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Abstract
The Twitter Streaming API has been used to create language-specific corpora with varying degrees of success. Selecting a filter of
frequent yet distinct keywords for German resulted in a near-complete collection of German tweets. This method is promising as it
keeps within Twitter endpoint limitations and could be applied to other languages besides German. But so far no research has compared
methods for selecting optimal keywords for this task. This paper proposes a method for finding optimal key phrases based on a
greedy solution to the maximum coverage problem. We generate candidate key phrases for the 50 most frequent languages on Twitter.
Candidates are then iteratively selected based on a variety of scoring functions applied to their coverage of target tweets. Selecting
candidates based on the scoring function that exponentiates the precision of a key phrase and weighs it by recall achieved the best results
overall. Some target languages yield lower results than what could be expected from their prevalence on Twitter. Upon analyzing the
errors, we find that these are languages that are very close to more prevalent languages. In these cases, key phrases that limit finding the
competitive language are selected, and overall recall on the target language also decreases. We publish the resulting optimized lists for
each language as a resource. The code to generate lists for other research objectives is also supplied.
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1. Introduction
Twitter data has frequently been used to study the public re-
action to specific topics or events (Leetaru et al., 2013). In
Natural Language Processing this trend is mirrored in popu-
lar subtasks like sentiment mining and event detection, and
the appeal of tweets for these purposes is understandable;
they comprise abundant, open and mostly unfiltered public
feedback (Barnaghi et al., 2016).
But collecting tweets for diverse purposes is no straightfor-
ward task. Researchers ultimately make design choices on
which keywords, hashtags and users to search, without any
gold standard reference to test the resulting data snapshot.
Additionally, not all tweets are made available to the search
index (Twitter, 2019c). Twitter is free to put any restrictions
on their results, whether it is on the maximum number of
hits or on how far back search results go.
As an alternative to the retrospective search approach, the
Twitter Streaming API (Twitter, 2019b) has been used to
collect high-volume language-specific corpora in real-time.
By filtering the stream on a list of frequent yet distinct
keywords for a specific language, it is possible to achieve
high coverage of a reference set. Such lists of keywords
have been created for Dutch (Tjong Kim Sang and Van den
Bosch, 2013), Italian (Basile and Nissim, 2013), German
(Scheffler, 2014), Hindi, Telugu and Bengali (Choudhary
et al., 2018).
This paper offers three main improvements to the previous
work. First, we compare methods for selecting optimal key-
words for creating language-specific Twitter corpora. Sec-
ond, we closely replicate the real-world performance of
these methods in our experimental setup so that the limi-
tations of the resulting corpora are known for any down-
stream task. Third, although we conform to the Twitter De-
veloper Agreement (Twitter, 2019a) and will not share the
language-specific corpora, we do provide the lists of opti-
mized keywords for the top 50 languages on Twitter and the
code to generate lists for other languages.

2. Background
Distribution of large collections of tweets is disallowed un-
der the Twitter Developer Agreement and Policy (Twitter,
2019a). Initiatives to share large general-purpose Twitter
collection, such as the Edinburgh Twitter Corpus (Petrović
et al., 2010) have been shut down under this regulation.
Consequently, studies on Twitter data have moved away
from large scale general-purpose collections to data snap-
shots designed for a specific downstream task. Three main
filtering approaches can be distinguished in previous work.

2.1. Location-based Filtering
Twitter introduced an opt-in for sending location informa-
tion with tweets in 2009. This has allowed researchers to
study language use alongside fine-grained geographic dis-
tinctions.
Location-based filtering has proven invaluable for creating
datasets for dialectology with relatively low effort (Eisen-
stein et al., 2010; Huang et al., 2016). Laitinen et al. (2018)
show that location-based filtering can successfully be de-
ployed for studying language spread across country bor-
ders.
Location-based filtering is less suitable for creating
language-specific corpora. Bergsma et al. (2012) design
filters based on the coordinates of major cities where speak-
ers of a target language are prominent. The resulting col-
lections were relatively pure for Arabic (99.9%) and Farsi
(99.7%) but not for Urdu (61.0%). Since a very low per-
centage (between 0.7% and 2.9% depending on the coun-
try) of Twitter users enable location sharing, filtering by
location yields very low coverage (Barbaresi, 2016).

