
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 1061–1067
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

1061

Phone Inventories and Recognition for Every Language

Xinjian Li, Florian Metze, David R. Mortensen, Alan W. Black, Shinji Watanabe
Carnegie Mellon University

Language Technologies Institute
5000 Forbes Ave, Pittsburgh, PA 15213 US

{xinjianl, fmetze, dmortens, awb, swatanab}@andrew.cmu.edu

Abstract
Identifying phone inventories is a crucial component in language documentation and the preservation of endangered languages.
However, even the largest collection of phone inventory only covers about 2000 languages, which is only 1/4 of the total
number of languages in the world. A majority of the remaining languages are endangered. In this work, we attempt to solve
this problem by estimating the phone inventory for any language listed in Glottolog, which contains phylogenetic information
regarding 8000 languages. In particular, we propose one probabilistic model and one non-probabilistic model, both using
phylogenetic trees (“language family trees”) to measure the distance between languages. We show that our best model out-
performs baseline models by 6.5 F1. Furthermore, we demonstrate that, with the proposed inventories, the phone recognition
model can be customized for every language in the set, which improved the PER (phone error rate) in phone recognition by 25%.
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1. Introduction
A fundamental aspect of the description or documen-
tation of any language is establishing its phone inven-
tory (Bird and Simons, 2003; Michaud et al., 2018).
This is a necessary prerequisite to further phonetic and
phonological analysis (including transcribing text, dis-
covering allophonic patterns, and developing an or-
thography), these are foundations upon which other
facets of linguistic description can be built. Tradition-
ally, phone inventories have been discovered by field
linguists using a mixture of audio, visual, and lexical
tools to arrive at a set of sounds sufficient to char-
acterize the phonetics of the language. The largest
collection of phone inventory aggregated so far is the
PHOIBLE dataset (Moran, Steven and McCloy, Daniel
and Wright, Richard, 2014), which is a collection of
phone inventories from over 2000 languages. How-
ever, there are around 8000 languages in the world,
for most of which no documented phone inventory ex-
ists. Unfortunately, those languages are typically en-
dangered (Nettle et al., 2000). Language preserva-
tion projects typically target languages in this category.
Field linguists starting work on a new language will
benefit from knowing, in approximate terms, what the
phone inventory of that language is like.
In this work, we attempt to solve this problem by esti-
mating the phone inventory for any language listed in
Glottolog (Nordhoff and Hammarström, 2011), which
contains around 8000 languages. In particular, we take
advantage of the phylogenetic trees from Glottolog (as
this information is available for almost every language
in the world)1. We propose two approaches that ex-

1Since linguists do not always agree upon the phyloge-
netic groupings of languages—especially of poorly-studied
languages—the trees from Glottolog are necessarily imper-
fect. However, they usually represent state-of-the-art classifi-

Figure 1: Illustration of a branch sample from the Ger-
manic branch a phylogenetic tree. We derive the testing
inventory for Dutch and Icelandic using the training in-
ventory from English and Norwegian

ploit this tree structure: First, we impose a probabilis-
tic structure on the phylogenetic tree (“language fam-
ily tree”), where each child node is expected to have a
similar phone distribution to its parent. Next, we in-
troduce nearest language ensemble approach, in which
we compute the nearest neighbor languages for any un-
seen target language and we ensemble the phone in-
ventory from those nearest languages as the inventory
for the target language. Note there are other features
such as geographical coordinates to derive closeness
between languages. These features, however, are not
easy to model for non-leaf nodes in our approach (e.g:

cations and are thus useful for our experiments here.
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it might not make sense to assign a specific coordi-
nate to the Indo-European family node). As a result,
we only consider the simple tree structure in this work.
We apply our approach to 77 languages, whose inven-
tories are excluded from our training set. This experi-
ment shows that our approach achieves an F1 score of
65.9, which is 6.5 points better than the best baseline
model. Finally, we demonstrate that, using the pro-
posed phone inventories, we enable a recently proposed
phone recognizer to recognize all 8000 languages (Li et
al., 2021a). Our results show that with the hypothesized
phone inventories, we achieve 64.2% PER (phone error
rate), which is 25% better than the original model (Li et
al., 2020). To the best of our knowledge, this is the first
speech recognition system that has been successfully
customized for almost every known language known to
comparative linguistics.

