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Abstract
Frame shift is a cross-linguistic phenomenon in translation which results in corresponding pairs of linguistic material evoking
different frames. The ability to predict frame shifts would enable (semi-)automatic creation of multilingual frame annotations
and thus speeding up FrameNet creation through annotation projection. Here, we first characterize how frame shifts result from
other linguistic divergences such as translational divergences and construal differences. Our analysis also shows that many
pairs of frames in frame shifts are multi-hop away from each other in Berkeley FrameNet’s net-like configuration. Then, we
propose the Frame Shift Prediction task and demonstrate that our graph attention networks, combined with auxiliary training,
can learn cross-linguistic frame-to-frame correspondence and predict frame shifts.
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1. Introduction
Frame Semantics is an approach to meaning that char-
acterizes the background knowledge against which lin-
guistic entities are understood via systems of interre-
lated concepts called frames (Fillmore, 1982). Frames
are evoked by lexical units (LUs) and involve par-
ticipants and props characterized as frame elements
(see Figure 1 for example annotations in English
and Brazilian Portuguese). The Berkeley FrameNet
(BFN) project establishes a general-purpose resource
for frame semantic descriptions of English (Ruppen-
hofer et al., 2016) and is widely adopted for many NLP
applications. BFN has successfully been adapted for
other languages such as Brazilian Portuguese (Torrent
and Ellsworth, 2013; Torrent et al., 2018b) and Ger-
man (Burchardt et al., 2006; Boas and Ziem, 2018).
The success of these works implies that some frames
are applicable across different languages, while others
can be adapted to fit language specificities (Gilardi and
Baker, 2018; Baker and Lorenzi, 2020).
Nonetheless, researchers working with non-
English FrameNets find that differences in lexical-
constructional patterns between languages result in
frame shifts (Subirats and Sato, 2003; Litkowski, 2009;
Padó and Lapata, 2009; Czulo, 2017; Lindén et al.,
2019; Giouli et al., 2020; Ohara, 2020; Ellsworth et
al., 2021). Because FrameNet frames are sensitive to
variations e.g. in valency or syntactic configuration,
when a given sentence is translated from one language
to another, it is frequently the case that the frames
evoked will be significantly different for orginals and
translations. In a test set of 30 sentences, Torrent et al.
(2018a) find a direct frame correspondence between
sentences in English and their translation to Brazilian
Portuguese of only 0.51. Here, as shown in Figure 1,

† Work done when studying at Minerva University as an
undergraduate.

we focus on a type of frame shift where, in a pair
of parallel sentences, the corresponding LUs evoke
two different frames. The issue of frame shift is of
major importance for projecting annotations from one
language to another and for bootstrapping FrameNets
from parallel corpora, and we address this issue by
using graph neural networks to predict frame shifts.

Todo mundo  se      interessa por educação .

Everybody has an  interest  in education .
interest.n

Emotion_
directed

Experiencer Topic

interessar - se.v

(All) (self) (interest) (in)(education)

Experiencer Mental_stimulus_
exp_focus

Topic

(world)

Figure 1: An example of frame shift in a pair of En-
glish and Brazilian Portuguese parallel sentences. The
frame-evoking lexical units are bold and italicized, the
frames are annotated under them and colored in red,
and the frame elements are annotated in black.

In summary, this paper makes the following contri-
butions: (a) we present a case study of frame shifts
and identify their possible causes; (b) we propose a
new task, Frame Shift Prediction (FSP), for predicting
frame shifts in parallel texts; (c) our empirical results
show that representing frames with graph attention net-
works (GAT) outperforms existing multilingual frame
embedding methods in FSP.

