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Abstract
We present the development of a benchmark suite consisting of an annotation schema, training corpus and baseline model for
Entity Recognition (ER) in job descriptions, published under a Creative Commons license. This was created to address the
distinct lack of resources available to the community for the extraction of salient entities, such as skills, from job descriptions.
The dataset contains 18.6k entities comprising five types (Skill, Qualification, Experience, Occupation, and Domain). We include
a benchmark CRF-based ER model which achieves an F1 score of 0.59. Through the establishment of a standard definition of
entities and training/testing corpus, the suite is designed as a foundation for future work on tasks such as the development of job
recommender systems.
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1. Introduction
The identification and extraction of salient entities is
an important task in many real-world information ex-
traction applications such as text classification, efficient
search algorithms, and content recommendations (Li et
al., 2020). In recruitment, job-seekers and recruiting
companies alike benefit from systems that automatically
and continuously acquire up-to-date information about
listed job roles and applicant profiles in terms of skills,
qualifications, and experience.
In addition, these communities would benefit from
investigation into the gap between candidate skills
and open positions. This requires tools that can
automatically identify and extract skills and related
entities from unstructured text data.
However, the development of Entity Recognition (ER)
models to perform these tasks is severely hindered
by the lack of publicly available training data. Many
available ER corpora consist of general news articles
(Lawson and Eustice, 2010), while information about
job descriptions is typically only available on online job
portals. Skills, which have no agreed definition in the
literature (see Section 2), are often general noun phrases
rather than the proper names typically associated with
Named Entities, making them harder to detect using
gazetteer-based approaches. We define skills explicitly
in Section 3.1.
To develop better job matching tools, we need to address
these problems. We first establish a definition of
the relevant entities in order to guide the collection
of human-labelled data to be used for training and
evaluation of automatic ER tools. Building on existing
frameworks (Khobreh et al., 2016), we developed our
schema, over several iterations, to include five distinct
entities: Skills, Qualifications, Experiences, Domains,
and Occupations (see Section 2 for more detail), and use

this to build a corpus of annotated UK job descriptions.
We then present a benchmark ER model using CRF
architecture, which is also freely available and can be
used as a baseline. Source code can be found in the
associated repository.
An ER system trained on this data could then be
used to compile the input to a job recommendation
system, which, given suitable training data of matched
candidate profiles (e.g. CVs, LinkedIn profiles) and job
descriptions, is able to recommend jobs to candidates
and vice versa based on the set of skills the candidates
have and that jobs require. In addition, the work in this
paper could be of use when investigating the current
job climate in terms of the skills that jobs require
and candidates possess, or investigating how skills (or
demand for skills) change over time.
The core contributions are thus as follows:

• A list of entity classifications and their definitions
in the form of an annotation schema for salient
entities within job descriptions, made publicly
available