2. Related Work
Compiling the phonemic/phonetic inventory for a sin-
gle target language is typically an important task in
phonetic and phonological analysis (Hayes, 2011).
However, not all languages in the world are equally
well-researched. For example, much phonological
research has focused on richly resourced languages
(therefore they usually have well-defined phone in-
ventories (International Phonetic Association et al.,
1999)), while other, low-resource languages have his-
torically received less attention. Recently, there have
been several unsupervised models proposed that are
meant to discover linguistic units for unwritten lan-
guages (Varadarajan et al., 2008; Müller et al., 2017;
Dunbar et al., 2019; Dunbar et al., 2020), those mod-
els typically require the raw speech recordings for
discovery, whose resources are limited for most lan-
guages (Black, 2019).
While most traditional phonetic research has been fo-
cused on a single language or a few languages, there
have been several attempts to compile large databases
to collect many phone inventories of a diversity of lan-
guages. PHOIBLE (PHOnetics Information Base and
Lexicon) is a phonological inventory database which
contains inventory information of more than 2000 dis-
tinct languages (Moran and McCloy, 2019), each phone
also has been assigned distinctive phonological fea-
tures (Jakobson et al., 1951; Chomsky and Halle,
1968). Another large database compiled by Merritt
Ruhlen is the Ruhlen Database (Creanza et al., 2015).
It contains not only the phonological information for
each language, but also a wealth of extra-linguistic in-
formation (e.g: number of speakers and the geograph-
ical location of each language). While both projects
have successfully collected many sound inventories,
the majority of the inventories of the world’s languages
remain undocumented. To address this problem, this
work attempts to give a reasonable approximation of
each phone inventory for every language registered in
Glottolog.

3. Approach
In this section, we introduce our two proposed ap-
proaches: Bayesian Network Estimation and Nearest
Languages Ensemble. Before that, though, we propose
two baselines and setup notations used in this work.

3.1. Baseline
Assume a set of training languages is L. For every
training language l ∈ L, we have access to its phone
inventory Σl. The simplest inventory estimation model
uses the inventory Σ̂fixed from a fixed language, for ex-
ample Tagalog: Σ<tgl>. This is because Tagalog’s in-
ventory has a reputation for typicality. Note that not ev-
ery well-known language can be a good baseline. The
English inventory Σ<eng>, for example, is atypical: it in-
cludes some very rare phones like [T] and [D] but lacks
(depending on analysis and dialect) some very com-
mon phones like [a], [e], and [o]. This Fixed Inven-
tory, however, only covers phones from a single lan-
guage; therefore it fails to include common phones in
other languages and has low recall. Another possible
baseline would be to the use the entire phone inventory
available from all training languages:

Σ =
⋃
l∈L

Σl (1)

This is a default inventory used in some phone recogni-
tion works (Li et al., 2021a; Li et al., 2020). This naïve
approach should improve recall but it includes far more
phones that any individual language and most of them
are, invariably, false positives. To improve the preci-
sion, we sort all phones by the number of times they
appear in our training languages and only keep the top-
n most frequent phones based on the following statis-
tics. This inventory baseline is the Global Inventory
Σ̂global ∑

l∈L

1([p] ∈ Σl) (2)

3.2. Bayesian Network Estimation
The global inventory reflects the overall trend of
phones across all languages, but it does not capture the
local similarity between languages. We propose to ex-
ploit a phylogenetic tree to capture the local relations
between languages (based on the insight that languages
that are phylogenetically close also have similar phone
inventories). Our first model is to impose a probabilis-
tic structure to the tree. In particular, we consider the
tree to be a Bayesian Network (i.e: a directed proba-
bilistic graphical model). For each node in the tree, a
multinomial distribution over the entire inventory Σ is
assigned. We assume that the inventory of the child
node is drawn from its parent’s multinomial distribu-
tion. Formally, suppose we have a parent node r and
its child l where the child l is one of our training lan-
guages. We can model the probability of drawing the
child inventory using r’s multinomial distribution:



1063

Prob(Σl|Θr) =
|Σl|!∏
i(xi!)