2.2. User-based Filtering
Filtering by username is useful in cases where a very spe-
cific group of users is targeted. Praet et al. (2018) col-
lected tweets by Flemish politicians to analyze which po-
litical issues were most often communicated, and whether
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this aligned with their parties’ agenda.
Barbaresi (2016) used user-based filtering in conjunction
with location-based filtering to find tweets by Austrian
Twitter users. The resulting collection had mostly English
(42.2%) language tweets.

2.3. Word-based Filtering
Word-based filtering best suits the purpose of creating
language-specific corpora. Scheffler (2014) was able to
collect a near-complete snapshot of German twitter mes-
sages by tapping the Streaming API for German stopwords.
They removed words from the list that are also frequent
in other languages (such as ‘war’ and ‘die’ for English)
and extended it with other frequent and distinctive Ger-
man words. To test for coverage, the collection obtained
through word-based filtering was compared to collections
retrieved with location-based and user-based filtering dur-
ing the same time period. Only around 5% of German
tweets was missing from the collection obtained through
word-based filtering.
Handpicked lists of filter words were also used for collect-
ing Dutch tweets (Tjong Kim Sang and Van den Bosch,
2013). The authors add Twitter-specific terms, such as
trending Dutch hashtags, to their keywords but report that a
lot of other-language tweets still slip through the filter.
A more systematic approach can be found in Basile and
Nissim (2013). Cross-language homographs were detected
using Google Ngrams and removed from a list of most fre-
quent Italian words. Using only the top 20 of the remaining
terms yielded enough data for the eventual purpose of cre-
ating an Italian corpus for sentiment analysis.

2.4. Toward Optimal Filtering
Previous work on word-based filtering has mostly been
deployed as an intermediate step for a downstream task.
These papers understandably deploy some heuristic method
of selecting keywords, and usually do not compare the re-
sulting snapshot with a reference set.
Kreutz and Daelemans (2019) instead focus solely on ob-
taining optimized keywords. Their list of optimized key-
words for Dutch outperforms the hand-picked list in Tjong
Kim Sang and Van den Bosch (2013) in both precision and
recall. From intrinsic evaluation it is also clear that the op-
timized list benefits from being generated on the domain it
is trying to retrieve.
We extend the work of Kreutz and Daelemans (2019) by
comparing additional optimization methods and applying
these to languages other than Dutch. In the process of de-
veloping optimal lists that can be used to collect language-
specific Twitter corpora for the 50 most common languages
on Twitter, we provide the statistics that can be cited as lim-
itations for these collections.

3. Data
To generate optimal keywords over Twitter data, we design
an experimental setup that mirrors the performance of the
keywords on the real-time stream.

3.1. Twitter API Constraints
The Twitter API imposes a 1% rate limit, and will automat-
ically sample down to the rate limit when more tweets pass

the filter (Twitter, 2019b). This puts a hard limit on the
number of tweets that can be obtained for the more dom-
inant languages on Twitter. Language prevalence can be
used to determine the maximum coverage any filtering can
achieve.