• A public, labelled dataset for the development and
evaluation of ER systems

• A benchmark ER system trained on this data

2. Related Work
In traditional machine learning approaches, ‘feature
extraction’ refers to the process of building derived
values (‘features’) from initial data to facilitate the
subsequent learning and model establishment steps. In
the context of job recommendation, this involves parsing
unstructured text and extracting salient details from
applicant profiles or job descriptions that are used as
input to a recommendation model.
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Solutions for matching between applicant profiles and
job descriptions tend to use the ‘skills’ contained in
the input data as the features to be extracted and used
as input to a recommendation model (Almalis et al.
(2014); Choudhary et al. (2016); Hoang et al. (2018);
Gugnani and Misra (2020)). The underlying assumption
is that a high similarity between the set of skills of
an applicant and the set of skills required for a job is
a strong indicator of a good fit. However, there are
two main issues in existing literature regarding skill
extraction for feature selection. Firstly, there is no
academic consensus on the definition of a skill, which
makes the comparison of different extraction methods
a difficult task. Secondly, it is unclear (or relatively
unexplored) which types of methods would give strong
performance for skill extraction from text, so there
is a need for research into the evaluation of different
methods.
Regarding the lack of consensus on skill definition,
related work into skill extraction falls mainly into one of
two groups; the first omits a formal definition of a skill
and leverages some other feature of the available data for
identification, and the second refers to a public database
of skills which are used as the terms for extraction.
An example of the first group is the work by Bastian et al.
(2014), which allowed the users of a service (LinkedIn)
to define skills themselves without explicit guidance
from the researchers nor a formal definition. Other
work assumes that anything contained in a user-defined
‘Skills’ section of an applicant profile qualifies as a skill
(Maheshwari et al. (2010); Kivimäki et al. (2020);
Karakatsanis et al. (2017)), which tends to introduce
noise in the extraction. In some cases, ‘field experts’
are employed to annotate terms such as skills within
job descriptions, and terms with high inter-annotator
agreement are classified as skills (Gugnani and Misra,
2020). The limitation of these methods is that, without
a formal definition, they are not reproducible outside of
their specific contexts; by restricting the environment
for the detection of skills to an explicitly defined Skills
section in an applicant profile, for example, skills
referred to in other sections will be missed, and in cases
where the format of the profile omits a Skills section
entirely, these methods will perform poorly.
The second group refers to a public database
of skills such as O*NET1 or those defined in
the official frameworks such as the European
Qualifications Framework (EQF), part of the European
Skills/Competences, Qualifications and Occupations
commission (ESCO; Khobreh et al. (2016)). The main
limitation of using public databases of skills is that they
are not effective for detecting new skills or detecting
known skills expressed in new ways, and require
constant updating in order to retain their usefulness. In
areas of industry that feature constant development of
new techniques, such as machine learning or computer
programming, new methods and techniques will elude

1https://www.onetonline.org/

skill databases until they have been identified by the
database maintenance teams and added. For example, an
applicant profile may state proficiency in ‘onboarding
new hires’, referring to their skill in mentoring new
employees. Although sections include teaching and
training, coaching and mentoring, the term ‘onboarding’
does not appear in O*NET nor ESCO skill databases,
and skill extraction methods using these databases
would be unable to detect this skill. Also, while ESCO
is updated with new terms annually2, skill extraction
methods using this database could still be up to a year
out of date. Our proposed method addresses these gaps
by providing a schema for defining skills and related
entities. Additionally, this schema is used to collect
a human-labelled dataset of skills and related entities
in job descriptions, which can be used to train an ER
system for automatic detection.
Although skill classifiers have been developed, they
are not suitable for comparison due to the differing
definitions of skills. For example, Hoang et al. (2018)
present the SKILL system which includes parts of job
titles in their detection (e.g. ‘financial’ in ‘financial
accountant’) and excludes other terms that our schema
defines as skills (e.g. in the phrase ‘monitoring budgets,
developing forecasts, and investigating variances’, only
the terms ‘budgets’ and ‘forecasts’ are classified as
skills, whereas our schema would identify ‘monitoring
budgets’, ‘developing forecasts’, and ‘investigating
variances’ as skills - see Section 3.1). Our hypothesis is
that starting with a wider variation of terms will result
in better matching when skills are extracted as features
for job recommendation.
Moreover, related work focuses on ‘skills’ for extraction,
and tends not to extend the scope to the extraction of
related entities. We theorise that related entities may
be useful in a job recommendation system, such as
‘domains’ (as exposure to a particular domain may be
beneficial for roles in the same domain), ‘occupations’
(since acting in a particular job role may be suitable for
certain types of jobs), and ‘experience’ (which may be
used to quantify the proficiency of a candidate regarding
a particular skill or occupation). Our schema includes
definitions for these entities and they are included in our
benchmark ER system.