∏
i∈Σl

θxi
i (3)

where Θr = {θr1, ..., θrΣ} is the parameter of parent
node r, and each parameter θri is the probability to draw
the i-th phone from all available phones Σ, and xi is the
indicator function whether the i-th phone is contained
in the child l’s inventory. The parameter Θr can be in-
ferred using Maxmimum Likelihood Estimation (MLE).
After obtaining the parameter Θr of the parent node r,
we could construct the phone inventory Σ̂bayes for the
parent node by selecting phones with the top-n high-
est probability. This is equivalent to selecting the top-n
phones which have the highest counts in children of r.
The counting can be computed as follows:∑

l∈Children(r)

1([p] ∈ Σl) (4)

3.3. Nearest Language Ensemble
The Bayesian Network model can infer parent’s inven-
tory using its children information, however, it cannot
take advantage of information from other close nodes
(e.g: sibling nodes). To fix this issue, our second model
is to use the nearest languages to approximate the in-
ventory of the target language. The metric to define
distance between languages is the length of the short-
est path between any two languages in the phyloge-
netic tree. The shortest path between any two lan-
guage nodes can be efficiently computed with Low-
est Common Ancestor (LCA) whose time complexity
is O(log(H)) where H is the height of the phyloge-
netic tree (Cormen et al., 2009). For a target language,
suppose we find the top-k nearest languages Lk, then
we first count the appearance of each phone [p]:∑

l∈Lk

1([p] ∈ Σl) (5)

Then we could select the top-n phones Σ̂nearest using
these counts. For example in Figure 1, suppose that our
training languages are English and Norwegian, and we
would like to estimate the inventory for Dutch, when
we use the top-1 nearest language, only English would
be selected and we could simply copy the English in-
ventory to the Dutch inventory, when we use k = 2, we
would identify English and Norwegian as the nearest
languages, and average them using counts.

4. Universal Phone Recognition
The hypothesized phone inventories pave the way for
many new applications. Notably, they allow us to cre-
ate phone recognition systems for (almost) every lan-
guage in the world. In this section, we first introduce
the acoustic model we use in this work, then we explain
how to apply the estimated inventory for the recogni-
tion task.

Audio

Acoustic 
Model 

Phonological 
Attributes

Phone

Phoneme

Language 
Independent 
Component 

Language 
Dependent 
Component 

Figure 2: The architecture of the phone recognition
model. We first compose the phone representations us-
ing their phonological attributes. Then we compute the
phone distributions using the hidden vector from the
encoder. Next, the language-independent phones are
transformed into language-dependent phonemes with
the allophone mappings.

4.1. Architecture
We closely follow the architecture described in the pre-
vious work (Li et al., 2021a): The architecture has a
hierarchical structure which is illustrated in Figure 2.
We model three different units explicitly: phonemes,
phones and phonological attributes. Phonemes are typ-
ically language-dependent units, whereas phones are
language-independent units. Phonological attributes or
articulatory attributes are a set of discrete properties
to characterize each phone. The set of phones corre-
sponding to one phoneme in a particular language is
called the allophones of the phoneme, which is anno-
tated by phonologists. We use an annotated dataset
to map between phone and phonemes (Mortensen et
al., 2020). Similarly, each phone can also be decom-
posed into a set of attributes. The correspondence is
also well-studied by linguists and we use tools to ex-
tract attributes for each phone (Mortensen et al., 2016).
During the training process, the encoder would first en-
code each frame of the audio into a hidden vector, from
which we could obtain the distributions of phones in
each frame using their attributes. Each phone distri-
bution is further transformed into phoneme distribu-
tion and optimized by the CTC loss function. In this
work, the encoder is a 12-layer transformer-based en-
coder whose hidden size is 640 and multi-head atten-
tion size is 4 (Vaswani et al., 2017). The feature is
the 40-dimension filter bank. We train the model us-
ing eng, cmn, deu, fra, ita, rus, tur, vie languages from
the Common Voice corpus (Ardila et al., 2020). Our
trained model is available online. 2

2Interspeech21 model at https://github.com/
xinjli/allosaurus

https://github.com/xinjli/allosaurus
https://github.com/xinjli/allosaurus
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4.2. Inference
As the lower part in Figure 2 is language-independent,
we can apply the trained model to any unseen lan-
guages whose inventory is accessible: if both phoneme
and phone inventory are available, we can plug those
inventories into the model and run the inference. If only
the phone inventory is available, we approximate the
phoneme set with its phone set, assuming each phone
is mapped to the same phoneme.
Even the phone inventory, however, is not always avail-
able for every language. For languages whose phone
inventory is absent, an approximated phone inventory
should be used instead. In previous works, the in-
ventory was chosen to be the global inventory Σ̂global:
all the available training phones to make their predic-
tion (Li et al., 2020; Li et al., 2021a). This naïve ap-
proach, however, has the low precision problem be-
cause the set of all training phones is too large. We
demonstrate that, employing the hypothesized invento-
ries Σ̂bayes, Σ̂nearest introduced in the previous section,
we can improve the phone recognition accuracy.