2. Related Work

Multilingual FrameNet. Currently, there are more
than 20 FrameNet (FN) resources in various lan-
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guages.1 One way to automatically expand FN to a new
language is by projecting frame annotations (Johans-
son and Nugues, 2006). This is motivated by the fact
that many frames constitute appropriate characteriza-
tions of events and situations that can be applied across
difference languages, especially those related to basic
human experiences (like eating and sleeping) and com-
mon cultural or social practices (like commercial trans-
actions and employment). Gilardi and Baker (2018)
show that frames from FN databases of different lan-
guages, developed independently, can, in principle, be
aligned.
While FNs in each language use similar or even iden-
tical frames for annotation, recent work reports vari-
ations in how the translators ”frame” the sentences
on the conceptual level (Subirats and Sato, 2003;
Litkowski, 2009; Padó and Lapata, 2009; Čulo, 2013;
Lindén et al., 2019; Giouli et al., 2020; Ohara, 2020).
Ellsworth et al. (2021) report that even when there ex-
ists an available equivalent frame for annotating a par-
allel sentence, the translated phrase may evoke a dif-
ferent target frame. Our work sheds light on the rela-
tionship between frame shifts and linguistic variation
in translations.

Graph Neural Networks. Graph neural networks
(GNNs) have been proven successful in encoding re-
lational data and graphs in NLP tasks, such as knowl-
edge graph completion (Shang et al., 2019; Zhang et
al., 2020), syntactic and semantic parsing (Marcheg-
giani and Titov, 2017; Bogin et al., 2019; Gu et al.,
2021). A graph consists of a set of nodes connected
to one another by a set of relations, and the basic idea
behind GNNs is to learn node embeddings that reflect
the structure of the graph (Hamilton et al., 2017). In
practice, GNNs learn the embedding for a node by ag-
gregating the embeddings of its neighbors iteratively.
Frames in FN are connected by different types of
frame-to-frame relations such as Inheritance or Prece-
dence (in a temporal sense). Therefore, GNNs are ide-
ally suited to modeling frames because of their abil-
ity to capture those relational dependencies. Li et
al. (2017) and Suhail and Sigal (2019) applied GNNs
to learn the dependencies between verb and frame-
semantic roles for situation recognition. Here, we
use graph attention network (Veličković et al., 2018),
which is a type of GNNs, to model frame relations and
predict frame shifts.

3. Linguistic and Quantitative Analysis
of Frame Shifts

3.1. Frame Shifts Dataset
We create the dataset for frame shifts from the Global
FrameNet Shared Annotation Task (Torrent et al.,
2018a), which has been devised to assess whether

1See a potentially non-exhaustive list under
www.globalframenet.org.

frames in BFN 1.7 suit the semantics of LUs in dif-
ferent languages. At the time of the study, the En-
glish, Brazilian and German datasets were among the
most comparable in terms of annotation coverage and
could be assessed by the research team involved in the
study. Given an English sentence and its translation
in German (DE) and Brazilian Portuguese (PT), we
first construct the word-to-word correspondence with
Fast Align (Dyer et al., 2013) and then extract the cor-
responding LUs. We also use the Open Multilingual
WordNet (Bond and Paik, 2012) to filter out false posi-
tives, that is, LUs which are not translation equivalents.
In the end, we extract 95 EN-DE and 316 EN-PT anno-
tation pairs for FSP. Frame shifts are found in 36% of
the EN-DE and 22.4% of the EN-PT pairs.

3.2. Translational divergences
We rely on the model for description or translational
divergences as developed by Dorr (1994). Next, we
present examples of frame shifts in our dataset for each
of the divergence categories.

Categorial Categorial divergence happens when two
languages use words of different parts-of-speech to ex-
press the same meaning. Figure 1 illustrates the ex-
ample of frame shift caused by categorial divergence:
the English noun interest in the phrase has an interest
corresponds to the Portuguese verb phrase se interessa
(”to interest oneself”). They evoke different frames as
the former refers to the feeling of interest, whereas the
latter refers to the evocation of an emotional response
in the EXPERIENCER to the TOPIC.

Conflational/Inflational Conflational divergence
occurs when two or more words in one language are
translated into one word in another language, whereas
inflational divergence is the opposite. In Figure 2,
the inflational divergence splits the English word
everywhere into two Portuguese words and causes the
translated frame-evoking counterpart lugar (place) to
lose the conceptual relativity to other locations.

Everywhere   on Earth .

Qualquer  lugar    do  planeta.

Locative_
relation

Locale

Location

Relative_
location

everywhere.adv

lugar.n

(Any) (place) (on) (planet)

Figure 2: Frame shift due to inflational divergence.