3. Annotation Task Description
3.1. Schema of Entity Types
The annotation schema was defined through an iterative
process of performing the annotation task in conjunction
with reusing and adapting definitions from previous
work (Gugnani and Misra, 2020; Shi et al., 2020;
Hoang et al., 2018), the European Qualifications
Framework (Khobreh et al., 2016), as well as advice
from an HR Generalist working with Recruitment
Software company TribePad3 who volunteered to take

2https://tinyurl.com/ESCO-v1
3https://tribepad.com/

https://www.onetonline.org/
https://tinyurl.com/ESCO-v1
https://tribepad.com/
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part in a pilot annotation task. For example, while
the EQF marks the distinction between ‘Knowledge’,
‘Skills’, and ‘Attitudes’, annotators in early task
iterations were largely unable to differentiate between
even ‘Hard Skills’ and ‘Soft Skills’ in practice, for
example, the Hard Skill ‘familiarity with European
Standards’ was misclassified as a Soft Skill by 40% of
annotators, and the Soft Skill ‘maintaining high levels
of accuracy’ was misclassified as a Hard Skill by 40%
of annotators. Consequently, the ‘Hard Skill’ and ‘Soft
Skill’ classes were collapsed into one all-encompassing
‘Skill’ classification.
The descriptions of entities in our annotation schema
are summarised in Table 1, and the full version of the
schema and annotation guidelines presented to Amazon
Mechanical Turk (AMT) workers during data collection
is contained in the repository along with the labelled
corpus4.
During initial development, the pool of annotators was
restricted to 20 individuals with no prior experience of
entity annotation tasks, and rounds of testing consisted
of a random sample of annotators completing an
annotation task with incremental changes in order
to optimise inter-annotator agreement. Changes
included the design and functionality of the annotation
platform, the class distinctions themselves (including
the combination of initially defined ‘Hard Skill’ and
‘Soft Skill’ classifications), and the structure of the
annotation guidelines, which initially included only
the list of entity classifications and their definitions,
but was expanded to include a series of user-friendly
‘clarification questions’ in FAQ format as well as worked
examples of annotated job descriptions.

3.2. Corpus
Our corpus of job descriptions came from the publicly
available Kaggle dataset5. No original source for these
is listed, but they appear to have been scraped from
online job portals such as TotalJobs6 and are limited to
positions within the UK. A wide variety of industries are
represented, such as IT, Finance, Healthcare, and Sales.
After removing all html formatting and invalid UTF-8
code units, and splitting job descriptions into sentences7

, the data consisted of 4,917,794 items (sentences). We
randomly sampled 10,000 items for annotation, and
a further 20 items to form the qualification set. We
manually annotated a further 586 items to form the
gold standard for both manual annotation and model
evaluation.

4https://tinyurl.com/skill-extraction
-dataset

5https://tinyurl.com/trainrev1
6https://www.totaljobs.com
7Early testing suggested annotators performed poorly

when items were too long. Splitting job descriptions into
sentences improved accuracy on the annotation task and little
was lost in terms of context when doing so.

4. HIT Design
To make the annotation task more convenient for AMT
Workers, a customized user interface was used and
detailed annotation guidelines were provided. Both
the qualification task and the live annotation task were
compensated, at $0.04/HIT and $0.08/HIT respectively,
the latter equating to the standard minimum wage in the
country in which the task was deployed.
Annotation guidelines presented to Workers included
a full description of the annotation schema including
examples of each class, as well as an FAQ section which
clarified all Worker questions that arose during task
development. In addition, a set of 8 worked examples
was included, showing a fully annotated work item with
explanations detailing which entities had been labelled,
and the reasoning behind each classification.

5. Criteria for Worker Qualification
Workers were required to pass a ‘qualification task’
before they were assigned a bespoke qualification
allowing them to contribute to the live task. To be
eligible to work on the qualification task, they were
required to be demonstrably competent at completing
tasks on the platform; specifically, to have completed
and had approved more than 5,000 HITs on the AMT
platform and have achieved a lifetime approval rate of
greater than 95%.
The qualification task featured 20 HITs for which the
gold standard was available. Workers were encouraged
to read the instructions carefully and complete as many
HITs as possible. However, there were a variety of
reasons why some Workers did not complete all HITs,
such as the disinclination to commit too much time
to a task for which, from their perspective, there is
no guarantee of compensation (McInnis and Leshed,
2016). This was taken into account when calculating
the threshold for Worker qualification.
178 individual Workers contributed to the qualification
task with varying levels of accuracy and completeness.
There is no established threshold of accuracy for Worker
acceptance in related literature. Although greater
accuracy of Worker annotations versus gold standard
will lead to greater resultant model performance, a
high threshold will result in fewer Workers eligible for
contribution, leading to slower data collection rates.
To investigate the ideal threshold of accuracy to require
of Workers, experimentation was performed using a
standard ER dataset; the CoNLL-2003 Shared Task:
Language Independent Named Entity Recognition (F.
Tjong Kim Sang and De Meulder, 2003). The premise
of this investigation was that recently developed ER
models are able to learn directly from noisy human
annotations, eliminating the need for label aggregation
(Rodrigues and Pereira, 2017), and that examining
the relationship between Worker performance (varied
by artificially inducing noise) and resultant model
performance may yield an appropriate threshold to