5. Experiments
In this section, we demonstrate our experimental re-
sults for both phone inventory evaluation and phone
recognition. As mentioned in the previous section, we
first build the phylogenetic tree using Glottolog (Nord-
hoff and Hammarström, 2011). The tree contains 7915
languages, where there are 43 top-level language fam-
ilies. We further create a root language node which
possesses all top-level languages as its children, there-
fore all the languages are connected and can be reached
from a single root node. Most leaf nodes can be iden-
tified with ISO 693-3 language ID while most non-
leaf nodes have Glottolog IDs attached to them. Next,
we use the PHOIBLE as our training phone inventory.
PHOIBLE contains 2100 languages, and 2091 of them
can be mapped to one of the leaf node in the Glottolog-
based tree.
For every unseen node in the tree (leaf or non-leaf), we
estimate its phone inventory using our proposed mod-
els. For each model, we specify the size of inventory to
be n = 40, which is a typical size of the phone invento-
ries in our training set. To evaluate the model, we select
77 languages as the unseen testing languages and take
them out of our training languages. The languages are
selected from a recently proposed multilingual phone
dataset (Li et al., 2021c), in which we can identify 77
out of 95 languages in our tree. For every testing lan-
guage, we evaluate both their inventory coverage (us-
ing the F1 score) and the phone recognition accuracy
(using phone error rate) as an extrinsic task. The ISO
693-3 id of testing languages are abk, ace, ady, afn, afr,
aka, asm, azb, bam, bem, ben, bfd, bfq, bin, brv, bsq,
cbv, ces, cha, cpn, dag, dan, deg, dyo, efi, ell, ema, eus,
ewe, ffm, fin, fub, gaa, gla, guj, hak, hau, haw, heb, hil,
hin, hrv, hun, hye, ibb, ibo, idu, ilo, isl, kan, kea, khm,
klu, knn, kri, kub, kye, lad, led, lgq, lit, lkt, lug, mak,

mal, mlt, mya, nan, njm, nld, ozm, pam, pes, run, tzm,
wuu, yue.

5.1. Phone Inventory Evaluation

Model F1 Prec Rec

Fixed Inventory (Σ̂fixed) 51.1 48.7 57.5
Global Inventory (Σ̂global) 59.4 58.1 64.8

Bayesian Network (Σ̂bayes) 61.2 60.0 66.7
Nearest Neighbor (Σ̂nearest) 65.9 71.3 64.7

Table 1: F1, precision and recall for 77 testing lan-
guages and each model. The two models on top are
the baseline models and the two on the bottom are the
proposed models. We use the Tagalog inventory as the
fixed inventory.

Table 1 shows the statistics for the four models: the
fixed language inventory has 51.1 F1 with 48.8 pre-
cision and 57.5 recall. As mentioned in the previous
section, the Tagalog inventory contains many cross-
linguistically common phones, which makes the recall
much higher than the precision. We found it inter-
esting to investigate which commonly used languages
perform better in this regard. We evaluate the top ten
languages, ranked by the population of first language
speakers (Lewis, 2009). Figure 3 indicates that the Ro-
mance branch from the Indo-European language family
tends to have relatively high scores, but none of them
outperforms the Tagalog inventory. While the fixed lan-
guage inventory can capture 50% of the inventory, it
only consists of the inventory from an individual lan-
guage and fails to reflect the global properties of all
languages. On the contrary, the global inventory base-
line is built using statistics from all training languages,
which improves the F1 score by 8 points. Our exper-
iment shows that selecting the most frequent phones
is essential for the global baseline. We also consider
another global inventory baseline which consists of all
basic phones available in the IPA table (without diacrit-
ics and modifiers). This model only achieves a 27.2 F1
score: it captures most phones in every language (high
recall), but it generates many false positives, which sig-
nificantly decreases the precision.
To further incorporate information from local language
branches, we propose the Bayesian Network model and
Nearest Neighbor model. Table 1 shows that they fur-
ther improve the F1 score by 1.8 and 6.5 points respec-
tively. Despite the simplicity of the nearest neighbor
model, it outperforms the Bayesian Network model by
4.7 points. This is because the nearest neighbor model
can capture more languages than the Bayesian Network
Model. Suppose we would like to estimate the inven-
tory of West Germanic (as in Figure 1). The Bayesian
model will only rely on the training languages among
its children: English alone. On the other hand, the near-
est neighbor model can take advantage of training lan-
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Figure 3: Comparison of inventory evaluation using
different fixed language. Spanish has the highest F1
score among the top-10 languages ranked by the popu-
lation.
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Figure 4: Comparison of performance when using dif-
ferent number of nearest neighbors.

