ence.

Loss function - Each logit x and its corresponding
binary label y = ±1 give rise to a single loss term
using hinge loss, defined as max(0, 1− xy). The over-
all loss is obtained by summing all of the loss terms
arising from each of the logits for each token, while
masking out the summands arising from labels, which
do not need to be considered at that particular position.
For example, the logits for group membership predic-
tions contribute to the loss only when the underlying
reference is plural in the ground truth. Since the two
stages are trained jointly, the overall loss L is defined
as αL1+L2, where L1 and L2 are the losses of the two
stages and α is a tunable parameter. Empirically, α = 6
gave us the best results, which indicates that misidenti-
fying new entities should have a higher penalty.

4.4. Implementation Details
All the experiments use the same hyperparameters,
with the transformer encoder made up of a single self-
attention layer with 9 heads followed by a feed-forward
network with a hidden-dimension of 800. The model is
configured to track up to twenty entities (K = 20) and
the input sequence pair is restricted to be no longer than
100 elements altogether. We do not use dropout during
training and utilize Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.0001 and batch size 20.
The context tracking model is recurrent because the en-
tity reference repository output in the current turn is
used as an input for the next turn. We resolve this de-
pendency during training by applying a teacher-forcing
approach (Goyal et al., 2016) for simplicity, where the
model uses ground truth labels as input instead of its
output in the last step. Since the distribution of the en-
tity IDs is skewed towards the smaller numbers in the
dataset, we randomize the entity IDs in the training ex-
amples to make the model more robust. This is done
by adding a single random number to all entity IDs in

Section P R F1
New Entities 76.1 78.8 77.4
Existing ID 66 63.7 64.8
Properties 98.9 98.8 98.8
Membership 79.6 81.7 80.6

Table 1: Results for the four endpoints of the Contrack
baseline model.

Nr of With Teacher W/o Teacher Difference
Turns Forcing Forcing

0 88.9 88.9 0.0
1 84.6 78.3 6.3
2 84.4 67.8 16.6
3 79.6 61.3 18.2
4 77.8 61.4 16.4
5 76.2 52.1 24.1
6 75.3 54.6 20.7
7 80.7 59.3 21.4
8 79.8 58.7 21.2
9 82.5 62.1 20.3

Table 2: Results on how error propagation affects pre-
diction accuracy by turn. The columns give the per-
centage of correctly predicted entity IDs with and with-
out Teacher Forcing.

a conversation and taking modulo K to keep the IDs
within the supported range.

5. Experiments
First, we conduct several experiments to study the
performance of our baseline model on the Contrack
dataset. Next, we compare the baseline model to high
performing task-specific models for a few conversa-
tional understanding tasks subsumed by context track-
ing.

5.1. Evaluation on Context Tracking
The evaluation dataset is constructed by randomly set-
ting aside 15% of the data. This is done while ensuring
that all conversations stemming from the same scenario
are either assigned to the training or the evaluation set,
but not split between the two. Unlike training, which
uses teacher forcing, the model uses the predicted en-
tity reference repository in a given turn as an input to
the next turn. This makes the model more computa-
tionally efficient by allowing it to process each turn
only once, and doesn’t put any theoretical bound on
the number of turns in a conversation. However, it also
makes the model prone to error propagation because of
a recurrent dependency.
We evaluate the performance of the two stages of model
on four endpoints - (i) Identifying new entities, (ii) As-
sociating entities to existing IDs, (iii) Predicting prop-
erties for all entities, and (iv) Calculating membership
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Figure 6: Accuracy numbers for frequently occurring entity references. The blue bars give the percentage of entity
references that were detected correctly, the red bars give the percentage with correctly predicted entity IDs.

of group entities. The first endpoint is implemented as
part of the first stage, the others are computed by the
second stage. We report the precision, recall and F1
score for each of these endpoints.
Table 1 lists the value of evaluation metrics. They in-
dicate that the model is generally accurate on proper-
ties and to a lesser degree on group membership, while
detecting new entities is easier than resolving existing
ones. That is true in particular for location entities
where the model is generally not able to detect entities
as reliably as with people. Figure 6 shows the accuracy
results for the most frequent occurring tokens. Not sur-
prisingly, references to the first and second persons are
the easiest to resolve while references to locations and
third persons are more challenging. All in all, the base-
line detected 96.8% and resolved the IDs of 64.7% of
references correctly.

5.2. Effects of Error Propagation
Before we compare the baseline model’s performance
on other tasks, let us try to quantify the effect of er-
ror propagation within Context Tracking. Processing
the conversation turn-by-turn can leads to cases where
misprediction in one turn can result in errors in all sub-
sequent turns. This makes Context Tracking more dif-
ficult than tasks where the model can use the whole
conversation. To evaluate the magnitude of this effect,
we compare the percentage of correctly predicted en-
tity IDs of the baseline Contrack model with propagat-

ing entity repositories turn by turn (i.e. without teacher
forcing) with a version which uses the ground-truth in-
put repository as an input in each turn (i.e. with teacher
forcing). The results are listed in Table 2. We can see
that the performance of the model drops as the index of
the turn in a conversation increases. The difference is
largest at five turns with a 24% accuracy difference and
remains flat around 20% as the turn number increases.