https://tinyurl.com/skill-extraction-dataset
https://tinyurl.com/skill-extraction-dataset
https://tinyurl.com/trainrev1
https://www.totaljobs.com
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Entity Name Brief Description Examples

Skill Tasks that can be performed, or attributes and
abilities (including soft skills) that enable people to
perform tasks

computer programming, French,
honesty

Qualification Official certifications obtained through taking a
course or passing an exam or appraisal

Bachelor’s Degree, chartership,
three A-levels

Experience Lengths of time relating to a position or skill 2 years experience, minimum of 5
years experience

Occupation Job titles, including abbreviations and acronyms Teaching Assistant, CEO, Chief
Executive Officer

Domain Areas of industry in which someone might have
knowledge or experience

aerospace, oil industry, education

Table 1: A brief description of entities for annotation. Full details can be found in the repository.

require of Workers for admitting them to contribute
to our corpus.
Two distinct types of noise were investigated based
on the cause of annotator misclassification: ‘random’
noise, where annotators make random errors (i.e. where
any (incorrect) classification is equally likely to be
selected); and ‘systematic’ noise, where annotators
make consistent errors (by consistently misclassifying
class A as class B). We also investigated the effect of
reducing noise by artificially correcting annotated labels
to simulate higher performance. This method could only
simulate ‘random’ de-noise, but gives us an idea of the
effect of annotators performing better than their current
rate, i.e. if we were to increase the minimum accuracy
level required.
We induced both forms of noise and random de-noise
from proportions of 0 to 1 in increments of 0.02 and
observe linear relationships between noise proportion
and average Worker performance (% accuracy). A
separate model was trained on each noised set of CoNLL
training data using a Convolutional Neural Network
with CrowdLayer proposed by Rodrigues and Pereira
(2017). Code for reproducing this is publicly available8.
Model F1 is shown at varying levels of Worker accuracy
in Figure 1. We observe a lower threshold of Worker
performance at around 40% Worker accuracy, below
which resultant model performance is poor (< 50
model F1). This is especially prevalent when inducing
systematic noise (see Figure 1b).
Additionally, there seems to be a slight increase of
model performance at around 70% Worker accuracy,
which guided our decision to use this as our threshold.
We also required Workers to have annotated at least
100 tokens in order to reasonably evaluate their
performance.
39 Workers achieved an accuracy of greater than 70%
on the qualification task and had annotated more than
100 tokens, and consequently only these Workers were
invited to contribute to the live task.

8https://tinyurl.com/noise-induction-
experiments

6. Data Analysis

Sentences 10,000

Tokens 245,606

Avg. tokens per sentence 24.6

Annotation spans (post aggregation) 18,617

Annotated tokens (post aggregation) 79,826

Avg. tokens per annotation 4.3

Number of independent Annotators 25

Table 2: Annotated corpus statistics.

Label Frequency Proportion

Skill 66,732 28.56%
Occupation 6,117 2.62%
Domain 3,705 1.59%
Experience 1,328 0.57%
Qualification 1,944 0.83%
None 153,802 65.83%
Total 233,628

Table 3: Class distribution for the live, aggregated
corpus (one label per token).