3.2. Language Prevalence
We collected tweets using the Twitter sprinkler (Twitter,
2019b) over a period of six months from October 2017 to
March 2018. The Twitter Sprinkler is an access point of
the Twitter Streaming API that can yield 1% of all tweets at
any time. Filtering of the complete datastream can be done
by giving keyphrases, geo-locations, or user handles. We
did not apply any filtering to best approximate a random
sample. This resulted in roughly 570 million tweets.
Although Twitter predicts its own IETF language tags for
most tweets, we found on initial inspection that a pre-
trained FastText language identification model (Joulin et
al., 2017) identified a larger part of the tweets. We think
it is key to assign labels to difficult and even code mixed
tweets. These non-trivial cases crop up in the real-world
setting and cannot be ignored for generating keyphrases and
for reporting their performance.
The FastText (large) 176 ISO-tag model was used to assign
silver labels to each tweet. The tags come from a com-
bination of the ISO 639-1 and ISO 639-2 standards found
on the FastText website (Grave, 2017). Table 1 shows the
language prevalence of the five most and the five least iden-
tified languages. FREQ is the relative frequency over our
entire dataset. MEAN is the relative frequency averaged
per hour and better reflects language prevalence normalised
over time. MEAN can be used to determine how many
tweets cannot be retrieved due to the 1% rate limit. MAX
shows the maximum hourly relative frequency. Languages
that never surpass the 1% rate limit throughout the day can
theoretically be collected in full.

Language FREQ MEAN MAX
1. English 39.06% 39.21% 46.93%
2. Japanese 19.18% 19.09% 29.64%
3. Spanish 9.52% 9.45% 13.27%
4. Arabic 7.29% 7.39% 10.82%
5. Portuguese 5.17% 5.10% 9.59%

<40 more languages>

46. Azerbaijani 0.01% 0.01% 0.02%
47. Marathi 0.01% 0.01% 0.02%
48. Guarani 0.01% 0.01% 0.02%
49. Albanian 0.01% 0.01% 0.01%
50. Kannada 0.01% 0.01% 0.01%

Table 1: Language frequency (FREQ), averaged frequency
per hour (MEAN) and maximum average frequency per
hour (MAX) for the most and least identified languages in
6 months of Twitter data.

The Table 1 rankings partially correspond to earlier anal-
yses of the language composition of Twitter. Two notable
differences are the increase in the number of Arabic tweets,
and a decline in English language tweets compared to a
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2011 study (Hong et al., 2011). We expect these differences
to be due to increased popularity of Twitter in Arabic coun-
tries while the U.S. user base stagnated (Semiocast, 2011;
Bloomberg, 2019). However, differences can also be due to
the FastText model identifying more tweets (roughly 9%)
than the IETF labels used in Hong et al. (2011).

3.3. Experimental Setup
After removing retweets, 10,000 tweets were sampled for
the 50 most frequent languages. Non-target language
tweets were added conform to the language distributions.
For example, since Spanish tweets represent roughly 9.52%
of the stream, we sampled 105,042 ( 10000

0.0952 ) other-language
tweets. Since more infrequent languages greatly inflate
the number of other-language tweets supplemented in their
dataset, we opted for a cut-off after the 50 most frequent
languages.
We created development and test data in a similar way, by
sampling roughly 5,000 target language tweets and adding
other language tweets based on their distribution.
While creating separate data sets for each of the targeted
languages may seem extraneous, we opted for this approach
because it would guarantee that key phrase lists would be
sampled from roughly the same number of tweets for each
language. This way, the quality of key phrases can never be
attributed to differences in data size.

3.4. Preprocessing
In preparation of generating and testing keywords, tweets
are parsed according to Twitter documentation (Twitter,
2019a). Tweets were lowercased and any punctuation ex-
cept @ (for mentions of other users) and # (for hashtag
topic markers) were removed.

4. Methods
The Twitter API allows an input of up to 400 60-byte
strings. Disjunctive search is performed between the 400
inputs, and any tweet matching the conjunctive presence of
tokens in an input is retrieved (Twitter, 2019a). From now
on, string inputs will be referred to as key phrases.
We generate token powersets; exhaustive combinations of
tokens present in the target language tweets. The notion is
that each token combination generated from a tweet can be
used as a key phrase to retrieve that tweet from the stream.
Each key phrase is thus associated with a set of target- and
other-language tweets, and in extension a recall and preci-
sion score.