Lexical The unavailability of an exact translation for
a construction in a language leads to lexical divergence.
In frame semantics, divergence of LUs often causes di-
vergence in meaning. For instance, as shown in Figure
3, the German translation for the English phrase play
out is enden (end), which differs on the dimension of
the realization of the terminal state.
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No idea how this may play out .

Keine Ahnung  wie   das   enden wird.

Turn-
ing_
out

Process_
end

State_of_
affairs

Pro-
cess

play.v

(No) (idea) (how) (this) (end) (will)

enden.v

Man-
ner

Figure 3: Frame shift due to lexical divergence.

Structural This divergence happens when verb argu-
ments result in different syntactic configurations. In
Figure 4, the English verb move does not take a re-
flexive direct object so it evokes the Motion frame,
in which the subject of motion is the THEME (entity
that changes location). On the other hand, the Por-
tuguese verb mexer (move) is adjacent to the reflexive
particle se (self), which is interpreted as the AGENT
moving his/her body; therefore, the verb evokes the
Body movement frame.

Precisavam    se    mexer   para pensar .

Who had to move to think .
move.v

MotionTheme Purpose

mexer.v

(They had to) (move)

Agent Body_mo-
vement

(self) (to) (think)

Figure 4: Frame shift due to structural divergence.

Thematic and Head Swapping We did not observe
frame shifts caused by thematic divergence (inversion
of semantic roles) and head swapping (inverted direc-
tion of the dependency relations) in our dataset.

3.3. Construal Differences
We find that translational divergences alone (Sec-
tion 3.2) are insufficient to account for all instances
of frame shift. The reason is that the linguistic ex-
pressions can be almost identical in the semantic con-
tent but differ in the decoding of their meanings along
certain dimensions of construal (Verhagen and others,
2007; Trott et al., 2020). The following analysis of the
effects of construal operations is by no means exhaus-
tive.

Resolution As lexical categories form taxonomic hi-
erarchies consisting of various levels of specificity
(e.g., cat < mammal < animal < organism), language
users can express a concept with different degrees of
granularity. Therefore, the expressions can evoke dif-
ferent frames. In Figure 5, the lexical item said is more
schematic compared to the word perguntei (ask) where
the former denotes the generic action of communicat-
ing a message, whereas the latter provides additional
information about the nature of the message.

I said , ' How did you get to be a dancer ? '

Eu   perguntei   : ' Gillian , como você  se        

tornou    dançarina ? '

State-
ment

Message

Questioning

say.v

Speak-
er

(I) (asked) (Gillian) (how)(you)

(become)

(self)

(dancer)

perguntar.v

Speaker Message

Message

Figure 5: Frame shift due to differences in resolution.

Prominence Prominence refers to the relative focus
of attention on elements against the rest in a scene. In
Figure 6, while both sentences characterize the style of
thinking with adverbial phrases, the linguistic expres-
sion in sound makes explicit the auditory sensation.
In contrast, the Portuguese adverb auditivamente (au-
rally) foregrounds the thinking action Pensamos (We
think), which is labeled with the frame element COM-
PARISON ACTIVITY that indicates the activity charac-
terized by the Manner frame.

We think in sound .

Pensamos  auditivamente .

Sensation

Manner

Percept

Comparison
_activity

sound.n

auditivamente.adv

(We think) (aurally)

Figure 6: Frame shift due to differences in prominence.
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Figure 7: Distribution of the number of nodes apart for
frame shifts.

3.4. Quantitative Analysis of Frame Shifts
Figure 7 demonstrates a unimodal distribution of the
distance in the FN network of diverging frames. Di-
verging frames do not necessarily exhibit first-order
frame-to-frame relations; many are more than one hop
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away from each other (see Figure 8). Most of the frame
pairs are connected to each other. Even though not the
full potential of connections FN is exploited to date,
only two out of the 104 pairs of diverging frames do
not have a path connecting them. In other words, frame
shifts can be accounted for by the net-like configura-
tion of FN, which is similar to the conclusion drawn by
Torrent et al. (2018a).