Label Frequency Proportion

Skill 2,136 25.19%
Occupation 306 3.61%
Domain 100 1.18%
Experience 29 0.34%
Qualification 68 0.80%
None 5,839 68.87%
Total 8,478

Table 4: Class distribution for the test set.

https://tinyurl.com/noise-induction-experiments
https://tinyurl.com/noise-induction-experiments
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Figure 1: Graph to show the relationship between average Worker accuracy (%) and resultant trained model F1 after
artificially inducing and removing noise in Worker annotations.

6.1. Size and Distribution
Table 2 lists general statistics of the annotated corpus,
and Table 3 shows the distribution of class labels in the
annotated corpus after aggregation to yield one label
per token (see Section 7.1 for details regarding label
aggregation). Similarly, Table 4 shows the distribution
of class labels for the test set generated by the author
of the annotation schema. We observe a similar
distribution in both corpora.

6.2. Inter-Annotator Agreement (IAA)
Although Cohen’s κ (Equation 1) is the standard
measure of IAA, there have been several issues raised
regarding its application in entity annotation tasks
(Hripcsak and Rothschild, 2005) especially in cases
where class distribution is unbalanced and where
un-annotated tokens are much more common than
annotated tokens. In these cases, Cohen’s κ is calculated
twice under two separate conditions: evaluating all
tokens in the data, and evaluating only the annotated
tokens in the data.

κ =
po − pe
1− pe

(1)

Typically, including ‘None’ labels from calculation
would show an inflated value of κ since the ‘None’ label
is by far the most prevalent, and the high frequency
of cases in which neither annotator has labelled a
token tends to raise the observed agreement level.
However, this is not the case in our data. Distribution of
Worker contribution is non-uniform and non-normal,
and the intersection of work between the majority
of worker pairs is small (< 10 sentences or < 250
tokens). Since κ is calculated between each pair of
annotators that contributed to at least one shared item
and averaged across all pairs, there are several pairs of
annotators that show an indeterminate κ agreement; if
both annotators in a given pair have identified no entities
across all reviewed tokens, the expected agreement pe

will be equal to 1, and κ will be indeterminate with a
denominator of 0. For the κ statistics shown here, a case
of indeterminate kappa between annotator pair {i, j} is
interpreted as perfect agreement (κij = 1).
Pairwise F1 on annotated tokens only has been
suggested as a better measure for agreement in ER tasks
(Deleger et al., 2012). We thus compute the micro F1

on annotated tokens as the focal method of IAA, but
Cohen’s κ and Krippendorff’s α statistics are provided
to give additional insight (see Table 5).

Cohen’s κ on all tokens 0.49

Cohen’s κ on annotated tokens only 0.73

Krippendorff’s α 0.55

F1 on annotated tokens only 0.90

Table 5: IAA on the live corpus, calculated by averaging
pairwise comparisons between all combinations of
annotators where both annotators labelled a shared item.

7. Data Preprocessing
All entities were labelled using the BIO scheme.
Although error is inevitable in human labelling tasks,
it is feasible to mitigate some aspects. Preliminary
analysis suggested that there were three sources of
noise that could be mitigated prior to model training
(referred to here as ‘preprocessing’): label aggregation;
reclassification of ‘Experience’ spans; and splitting
multi-term spans.
Postprocessed data is included alongside raw data in the
public repository associated with this research paper.

7.1. Label Aggregation
There are several established methods of label
aggregation, such as majority agreement, simply re-
moving items containing disagreements, or probabilistic
aggregation methods in which annotators are identified
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as ‘trustworthy’ or otherwise on gold-standard tasks
and weighting their annotations accordingly (Hovy et
al., 2013). Alternatively, rather than extracting the
single objective classification for each entity through
agreement resolution methods, it is possible to learn a
classifier directly from the annotations by assigning a
distribution score to each label (Rodrigues and Pereira,
2017).
Since each token is annotated by two independent
Workers, a simplification of the method of Hovy et al.
(2013) was used for disagreement, where labels were
assigned preferentially from higher-performing Workers
inferred from qualification task results.