4.1. Maximum Coverage of Tweets
Optimal key phrases maximally cover the set of target lan-
guage tweets, whilst limiting the number of other-language
tweets retrieved. The latter consideration is especially im-
portant considering the 1% rate limit. Key phrases that
confuse target language tweets with other (dominant) lan-
guages can lead to results that are not only impure, but also
incomplete due to down-sampling.
Formally, we consider a collection of key phrasesK, gener-
ated from a target language l, Kl = {Kl

1,K
l
2, ...,K

l
n} and

a parallel collection T of sets of tweets identified by those
phrases, T = {T1, T2, ..., Tn}. We compare algorithms for

selecting up to 400 phrases from K to optimize a variety of
objectives to target set T l.

Input : K; T ;
Output: Optimized key phrases O

Function Optimal(K, T):
bestscore← 0
bestphrase← None
for i← 0 to |K| do

if Score(Ti) > bestscore then
bestscore← Score(Ti).
bestphrase← Ki.

return bestphrase

Function Run(K, T , n← 400):
O ← ∅
for i← 0 to n do

Remove tweets covered by O from every set in
T .

Add Optimal(K, T) to O.
return O

Figure 1: Our method iteratively picks a phraseKi with the
highest score with regards to target set Tl and removes all
retrieved tweets from the remaining items in T.

4.2. Scoring Functions
In its classic setting a maximum coverage problem opti-
mizes recall over a target set. Since we also care about pre-
cision, we design scoring functions to reflect this objective
alongside the naive optimization of recall and precision:

1. Optimize Recall (R)
2. Optimize Precision (P )
3. Optimize Recall, but ensure a precision threshold of .9

for each phrase (Rp)
4. Optimize Precision, but ensure a recall threshold of

.01 for each phrase (Pr)
5. Weight Precisionβ by Recall. Higher β adds more im-

portance to precision (P β ∗R)

Although F-score seems like another likely candidate for
scoring key phrases, its reliance on a balanced recall and
precision, even in adaptations like F-beta where precision
receives more weight, make it unsuitable. We demonstrate
the pitfall of reliance on recall sufficiently with scoring
functions 1 and 4.

4.3. Greedy Selection
We consider only a greedy approach to selecting key
phrases, due to the huge number of candidates. Greedy
optimization of maximum coverage problems is shown to
be the best approximation algorithm in polynomial time
(Feige, 1998). The greedy algorithm iteratively picks a key
phrase according to a scoring function from the preceding
list. The covered tweets are then removed and scores are
recalculated before picking the next phrase (Figure 1).
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4.4. Baselines
Naive scoring functions 1 and 2 can be expected to per-
form poorly for the task of creating language-specific Twit-
ter corpora. We expect optimization over recall to select the
stopwords that best identify a target language in addition to
other generic terms such as partial URLs. Optimizing pre-
cision conversely can yield some terms occurring in only a
few tweets.
For more reasonable baseline behavior we draw from pre-
vious work in word-based filtering of tweets in Section 2.3.
First, keyword lists are compiled from the 400 most fre-
quent tokens in a target language training set in line with
Choudhary et al. (2018). These lists are then filtered for
cross-language homographs for the second baseline. How-
ever, making corrections for each language by hand as seen
for Dutch (Tjong Kim Sang and Van den Bosch, 2013)
and German (Scheffler, 2014) would require significant lan-
guage expertise and time investment. We instead assure that
none of the 400 selected words are present in the 1000 most
frequent terms of non-target languages. This automatic fil-
tering of frequent terms is comparable to what has been
done for Italian (Basile and Nissim, 2013).