Emotion_directed

Emotions

Experiencer_focused_emotion

Mental_stimulus_exp_focus

Is_used_by Is_perspectivized_in

Is_inherited_by

(interessar - se.v)

(interest.n)

(interest - oneself)

Figure 8: Visualization of the path connect-
ing the pair of frames (Emotion directed and
Mental stimulus exp focus) in frame shift in
Figure 1.

4. Frame Shift Prediction (FSP)
4.1. Task Description
FSP is a multi-class classification task. Given a labeled
frame fsrc ∈ F , where F denotes the set of all 1224
frames in BFN 1.7 (Ruppenhofer et al., 2016), for a lex-
ical unit LUsrc in the source English sentence, our goal
is to predict the frame ftgt ∈ F for the corresponding
lexical unit LU tgt in the target German and Brazilian
Portuguese sentences. Following the Global FrameNet
Shared Annotation Task (Torrent et al., 2018a), we use
the same F for all three languages during training and
inference.

4.2. Proposed Model
Figure 9 shows our proposed approach to FSP2.
We propose using graph attention networks (GATs)
(Veličković et al., 2018) to represent frames to capture
the relational structure of FN. The attention mechanism
in GATs learns the weights of neighboring nodes ac-
cording to node similarity and improves semantic clus-
tering of frames (Wang et al., 2019).
We propose using GAT because it models the inter-
actions between frames through learnable scalar cof-
fecients. In other words, it allows us to model non-
structure-driven interactions among frames in frame
shifts. In FSP, the structural components are the frame-
to-frame relationships, whereas the non-structural
counterparts, which include frame-evoking LUs, trans-
lational divergences and construal differences, are ab-
sent from our FN network.

2https://github.com/yongzx/Semantic-Frame-Shift
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Figure 9: Proposed approach for FSP using graph at-
tention networks (GAT) and auxiliary training to repre-
sent frames.

4.2.1. Graph Initialization
We define a graph G = (V,E,H) composed of a
set of graph nodes V , node representations H =
(h1, ..., h|V |) and a set of directed edges E =
(E1, ..., EK) where K is the number of edges. Each
of the 1224 nodes corresponds to a frame in F . Each
directed edge represents a frame-to-frame relation, and
we do not distinguish between their types since, for
the purposes of this study, it does not matter whether
an edge captures a generic-specific relation (such as
Inheritance) or causative-stative relation (such as
Causative of ), as both can be due to differences on
how source and target language encode meaning. We
initialize the nodes with multilingual LASER sentence
representations of the frame definitions, where sen-
tences from different languages are mapped into the
same embedding space through a BiLSTM encoder
(Artetxe and Schwenk, 2019).

4.2.2. Graph Attention Network (GAT)
GAT consists of a stack of graph attentional layers
(Veličković et al., 2018). Each layer applies multi-
headed self-attention mechanism to transform its in-
puts, which is a set of node representations H =
(h1, ..., h|V |), hi ∈ RD (where |V | is the number of
nodes, and D is the dimension of the node represen-
tation), to a new set of node representations, H ′ =
(h′

1, ..., h
′
|V |), h

′
i ∈ RD′

, of potentially different di-
mension D′. For m-th attention head, the output fea-
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Data # lus # frames # sents langs tasks
Semantic Frame Shift
Prediction Dataset
(Section 3.1)

952 179 788 de, en, pt Frame Shift Prediction

Berkeley FrameNet 1.7
(Ruppenhofer et al., 2016) 8404 1224 174527 en

Link Prediction
Path Length Prediction

Binary Frame Prediction
Frame Label Reconstruction

Multilingual frame-
annotated corpus
(Johannsen et al., 2015)

7558 729 18442
bg, da, de,
el, en, es,
fr, it, sv

Binary Frame Prediction
Frame Label Reconstruction

Table 1: Statistics of the all datasets in training GAT for FSP.

ture for a node i is the linear combination of the input
features of the node’s first-order neighbors j (includ-
ing itself i), weighted by the normalized attention co-
efficients α(m)

ij . Then, the output features (which may
undergo non-linear transformation σ) from all attention
heads are concatenated to produce h′

i. The transforma-
tion from hi to h′

i is as follows.