7.2. Reclassification of ‘Experience’ Spans
Preliminary analysis yielded a number of insights.
According to the schema, ‘Experience’ spans must be
quantified by length of time (e.g. ‘2 years experience’.
A number of spans classified as Experience did not meet
this criteria (e.g. ‘experience managing clients’), but
did meet the criteria for the ‘Skill’ classification.
A ‘re-classification’ step was therefore added to the
preprocessing pipeline in order to identify and correct
these errors. Regular expression and inflect9 Python
packages were utilised to identify all spans that did
not contain an expression of time (in word or number
form) and reclassify the entire span from ‘Experience’
to ‘Skill’. This reduced the number of Experience spans
from 239 to 144 (40% reduction), which were manually
checked. No other classes were affected.

7.3. Splitting Multi-term Spans
A second finding from preliminary analysis was that
annotators tended not to split lists of entities into
separate spans, choosing instead to identify everything
included in the list as one single span of the relevant
entity type. For example, the sequence ‘Asbestos
Surveyors, Lead Asbestos Surveyors, Asbestos Analysts’
was annotated as one single entity, whereas this should
be three distinct entities with commas denoting the
boundaries.
The correct splitting of entities is important for our task
for two reasons. Firstly, it represents an issue for model
training, in that if the training data does not reflect the
correct distinction between multiple consecutive entities
of the same type, it is unlikely that the resultant model
will be able to, and will achieve poor performance when
evaluated on the test set which features accurate entity
separation.
Secondly, the intended use of a system trained to
identify and extract entities from job descriptions is for
feature extraction in a larger system developed to match
applicant profiles and job descriptions. For this purpose,
it is important that entities are discrete to ensure that
each are evaluated independently to more accurately
represent the requirements of a job from its description
or an applicant from their profile.

9https://github.com/jaraco/inflect

All instances of punctuation were re-classified with the
‘None’ label, and in cases where this split an annotated
span, the following tokens became the start of a new
span. Affected items were then manually checked to
ensure legibility. The class distribution for the data after
the preprocessing steps is shown in Table 6.

Label Frequency Proportion

Skill 65,632 28.09%
Occupation 5,964 2.55%
Domain 3,628 1.55%
Experience 800 0.34%
Qualification 1,716 0.73%
None 155,888 66.72%
Total 233,628

Table 6: Class distribution for the preprocessed data
(one label per token).

8. Baseline CRF Model
8.1. Settings
Conditional Random Fields (Lafferty et al., 1999) are
commonly applied to structured prediction tasks such
as ER to model structural dependencies, and present an
appropriate benchmark setting for entity extraction. The
output sequence is modelled as the normalised product
of the feature function. Its formula is shown in Eq. 2,
where X is the set of input vectors, yi is the label at data
point i, Z(X) is the normalisation, and λ is the learned
feature function weights.

p(y|X,λ) =
1

Z(X)
exp

n∑
i=1

∑
j

λjfi(X, i, yi−1, yi)

(2)
The NLTK10 method of feature preparation was used,
and the CRF model was trained over 100 epochs using
L1 and L2 regularization coefficients found during
parameter optimisation through Randomized Search.
Results for the CRF are shown in Table 7.

8.2. Error Analysis
We observed instances of errors in classification from
the baseline CRF model and have diagnosed likely
sources.

8.2.1. Specific vs. General Applications of Skills
Our annotation schema states that, when a Skill is
applied to a particular task, the details of the task should
only be contained in the skill-term if it is a specific
application (e.g. ‘creative technical documentation’)
and not a general application (e.g. ‘cleaning kitchens’,
where only ‘cleaning’ should be classified as a Skill).
The CRF model is largely unable to distinguish between
specific and general applications, and tends to include
the application in either case. Examples of this are

10https://www.nltk.org/

https://github.com/jaraco/inflect
https://www.nltk.org/
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Label P R F1 Support

B-Skill 0.69 0.37 0.48 676
I-Skill 0.53 0.71 0.61 1429
B-Qualification 0.72 0.50 0.59 26
I-Qualification 0.39 0.23 0.29 40
B-Occupation 0.90 0.65 0.75 137
I-Occupation 0.93 0.71 0.81 164
B-Experience 0.86 0.67 0.75 9
I-Experience 0.42 0.76 0.54 17
B-Domain 0.53 0.40 0.46 60
I-Domain 0.34 0.28 0.31 39

micro avg 0.58 0.60 0.59 2597
macro avg 0.63 0.53 0.56 2597
weighted avg 0.61 0.60 0.58 2597