5. Results
In this section we first qualitatively analyze the key phrases
selected by the different scoring functions. Some expected
drawbacks of each of the greedy selection approaches have
been formulated in the previous section, and are tested by
manual inspection.
We do not assume that scoring functions perform uniformly
for each target language. Specifically, we expect a preva-
lence effect whereby language that are more common on
Twitter would benefit from higher precision phrases as con-
fusion with other languages is more costly. False positives
fill up the stream permitted by the Twitter rate limit and
would lower overall performance. For rarer languages, this
is less important. The P β ∗R scoring function will be grid-
searched for individual languages on the development data
to choose a β value.
Languages that have drastically different performance from
the mean warrant closer inspection with confusion matri-
ces. We hypothesize that languages that have multiple very
closely related languages in the data set score lower due to
frequent confusion with those languages. Alternatively, rel-
atively bad performance can be due to under-representation
in the data. Languages that are less common on Twitter
run a higher risk of selecting false positives with their key
phrases.
Finally, we compare the best greedy selection algorithm
with the proposed baseline methods on the test data.

5.1. Phrase Lists
Consider the outcome for English of the 50 phrases based
on recall and precision in Figure 2.
As expected, the top 50 phrases selected based on their re-
call contain stopwords and partial URLs. We find some
other interesting Twitter-specific terms such as the hashtag
“#iheartawards” and chat speak “lol”, “twt” and “ng”.

Scored by recall rt, https, co, the, to, you, and, my, is,
that, for, it, in, of, me, this, no, on, good, are, lol, so,
just, your, #iheartawards, can, na, with, what, not, need,
too, happy, hahahaha, hello, at, have, from, new, yes, or,
thanks, twt, hahaha, ng, how, bye, up, hi, like

Scored by precision to have, of is rt, the we, rt to on,
and that, the from, would, their, of on, the rt it, rt is
and, the rt at, https to for, when you, the they, being, to
who, the your, for on, the as, into, to are, rt she, is on,
my with, should, rt see, of in https, https today, rt than,
many, rt get co, to our, https his, rt really, my this, for
you co, in just, to was, https these, the an, of to https, rt
for and, automatically, the up, does, getting, is not, my
rt you, it this

Figure 2: Resulting key phrase lists from optimizing on re-
call, precision and F-score respectively.

The phrases selected by precision instead contain n-grams
that combine stop words with partial URLS and less fre-
quent words that are more distinct for English.

5.2. Prevalence effect
Positioned between the precision and recall scoring func-
tions is the selection procedure that weights precision by it-
self and by recall. By taking an exponentiation of precision
we increase its effect in the optimization function, which
may be prudent after seeing the non-distinctive selections
by recall in the previous section.
The importance of increasing the weight of precision over
recall may differ between languages. Instead of looking at
any individual language we test three configurations (P 1,
P 2 and P 8) on languages binned by their frequency rank
from Table 1.
Figure 3 shows that a β > 1 increases performance for
the most common language on Twitter. In the ranks 20-30,
however, scoring key phrases on their precision weighted
by recall performs best. There are no big differences be-
tween values of β. We opt to use P 2 ∗ R for the top 25
languages and P ∗R for the less common languages in our
final scoring function.

5.3. Development Set Performance
Table 2 lists the macro averaged performance for each of
the proposed scoring functions. Besides recall we shows
bound recall, which is the performance of the key phrases
under the Twitter rate limit.
Since optimizing recall yields a lot of non-distinctive terms,
the retrieved set of tweets proves impure and recall drops
when we take the 1% rate limit into account. This is also the
case when optimizing precision but respecting a minimum
recall threshold of .01.
The three other scoring functions perform better. Simply
selecting key phrases on their precision leads to a high pre-
cision overall. The yielded 400 high-precision phrases also
cover a reasonably large part of the target language tweets
(58.67%). The function that selects phrases on the basis



61

1-10 10-20 20-30 30-40 40-50

0

0.2

0.4

0.6

0.8

1

Frequency rank (binned)

M
ac

ro
av

er
ag

ed
F-

sc
or

e

P ∗R
P 2 ∗R
P 8 ∗R

Figure 3: Adding more weight to precision works best for
the most prevalent languages on Twitter. Rarer languages
benefit from selecting key phrases based on regular preci-
sion weighted recall.