e
(m)
ij = LeakyRELU(a(m)T [W(m)hi∥W(m)hj ])

α
(m)
ij =

exp(e
(m)
ij )∑

k∈Ni
exp(e

(m)
ik )

h′
i =

M

∥
m=1

σ

∑
j∈Ni

α
(m)
ij W(m)hj


We follow the basic architecture of Veličković et al.
(2018) and implement a two-layer GAT model. Dif-
fering from Veličković et al. (2018), the output layer is
a linear transformation layer followed by the softmax
layer to include the LUs when the model calculates the
probability for each frame ftgt ∈ F . The probability
distribution P (ftgt|fsrc, LUsrc, LUtgt) is computed as
follows:

softmax(W ([hfsrc ;wsrc;wtgt; psrc; ptgt]) + b)

where hfsrc is the node representation of fsrc; wsrc and
wtgt are the pretrained mBERT embeddings of LUsrc

and LUtgt respectively; psrc and ptgt are randomly ini-
tialized embeddings for parts-of-speech tags; W and b
are the trainable parameters of the output layer. The
whole system is trained with the cross-entropy loss
function.

4.2.3. Graph Regularization
To improve the generalization ability of GAT and pre-
vent it from overfitting, we further introduce two graph
regularization techniques: NodeNorm (Zhou et al.,
2020) and DropEdge (Rong et al., 2020). NodeNorm
normalizes the embedding of every node in each layer
by its own mean and standard deviation. It increases
the smoothness of the model w.r.t. node features, so
similar frames share similar representations. On the

other hand, DropEdge randomly drops out a certain rate
of edges of the input graph for each training time. As
an unbiased data augmentation technique (Rong et al.,
2020), it enables a random subset aggregation instead
of the full aggregation during GAT training, thus better
capable of preventing overfitting.

4.3. Auxiliary Training
We propose several auxiliary training tasks for GAT for
two purposes. First, tasks 1 and 2 train our model to ex-
plicitly learn the connections among frames since we
observe that 102 out of 104 pairs of diverging frames
in our dataset are connected in FN. On the other hand,
tasks 3 and 4 help our GAT associate frames with LUs
since the relational structure of FN does not inform
GAT how LUs evoke frames. These two tasks enable
GAT model to implicitly learn the information about
frame-evoking LUs (instead of explicitly representing
LUs as nodes in the FrameNet graph).

1. Link Prediction. A binary classification prob-
lem where the model predicts if there is a frame-
to-frame relation between two semantic frames,
(f1, f2) ∈ E.

2. Path Length Prediction. A regression task where
the model predicts the number of edges between
two frames, (f1, f2) ∈ E.

3. Binary Frame Prediction. A binary classifica-
tion task where, given a pair of randomly chosen
frame f and an LU LUx, the model predicts if
LUx evokes f .

4. Frame Label Reconstruction. A multi-class
classification task where some of the frame la-
bels f for annotated sentences are randomly ”per-
turbed” into incorrect frame labels fx with a prob-
ability p, and the model is trained to recover the
correct frame f .

Task 2 uses the mean squared error as the objective
function whereas the rest uses cross entropy loss. The
combined loss for training GAT is the sum of losses
from the auxiliary tasks and the primary FSP task,
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Tasks # Layers Layer Parameters Objective Functions
Frame Shift Prediction 1 RDf+2×(Dw+Dpos) Cross-Entropy Loss
Link Prediction 1 R2×Df → R2 Cross-Entropy Loss
Path Length Prediction 2 R2×Df → R1024 → R Mean-Squared Error
Binary Frame Prediction 1 RDf+Dw+Dpos → R2 Cross-Entropy Loss
Frame Label Reconstruction 1 RDf+2×(Dw+Dpos) → R1224 Cross-Entropy Loss

Table 2: Parameters of output layers for frame shift prediction and auxiliary tasks.

weighted by the homoscedastic uncertainty of each task
(Kendall et al., 2018).