guages in other branches: Norwegian. This gives the
nearest neighbor model more information when decid-
ing the inventory, which significantly improve its preci-
sion from 60.0 to 71.3. Next, we investigate the effect
of using different number of nearest neighbors. Fig-
ure 4 is a line plot showing the result of using different
number of nearest neighbors (k). We observe a bias-
variance trend in our experiment. When k = 1, we
simply search for the nearest language and use that lan-
guage to approximate the target language. This suffers
from large variance as it only uses one language’s in-
ventory. Increasing k reduces the variance by averag-
ing over k nearest languages. However, increasing k
too much also hurts the performance as the additional
languages are far from the target language and intro-
duce bias into the inventory instead.

5.2. Universal Phone Recognition
Finally, we report the results of the extrinsic task in
Table 2. The original phone recognition models pro-
pose to use the union of all available phones when the
inventory is not available. This approach, again, suf-

fers from the low-precision problem and only achieves
89.2% PER. In contrast, all 4 models introduced in this
work (including the two baselines) improve the PER
by more than 20%. the nearest neighbor model again
achieves the highest performance of 64.2%. The gap
between 4 models, however, is smaller than the inven-
tory evaluation. This is because phones are not uni-
formly distributed in utterances (Li et al., 2021b), and
frequent phones typically have already been captured
by the global inventory (as we select them based on
the sorted order). We observe that adding frequent
phones from the global inventory to the proposed mod-
els can further improve the results. The major F1 im-
provements of Bayesian Network and Nearest Neigh-
bor approach comes from the identification of other
rare phones, therefore the improvement is reduced in
this task. Despite the small gap between the 4 pro-
posed models, we show that using a proper inventory
could significantly improve the PER.

Model PER Add Del Sub

Default Inventory (Σ) 89.2 3.8 16.2 69.1

Fixed Inventory (Σ̂fixed) 67.4 3.6 15.4 48.2
Global Inventory (Σ̂global) 65.3 3.4 15.2 46.7
Bayesian Network (Σ̂bayes) 64.6 2.5 20.1 41.8
Nearest Neighbor (Σ̂nearest) 64.2 3.2 16.4 44.6

Table 2: Statistics of the universal phone recognition
task. Lower PER (phone error rate) indicates better per-
formance. Add, Del, Sub are Addition, Deletion and
Substitution errors.

6. Limitations
While we get reasonable performance in our testing
languages, we acknowledge that there are several limi-
tations in our approach: first, our approach heavily de-
pends on Glottolog, if the language is not available in
the Glottolog database, then our approach cannot be
applied to it. Second, if the target language does not
have any training languages near it (e.g: it is the only
language in its branch), then the approximation might
not be accurate.

7. Conclusion
In this work, we propose multiple approaches to esti-
mate phone inventories for unseen languages. By us-
ing the knowledge derived from phylogenetic trees, we
demonstrate that they significantly improve the inven-
tory quality over competitive baselines and boost per-
formance in a phone recognition task. This work also
paves the way for appling speech recognition technol-
ogy to (almost) every language in the world. All the
phone inventories of 7915 languages would be released
to enable more researchers to explore them in future re-
search.



1066

8. Bibliographical References
Ardila, R., Branson, M., Davis, K., Kohler, M., Meyer,

J., Henretty, M., Morais, R., Saunders, L., Ty-
ers, F., and Weber, G. (2020). Common voice: A
massively-multilingual speech corpus. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 4218–4222.

Bird, S. and Simons, G. (2003). Seven dimensions of
portability for language documentation and descrip-
tion. Language, pages 557–582.

Black, A. W. (2019). CMU wilderness multilingual
speech dataset. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 5971–5975. IEEE.

Chomsky, N. and Halle, M. (1968). The Sound Pattern
of English. Harper& Row, New York.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. (2009). Introduction to algorithms. MIT
press.

Dunbar, E., Algayres, R., Karadayi, J., Bernard, M.,
Benjumea, J., Cao, X.-N., Miskic, L., Dugrain, C.,
Ondel, L., Black, A., et al. (2019). The zero re-
source speech challenge 2019: Tts without t. In In-
terspeech 2019-20th Annual Conference of the Inter-
national Speech Communication Association.