Method Precision Recall Bound Recall F-score
R 16.86% 85.53% 1.71% 3.10%
P 95.17% 58.76% 45.40% 57.22%
Rp 94.91% 60.85% 45.60% 57.40%
Pr 20.16% 78.93% 2.75% 4.52%
P β ∗R 90.34% 66.24% 48.37% 59.46%

Table 2: Macro-averaged performance of the different scor-
ing function on the development data. For P β ∗R we use β
of 2 for the 25 most frequent languages in our experiment
and β of 1 for the rest.

of their precision but only considers those with a precision
higher than 90% performs comparably.
The best overall strategy is scoring phrases on their preci-
sion weighted recall with a variable β. Most importantly,
this scoring function has the highest recall, even when sub-
ject to the Twitter rate limit. We argue that this is usually
the objective of collecting Twitter data for a particular tar-
get language. For experiments on the test set, we use those
lists of key phrases yielded by optimizing in this manner.

5.4. Test Set Performance
Table 3 shows the best greedy algorithm performance on
the test set compared to the baselines. Even when selecting
the best scoring function on the basis of development set re-
sults, it seems that the key phrases performed consistently.
There is not big difference between their performance on
the development set and the test set.

Method Precision Bound Recall F-score
Baseline 1 14.11% 14.56% 2.64%
Baseline 2 89.58% 40.27% 51.51%
Greedy Selection 90.38% 48.65% 59.71%

Table 3: Performance of the baselines and suggested greedy
selection algorithm on the test data.

The macro-averaged scores reported until now are useful in
selecting the best general algorithm, but as can be seen in
the full results in Appendix Table 6, there is a huge preva-
lence effect on individual target languages.
Even when accounting for the limit on number of tweets
returned at any time, there is some variability in results be-
tween individual languages. We look at some of the outliers
in detail in the next section.

6. Discussion
Performances for each of the target languages are recorded
in Appendix Table 6, and show that while mostly consis-
tent, some outlier results make it harder to discuss findings
in a general way.
We mentioned the prevalence effect on recall earlier and
thus focus on results that were unexpected with regards to
language with similar frequencies on Twitter, specifically
Chinese (zh), Esperanto (eo), Galician (gl) and Azerbaijani
(az).

6.1. Confusion matrices
Table 4 shows the binary confusion matrices for four out-
lier results with the three most confused languages. Closer
inspection of the confused tweets and selected key phrases
give insight into two types of error.
First, for Chinese (zh), tokenization turned out to be a
problem. We adopted the Twitter standard from (Twitter,
2019b), which is less suitable for logographic or abjad writ-
ing systems. For Japanese, Thai, Korean, Arabac and Hew-
brew this turned out not to affect results in any noticeable
way. Chinese gets confused often for these other languages
however, and only a small portion of the target tweets is
retrieved.
Esperanto (eo), Galician (gl) and Azerbaijani (az) all cope
with another type of error. Their closeness to a more preva-
lent language (Spanish for Galician, Turkish for Azerbai-
jani and multiple highly frequent languages for Esperanto)
forces the precision component in the greedy algorithm to
select very rare occurrences. Although these phrases are
successful in distinguishing between the target and their
competition, their infrequency leads to a low recall for the
target language in the test set.

zh other
ar 2,321 30,517
zh 1,673 3,321
ja 1,010 91,453
ko 228 25,088

(a) Chinese (zh)

eo other
eo 423 4,574
en 38 1,8M
es 22 426K
tr 13 81,219

(b) Esperanto (eo)
gl other

gl 2,016 2,961
es 1,268 753K
pt 633 453K
fr 102 161K

(c) Galician (gl)

az other
az 1,694 3,292
tr 36 583K
en 8 14M
fa 3 90,787

(d) Azerbaijani (az)

Table 4: Confusion matrices for target languages with sub-
par performances compared to other language with similar
prevalence on Twitter.
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For each of these outlier cases that bring down averaged
performance, it would be interesting to see follow-up re-
search that investigates how much improvement can be
made, or whether the problem is with the data and possible
code switching that occurs. Framing language identifica-
tion on Twitter as a single-label problem introduces these
inherent pitfalls.