4.4. Datasets
Table 1 shows the statistics of the datasets used for FSP
(primary task) and the auxiliary tasks. FSP experiments
use the frame shifts dataset described in Section 3.1.
On the other hand, auxiliary tasks 1 and 2 use the
frame-to-frame relationships information in BFN 1.7
(Ruppenhofer et al., 2016) for training, whereas tasks 3
and 4 use the lexicographic annotations for the LUs in
BFN 1.7 and the multilingual frame-annotated corpus
(Johannsen et al., 2015).

4.5. Experimental Setup
We selected hyperparameters for GAT via Bayesian op-
timization on the Frame Label Reconstruction task and
used the same hyperparameters for FSP. The resulting
first layer of GAT consists of 9 attention heads comput-
ing 109 features each, and the second layer 10 attention
heads 256 features each. The final softmax classifier
only has a single linear transformation layer that re-
ceives 1824 input features from GAT and lexical units
and outputs 1224 features (as frame classes).
Table 2 shows the details of the final output layers for
FSP and auxiliary tasks. We optimize their hyperpa-
rameters, namely the number of layers and the hidden
features’ dimension, on the respective auxiliary tasks
before reusing hyperparameters for FSP. Here, we use
Df = 256 to denote the dimension of frame repre-
sentations, Dpos = 16 the dimension of POS tag em-
beddings, and Dw = 768 the dimension of mBERT
embeddings of LUs.
We represent the LUs with mBERT embeddings (De-
vlin et al., 2019). Parts-of-speech tags are represented
with randomly initialized embeddings of dimension 16.
We train the model using the Adam optimizer with a
batch size of 512, learning rate of 0.005, and weight
decay of λ = 0.0005. For each setting, we perform five
runs of nested five-fold cross-validation on a Nvidia
Tesla P100 GPU and report their average F1 scores
as well as their standard deviations. The inner cross-
validation is used to find the suitable number of training
epochs. Training and evaluation model take approxi-
mately three hours.

4.6. Baselines
Since our paper is the first attempt to predict frame
shifts, we do not have other classifiers to directly com-

pare with. As we are proposing a novel frame rep-
resentation method for the multilingual task, we use
other recent multilingual frame representation methods
as baselines. The frame representations obtained from
the baselines are concatenated with the word embed-
dings and part-of-speech tag embeddings of the LUs.
Subsequently, the tensors are passed through a single
linear transformation layer and a softmax final layer for
classification.
Direct Transfer. This method assumes that frame
shifts are absent and projects the frame labels without
changes. In other words, ftgt = fsrc.
Randomized Frame Embeddings. This method rep-
resents each frame with a trainable, randomized em-
bedding of dimension 256. The embeddings are cross-
lingual because they are trained with the FSP dataset.
Sikos and Padó (2018). The authors embedded En-
glish and German frames from BFN 1.5 and SALSA
corpus in the same vector space. In our setup, the frame
embeddings are only used for FSP between English and
German. We directly transfer the frames that are not
embedded by the authors.
Sikos and Padó (2019). The authors embedded frames
with the pretrained BERT model with and without fine-
tuning. Without finetuning, frame embeddings are the
unweighted centroid of the contextualized embeddings
of the corresponding LUs. Otherwise, the frame em-
beddings are finetuned to predict frame labels for each
word token in the full-text annotations. In our setup,
we use the multilingual BERT (mBERT) model to rep-
resent frames and finetune them on all the datasets in
Table 1 following the authors’ instructions.
Baker and Lorenzi (2020) The authors created frame
embeddings using the unweighted centroid of the Fast-
Text embeddings of the LUs. In our experiments, we
embed the LUs in the source and target sentences with
FastText representations.