5.3. Evaluation on Other Tasks
In this section, we demonstrate the applicability of the
baseline model to conversational understanding tasks
subsumed by context tracking. In all experiments we
use a fully trained baseline model, which makes pre-
dictions for all endpoints. Its performance is com-
pared to the target model trained on the single task
under consideration. The baseline differs in that it is
more parameter-efficient (because it models multiple
endpoints concurrently) and easier to scale (because it
makes predictions turn by turn). However, unlike the
competing systems, the baseline’s errors in one turn
will propagate to later turns as described in the section
on error propagation above. This means the results in
this section can be considered to be a measure of the ac-
curacy costs incurred by switching to turn-by-turn pre-
diction and by using a joint model.

Slot Tagging. The slot tagging task (Goo et al., 2018;
Zhang et al., 2020) deals with identifying spans from an
utterance and associating a type or slot to these spans.
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Attribute Classification
Precision Recall F1

Coach 98.2 97.8 98.0
Coach-B 98.2 98.0 98.1
Contrack 99.0 99.0 99.0

Singular Coreference Resolution
Precision Recall F1

E2E Coref 97.6 87.3 91.5
Contrack 85.5 70.4 76.9

Plural Coreference Resolution
Precision Recall F1

CZC 81.2±1.0 73.3±0.4 75.9±0.5
TE 80.4±0.8 76.5±1.2 78.0±0.6
Contrack 73.2±0.6 68.5±0.7 69.7±0.8

Entity Linking
Precision Recall F1

CZC 71.8±0.4 61.4±0.4 66.2±0.4
TE 71.1±0.4 64.2±1.3 67.4±0.8
Contrack 61.2±1.0 55.5±1.6 58.2±1.2

Table 3: Experiments: Comparison with various task
specific SoTA models. Contrack is the baseline de-
scribed in the Contrack Baseline Model section, Coach
model is from (Liu et al., 2020), Coach-B is the Coach
model trained with BERT embeddings, CZC is from
(Chen et al., 2017) and TE is from (Zhou and Choi,
2018). More details can be found in the Experiments
section.

The baseline model subsumes slot tagging by identify-
ing the entity reference tokens as spans and assigning a
type to it by predicting a property. We benchmark the
baseline model against Coach (Liu et al., 2020), which
is one of the recent, best performing models for slot
tagging. We train this model on the Contrack dataset,
where it is only asked to identify the spans correspond-
ing to entity references, and to assign their properties
(grammatical gender for person entities, count for lo-
cation entities). All other annotations are ignored. Ta-
ble 3 shows the results using the default fastText (Bo-
janowski et al., 2017) embeddings used by the base-
line and BERT embeddings used by our model. Even
though both models perform very well on this task, our
simple baseline outperforms the Coach model in both
settings.

Singular Coreference Resolution. We compare
with the state of the art E2ECoref system (Lee et al.,
2018) for coreference resolution, trained using default
parameters on the Contrack dataset with all the plural
entity references removed. Table 3 gives the results.
The E2ECoref system outperforms the baseline sub-
stantially. This can be partly explained by the fact that
E2ECoref processes the entire conversation together,
and hence has access to future turns while making a

decision. As mentioned above the Contrack baseline
makes its decisions based only on the current utterance
and outputs from the previous turn and is thus prone
to error propagation. However, future work may show
that one can transfer some of the techniques which
make E2ECoref successful to context tracking.
Plural Coreference Resolution. We compare with
(Zhou and Choi, 2018), which reports results on re-
solving plural mentions on conversational data. For the
comparison, we train and evaluate the Contrack base-
line model on the Character mining dataset 1, which
contains annotated transcripts of four seasons of the TV
show Friends. We follow the same setup as (Zhou and
Choi, 2018), computing mean and standard deviation
of the BLANC score (Recasens and Hovy, 2011) over
five runs. Results in Table 3 show that the Contrack
model’s F1 score is lower by about eight points, which
indicates that the baseline is more competitive on plural
than on singular coreference resolution.
Entity Linking. Zhou and Choi (2018) also dis-
cusses entity linking, which differs from coreference
resolution in that the model needs to assign each men-
tion to one of the given known entities (that is, TV
show characters in the Character Mining dataset). This
is conceptually close to Context Tracking, but differs in
scope (only people mentions), setup (entities are known
in advance) and difficulty (model uses whole conversa-
tion). We compare the baseline model with the entity
linking implementation in (Zhou and Choi, 2018) as
described in the previous section and report F1 scores
in table 3. The F1 scores are worse by 9 points, similar
to plural coreference resolution. On this dataset most of
the loss is caused by plural references whose F1 score
is fifteen points worse than the one reported by Zhou
and Choi (2018).

6. Conclusion
In this paper we introduce a new machine learning
framework which tracks the entities in social open-
domain conversations turn by turn, thereby building a
repository of rich semantic data on the entities, their
properties, and entity relationships for plural mentions.
To enable research on the merits of this framework, we
release the Contrack dataset and describe the imple-
mentation of a baseline model. While the experimental
results are encouraging, it is clear that more work is
necessary to turn context tracking into a mature practi-
cally useful service.
There are a few directions for future research: For
one, we plan to extend the dataset with more conversa-
tions and more annotations for multiple domains. This
would allow us to track a more complete set of enti-
ties more reliably. On the other hand, more research is
necessary to investigate which neural network architec-
tures are best suited for accurate context tracking.

1The publicly available code for the system described in
(Zhou and Choi, 2018) is missing some parts, so we were not
able to train it on Contrack data.
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