6.2. Robustness and reproducibility
Although there are no major performance differences be-
tween applying the key phrase lists to the development and
the test split of the data, there could be additional testing on
the temporal nature of the lists. Training, development and
tests were all performed on data yielded from the same six
month snapshot, and could reflect specific events or topics
of that period.
For example, the optimized key phrase lists contained 9
hashtags on average. Since hashtags are used mostly as
topical and event markers, in a few years these search terms
may have disappeared from Twitter completely.
Although this should lead to only marginally lower quality
of the supplied phrases, it would be interesting to see an
evaluation on data from another period. For now, the ro-
bustness of the method for selecting optimal key phrases
is not under discussion. The code for generating key
phrases on new Twitter snapshots and potentially new tar-
get languages is available at https://github.com/
tjkreutz/twitterphrases.

7. Conclusion
We introduced a systemic way of selecting optimal key
phrases for the the 50 most prevalent languages of Twitter.
By demonstrating which tweets can be retrieved using the
key phrases in an experimental setting that closely mirrors
the setup with the real-time Twitter data stream, we pro-
vide the statistics that can be cited as limitations for Twitter
collections built this way.
The best performing greedy algorithm for selecting key
phrases, scores each phrase by precision weighted by re-
call. For the 25 most prevalent languages, exponentiating
the precision with a β of 2 helps to increase the weight
of high-precision phrases which limits the number of false
positives in the resulting Twitter collection.
Alongside this paper and the code to generate new phrase
lists, we provide all the lists as resources. Tracking Nor-
wegian (no) tweets can be as simple as authenticating with
your an API key and running curl:

curl -d ‘@no.txt’
https://stream.twitter.com/1.1/statuses/filter.json

The resulting stream should consist of mostly Norwegian
(±96%) language and make up more than half (±52%) of
all available Norwegian tweets.
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Language ISO FREQ MEAN MAX
English en 39.06% 39.21% 46.93%
Japanese ja 19.18% 19.09% 29.64%
Spanish es 9.52% 9.45% 13.27%
Arabic ar 7.29% 7.39% 10.82%
Portuguese pt 5.17% 5.10% 9.59%
Korean ko 4.43% 4.40% 6.78%
Thai th 3.61% 3.58% 5.19%
Turkish tr 2.05% 2.06% 4.04%
French fr 1.88% 1.88% 3.55%
Chinese zh 0.92% 0.94% 1.40%
German de 0.88% 0.88% 1.14%
Indonesian id 0.88% 0.88% 1.29%
Russian ru 0.77% 0.78% 1.12%
Italian it 0.61% 0.61% 0.96%
Telugu tl 0.40% 0.40% 0.72%
Catalan ca 0.39% 0.39% 0.68%
Hindi hi 0.34% 0.34% 0.61%
Polish pl 0.28% 0.28% 0.47%
Dutch nl 0.26% 0.26% 0.38%
Persian fa 0.22% 0.23% 0.42%
Malaysian ms 0.16% 0.16% 0.23%
Egyptian Ar. arz 0.15% 0.15% 0.28%
Urdu ur 0.12% 0.12% 0.20%
Greek el 0.12% 0.12% 0.20%
Esperanto eo 0.10% 0.10% 0.10%
Finnish fi 0.10% 0.10% 0.11%
Swedish sv 0.09% 0.10% 0.14%
Bulgarian bg 0.08% 0.07% 0.01%
Tamil ta 0.07% 0.07% 0.13%
Ukrainian uk 0.07% 0.07% 0.09%
Hungarian hu 0.06% 0.06% 0.07%
Serbian sr 0.06% 0.06% 0.09%
Galician gl 0.05% 0.05% 0.08%
Cebuano ceb 0.05% 0.05% 0.07%
Czech cs 0.04% 0.04% 0.06%
Vietnamese vi 0.03% 0.03% 0.05%
Kurdish ckb 0.03% 0.03% 0.06%
Norwegian no 0.03% 0.03% 0.03%
Danish da 0.02% 0.02% 0.03%
Romanian ro 0.02% 0.02% 0.03%
Hebrew he 0.02% 0.02% 0.03%
Nepali ne 0.02% 0.02% 0.03%
Bengali bn 0.01% 0.01% 0.02%
Macedonian mk 0.01% 0.01% 0.02%
Mongolian mn 0.01% 0.01% 0.02%
Azerbaijani az 0.01% 0.01% 0.02%
Marathi mr 0.01% 0.01% 0.02%
Gujarati gu 0.01% 0.01% 0.02%
Albanian sq 0.01% 0.01% 0.01%
Kannada kn 0.01% 0.01% 0.01%