Table 7: Results for CRF model (trained on
preprocessed data). Precision, Recall, and F1-Score
are presented.

shown below, with the general application of the skill
in parentheses, where the model incorrectly treats all
tokens in each example as part of a classified span:

• training and developing new members (of the
brigade)

• leading continuous improvement in business
operations (with attention to our warehouse team
and suppliers)

8.2.2. Multi-entity Span Classifications
As part of data preprocessing, large annotated spans
that contain multiple discrete entities were split by
punctuation (see Section 7.3). However, the CRF model
often fails to split entities appropriately, and includes
multiple entities of the same entity type within one
span. This is true in particular of the Skills class, and
contributes to the poor recall of the ‘B-Skill’ label (see
Table 7). Examples of this are shown below, where the
CRF model has identified the entirety of each example
as one span, but the correct divisions are notated by
parentheses:

• (communication) and (influencing) skills, ability
to (embrace and apply leading practice tools and
techniques), proven (customer service) orientation
and (collaborative) approach

• (respond to internal and external stakeholder
queries) in a timely manner and (proactively seek
to resolve stakeholder issues)

8.2.3. Implications and Solutions
These two sources of error appear to be failures of the
CRF model caused by an inability to correctly terminate
an identified span. If the entities were used as features
for a job recommendation system, these limitations
would have the effect of reducing the number of features,
which might present an issue for some recommendation
algorithms (e.g. a bipartite graph matching approach).
A potential solution to these issues would be to use
contextualised word embeddings (Turney and Pantel,

2010), which assign each token a single vector based on
its context and, to some extent, capture the semantics
of the word. An ER model that takes the semantics of
words into account may be better able to distinguish
between specific and general applications of skills,
and may be better suited to identifying sensible
termination points for spans to prevent multi-entity span
classifications.

9. Ethical Considerations
The main ethical consideration for this research is the
use of crowdsourcing data. Sabou et al. (2014) raise
three issues regarding the use of crowdsourcing: how to
acknowledge contributions; how to ensure contributor
privacy and well-being; and how to deal with consent
and licensing issues.
Since data was crowdsourced through the AMT
platform, Workers were anonymised through the use of a
unique Worker ID, and their details were restricted (with
the exception of general statistics regarding their past
performance on the platform, and the general location
e.g. ‘EU West’).
To ensure Worker well-being, all contributions were
compensated at a rate equivalent to UK minimum wage
(at time of data collection).
Finally, the dataset is published under a ‘no rights
reserved’ Creative Commons BY license, allowing
for commercial and academic use of the data with
attribution.

10. Conclusion and Future Work
In this paper, we have presented a new corpus for ER
in the recruitment domain, annotated with five entity
types. These types are not available in standard Named
Entity Recognition corpora, but are the most relevant to
this domain for tasks such as job recommendation. The
data presented in this paper provides an ideal training
set for this task, and is a suitable size for fine-tuning a
pretrained model.
Additionally, we have presented an annotation schema
to facilitate the collection of additional data, and a
baseline CRF model for entity extraction, and have
suggested methods for schema development, task
construction, and corpus creation. All resources
associated with this paper are made publicly available11

under a Creative Commons BY license. Included in
these resources is a Datasheet (Gebru et al., 2018) that
describes the data and its collection in more detail.
Future work will focus on one of two aspects: the
development of better-performing models for ER trained
on this corpus (such as Convolutional Neural Networks,
LSTM models, and Transformer-based models e.g.
BERT), and the development of models that use the
extracted entities from models trained using this corpus
as features for tasks such as job recommendation, where

11https://tinyurl.com/skill-extraction
-dataset

https://tinyurl.com/skill-extraction-dataset
https://tinyurl.com/skill-extraction-dataset
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candidate CVs are matched with job descriptions that
closely match their skill sets.
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