4.7. Evaluation
To ensure a robust evaluation of models on a small
FSP dataset, we evaluate each model with the five-fold
nested cross-validation (CV) method. It separates the
CV fold used for model development (including feature
selection and parameter tuning) from the one used for
model evaluation; therefore, the performance estimates
are unaffected by and unbiased to the sample sizes (Va-
balas et al., 2019).
We evaluate FSP with the top-5 F1 score. As long
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Models EN → PT EN → DE EN → (PT + DE)
Direct Transfer 77.5 63.9 74.3
Randomized Embeddings 44.2 (± 3.1) 37.7 (± 2.4) 39.8 (± 2.9)
Sikos and Padó (2018) - 55.2 (± 3.5) -
mBERT (w/o finetuning) (Sikos and Padó, 2019) 53.4 (± 1.7) 47.8 (± 4.3) 49.3 (± 2.4)
mBERT (with finetuning) (Sikos and Padó, 2019) 71.5 (± 2.3) 65.6 (± 0.9) 68.7 (± 2.2)
FastText (Baker and Lorenzi, 2020) 54.8 (± 1.1) 43.7 (± 2.6) 50.1 (± 1.8)
GAT (w/o auxiliary training) 57.1 (± 1.3) 40.2 (± 1.8) 55.9 (± 4.1)
GAT (with auxiliary training) 83.1 (± 1.5) 68.0 (± 1.9) 79.7 (± 2.0)

Table 3: 5-Fold nested cross-validation with top-5 F1 scores (± standard deviation) for each model in predicting
frame shifts. X → Y denotes that projecting frames from language X to language Y (EN: English, PT: Portuguese,
DE: German).

as the correct frame label is among the top-5 most
probable predicted frame shifts–––hence the term ”top-
5”–––we consider the model to have successfully pre-
dicted the frame shift. The reason for this metric choice
is that the size of our FSP dataset is much smaller than
the number of classes (1224 frames with varying gran-
ularity) in this experiment. As a result, the models have
to perform FSP on frames they have not seen before in
FSP training. Furthermore, the frame labels vary with
respect to granularity, which can cause the model to
suffer from class ambiguity. Therefore, we argue that
the top-5 F1 score gives a more realistic performance
evaluation.

5. Discussion
5.1. Frame Shift Prediction
Table 3 illustrates the performance of different mod-
els in FSP. Embedding-based baseline models gener-
ally perform worse than the Direct Tansfer approach.
Hence, we argue that simply aggregating embeddings
of LUs from pretrained models to represent frames can-
not capture the fine-grained semantic distinctions be-
tween frames. One solution is to finetune the embed-
dings of LUs by learning to map them to the frames
they evoke. The reason is that, after finetuning, the
embeddings of LUs are more similar if the LUs evoke
the same frame, and less similar if they evoke dif-
ferent frames. In other words, finetuned embeddings
better encode the similarities and variations between
frames. As seen in Table 3, the finetuned embed-
dings of mBERT (Sikos and Padó, 2019) demonstrate
the best FSP performance among the embedding-based
baselines.
Our use of GAT and auxiliary training to represent
frames achieves the best performance. We want to
highlight the differences in our approach: our model
treats frames and LUs as independent units and learns
their relations through the auxiliary tasks 3 and 4, as
opposed to representing frames as a combination of
LU representations (Peng et al., 2018; Sikos and Padó,
2018; Sikos and Padó, 2019; Popov and Sikos, 2019;
Alhoshan et al., 2019; Baker and Lorenzi, 2020). Fur-
thermore, our approach can represent so-called non-

lexical frames – i.e. frames that are assumed to be
present in the conceptual system but are not linguis-
tically realized in a language – because of the message
propagation from their surrounding nodes. The main
takeaway here is that learning the relational structure
of FN enables FSP.
We see a significant decrease in performance when
auxiliary training is absent. Auxiliary training boosts
performance for the FSP in Brazilian Portuguese (EN
→ PT) even though the auxiliary datasets (see Table 1)
do not contain Brazilian Portuguese sentences. This
shows that the auxiliary learning successfully encodes
cross-linguistic information about frames — it helps
the GAT model to learn the frame-to-frame and LU-
to-frame relationships, thus creating more generalized
and meaningful frame representations.
The study limitation is the small sample size. Global
FrameNet (Torrent et al., 2018a) is an initiative involv-
ing several languages, and the shared annotation task
requires fine grained annotation of the parallel corpora.
Nonetheless, it is the dataset the FN community cur-
rently uses for studying frame adequacy across lan-
guages.