Table 5: Language frequency (FREQ), averaged frequency
per hour (MEAN) and maximum average frequency per
hour (MAX) for the 50 languages in our data set.

Language ISO Precision Bound Recall F-score
English en 40.21% 1.81% 3.46%
Japanese ja 65.82% 2.96% 5.66%
Spanish es 24.40% 2.18% 4.01%
Arabic ar 80.03% 6.07% 11.28%
Portuguese pt 89.36% 8.80% 16.03%
Korean ko 97.73% 10.95% 19.70%
Thai th 86.80% 11.20% 19.83%
Turkish tr 94.64% 20.13% 33.19%
French fr 95.65% 22.28% 36.15%
Chinese zh 29.98% 3.64% 6.50%
German de 91.44% 34.05% 49.62%
Indonesian id 94.51% 39.04% 55.25%
Russian ru 99.26% 56.17% 71.74%
Italian it 93.75% 48.48% 63.91%
Telugu tl 96.84% 81.02% 88.23%
Catalan ca 97.74% 68.35% 80.44%
Hindi hi 99.63% 97.86% 98.74%
Polish pl 98.87% 59.60% 74.37%
Dutch nl 98.25% 66.12% 79.04%
Persian fa 99.36% 59.14% 74.15%
Malaysian ms 93.45% 58.05% 71.62%
Egyptian Ar. arz 99.78% 54.77% 70.73%
Urdu ur 99.54% 87.52% 93.15%
Greek el 99.69% 82.69% 90.39%
Esperanto eo 81.03% 8.47% 15.33%
Finnish fi 92.08% 27.70% 42.59%
Swedish sv 97.42% 63.76% 77.07%
Bulgarian bg 94.47% 72.51% 82.04%
Tamil ta 99.80% 79.79% 88.68%
Ukranian uk 94.62% 44.33% 60.38%
Hungarian hu 88.78% 25.06% 39.09%
Serbian sr 93.14% 58.11% 71.57%
Galician gl 49.28% 8.67% 14.75%
Cebuano ceb 89.63% 57.10% 69.76%
Czech cs 98.06% 43.64% 60.40%
Vietnamese vi 96.06% 76.45% 85.14%
Kurdish ckb 99.51% 36.72% 53.64%
Norwegian no 96.05% 51.92% 67.41%
Danish da 97.14% 56.03% 71.07%
Romanian ro 95.59% 52.53% 67.80%
Hebrew he 99.95% 77.91% 87.56%
Nepali ne 99.32% 88.09% 93.37%
Bengali bn 99.94% 69.82% 82.21%
Macedonian mk 99.01% 62.42% 76.57%
Mongolian mn 99.83% 81.35% 89.65%
Azerbaijani az 96.97% 33.98% 50.32%
Marathi mr 97.87% 68.31% 80.46%
Gujarati gu 99.60% 80.15% 88.82%
Albanian sq 98.18% 64.01% 77.50%
Kannada kn 98.72% 60.61% 75.11%

Table 6: Test set performance of individual target lan-
guages. In general less prevalent languages are easier to
retrieve near-completely.
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