Dunbar, E., Karadayi, J., Bernard, M., Cao, X.-N., Al-
gayres, R., Ondel, L. B., Sakti, S., and Dupoux, E.
(2020). The zero resource speech challenge 2020:
Discovering discrete subword and word units.

Hayes, B. (2011). Introductory phonology, volume 32.
John Wiley & Sons.

International Phonetic Association, International Pho-
netic Association Staff, et al. (1999). Handbook
of the International Phonetic Association: A guide
to the use of the International Phonetic Alphabet.
Cambridge University Press.

Jakobson, R., Fant, C. G., and Halle, M. (1951). Pre-
liminaries to speech analysis: The distinctive fea-
tures and their correlates. MIT press.

Lewis, M. P. (2009). Ethnologue: Languages of the
world. SIL International.

Li, X., Dalmia, S., Li, J., Lee, M., Littell, P., Yao,
J., Anastasopoulos, A., Mortensen, D. R., Neubig,
G., Black, A. W., and Metze, F. (2020). Universal
phone recognition with a multilingual allophone sys-
tem. In ICASSP 2020.

Li, X., Li, J., Metze, F., and Black, A. W. (2021a).
Hierarchical Phone Recognition with Compositional
Phonetics. In Proc. Interspeech 2021, pages 2461–
2465.

Li, X., Li, J., Yao, J., Black, A. W., and Metze, F.
(2021b). Phone distribution estimation for low re-
source languages. In ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7233–7237.
IEEE.

Li, X., Mortensen, D. R., Metze, F., and Black, A. W.

(2021c). Multilingual phonetic dataset for low re-
source speech recognition. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6958–6962.
IEEE.

Michaud, A., Adams, O., Cohn, T. A., Neubig, G., and
Guillaume, S. (2018). Integrating automatic tran-
scription into the language documentation workflow:
Experiments with na data and the persephone toolkit.
Language Documentation and Conservation.

Steven Moran et al., editors. (2019). PHOIBLE 2.0.
Max Planck Institute for the Science of Human His-
tory, Jena.

Mortensen, D. R., Littell, P., Bharadwaj, A., Goyal,
K., Dyer, C., and Levin, L. S. (2016). Panphon:
A resource for mapping IPA segments to articula-
tory feature vectors. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 3475–
3484. ACL.

Mortensen, D. R., Li, X., Littell, P., Michaud, A., Rijh-
wani, S., Anastasopoulos, A., Black, A. W., Metze,
F., and Neubig, G. (2020). AlloVera: A multi-
lingual allophone database. In Proceedings of the
Twelfth International Conference on Language Re-
sources and Evaluation (LREC 2020).

Müller, M., Franke, J., Waibel, A., and Stüker, S.
(2017). Towards phoneme inventory discovery for
documentation of unwritten languages. In 2017
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5200–5204.
IEEE.

Nettle, D., Romaine, S., et al. (2000). Vanishing
voices: The extinction of the world’s languages. Ox-
ford University Press on Demand.

Nordhoff, S. and Hammarström, H. (2011). Glot-
tolog/langdoc: Defining dialects, languages, and lan-
guage families as collections of resources. In First
International Workshop on Linked Science 2011-
In conjunction with the International Semantic Web
Conference (ISWC 2011).

Varadarajan, B., Khudanpur, S., and Dupoux, E.
(2008). Unsupervised learning of acoustic sub-word
units. In Proceedings of ACL-08: HLT, Short Pa-
pers, pages 165–168.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. Advances in
neural information processing systems, 30.

9. Language Resource References
Creanza, Nicole and Ruhlen, Merritt and Pemberton,

Trevor J and Rosenberg, Noah A and Feldman, Mar-
cus W and Ramachandran, Sohini. (2015). A com-
parison of worldwide phonemic and genetic varia-
tion in human populations. National Acad Sciences,
ISLRN 811-991-003-866-7.



1067

Moran, Steven and McCloy, Daniel and Wright,
Richard. (2014). PHOIBLE online. Max Planck In-
stitute for Evolutionary Anthropology, ISLRN 596-
736-657-858-7.


	Introduction
	Related Work
	Approach
	Baseline
	Bayesian Network Estimation
	Nearest Language Ensemble

	Universal Phone Recognition
	Architecture
	Inference

	Experiments
	Phone Inventory Evaluation
	Universal Phone Recognition

	Limitations
	Conclusion
	Bibliographical References
	Language Resource References