5.2. Visualization of Frame Representations
Figure 10 illustrates the semantic frame representations
with UMAP dimensionality reduction (McInnes et al.,
2018). To obtain the frame representations, we average
the node representations from five different GAT mod-
els trained in the five-fold nested cross-validation. We
foreground two clear clusters of frames, where one is
related to commerce and the other related to occupa-
tion, to show that GAT learns the underlying relation-
ships between frames.
There are two main findings. First, the frames in
the clusters are connected to one another in FN;
for instance, Member of military inherits from
People by vocation, and Being employed is
a subframe of Employee scenario. Second, we
obtain similar representations for frames that share a
domain but are not connected. Price per unit and
Commercial goods-transfer are both concep-
tually related to commerce, and there is no path con-
necting them in FN, but they are still clustered together
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Commerce_buy

Commerce_sell

Commerce_scenario

Price_per_unit

Commerce_goods-
transfer

Renting_out
Shopping

Being_employed

Employee_scenario

People_by_vocation

Medical_
professionals

Member_of_military

Becoming_a_member

Figure 10: UMAP visualization of semantic frame vectors learned by our proposed graph attention networks
model. We color-code the frames related to commerce (in red) and occupation (in green) to show the clustering of
frames.

because of their semantic associations. The cluster-
ing is thus a sign that the GAT model has successfully
learned the relationships between frames also beyond
the explicit connections made in FrameNet.

5.3. Ablation Study

Models F1 ∆
GAT (all Auxiliary Tasks) 79.7 -
– Link Prediction 76.1 -3.6
– Path Length Prediction 75.5 -4.2
– Binary Frame Prediction 69.4 -10.3
– Frame Label Reconstruction 63.7 -16.0
– All Auxiliary Tasks 55.9 -23.8

Table 4: Ablation study on auxiliary tasks.

Table 4 shows the result of an ablation study of aux-
iliary tasks. We conclude that the auxiliary tasks are
suitable for learning frame shifts as ablation of any
task hurts FSP. Out of the four tasks, Frame Label
Reconstruction is the most helpful for learning FSP.
This could be due to shared task structure and classi-
fier parameters between the auxiliary task and the FSP
task, as both tasks compute the posterior probability of
frame labels for a LU given a prior (source) frame. In
contrast, Link Prediction contributes the least to FSP.
This is possibly due the presence of frames that are not
immediate neighbors in FrameNet, making supervised
learning of frame-to-frame relations less informative.

6. Limitations and Future Work
Since the main limitation of our study is the small
amount of FSP data, we encourage future work to ex-
plore methods to augment the training data to better
model frames’ relationship and methods to incorporate
relational information about frames into zero-shot or
few-shot learning techniques such as prompt learning
(Lin et al., 2021; Sanh et al., 2022; Wei et al., 2022),
where we perform a task with zero or few demonstra-
tion examples and task instructions (i.e., prompts).
Our work focuses on two langauge pairs: EN-DE and
EN-PT. Therefore, further research will be necessary

into the extent to which the methodology can be trans-
ferred to other language pairs. Our study involves ty-
pology closely related languages, and we expect our
methods to be transferable to other closely related lan-
guages. The divergence categories we borrowed from
Dorr (1994) present a formal way of describing some
types of shifts observed, at least some of which also
cover phenomena seen in the interaction between ty-
pologically more distant languages such as the head-
switch in translations between English and Japanese
as, e.g., described by Ohara (2020).3 In (Czulo, 2017;
Ohara, 2020), i.a., the authors discuss potential factors
of frame shifts which range from formal factors to such
factors as register conventions or differences in fram-
ing preferences between languages; this is an open list
of factors which may not be as easily formalized by
means of above-referenced categories. Further studies
should include both testing for yet undescribed frame
shift factors as well as divergence categories.

7. Conclusion
Our research analyzes frame shifts that co-occur with
variation on the morpho-syntactic level or may come
down to differences in construal. We also pioneer a
new task, Frame Shift Prediction (FSP), and show that
Graph Attention Networks (GATs) can predict frame
shifts by learning FrameNet’s relational structure and
the lexical units.
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