
Proceedings of the 12th Web as Corpus Workshop, pages 33–41
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

33

The ELTE.DH Pilot Corpus – Creating a Handcrafted Gigaword Web
Corpus with Metadata

Balázs Indig1, Árpád Knap2, Zsófia Sárközi-Lindner1, Mária Timári1, Gábor Palkó1

1Eötvös Loránd University, Centre of Digital Humanities
Múzeum krt. 6-8., H-1088, Budapest, Hungary

2Eötvös Loránd University, Faculty of Social Sciences, Research Center for Computational Social Science
Pázmány Péter stny. 1/A, H-1117, Budapest, Hungary

{indig.balazs,lindner.zsofia,zimanyi.maria,palko.gabor}@btk.elte.hu, knap.arpad@tatk.elte.hu

Abstract
In this article, we present the method we used to create a middle-sized corpus using targeted web crawling. Our corpus contains news
portal articles along with their metadata, that can be useful for diverse audiences, ranging from digital humanists to NLP users. The
method presented in this paper applies rule-based components that allow the curation of the text and the metadata content. The curated
data can thereon serve as a reference for various tasks and measurements. We designed our workflow to encourage modification and
customisation. Our concept can also be applied to other genres of portals by using the discovered patterns in the architecture of the
portals. We found that for a systematic creation or extension of a similar corpus, our method provides superior accuracy and ease of
use compared to The Wayback Machine, while requiring minimal manpower and computational resources. Reproducing the corpus is
possible if changes are introduced to the text-extraction process. The standard TEI format and Schema.org encoded metadata is used
for the output format, but we stress that placing the corpus in a digital repository system is recommended in order to be able to define
semantic relations between the segments and to add rich annotation.
Keywords: webarchiving, corpus, metadata, trusted digital repository, semantic web, TEI XML, schema.org

Motto:
“It is hard to imagine how one might study the history of the
developed world in the late twentieth and early twenty-first
century without recourse to the archived web.” (J. Winters)

1. Introduction
In the glossary of the handbook entitled The Digital Hu-
manities, Gardiner and Musto (2015, 250) define web
archiving as “the process of collecting portions of the World
Wide Web to ensure the information is preserved in an
Archive for future researchers, historians and the public”.
It is telling, however, that in the chapter focusing on digital
archives as source materials of the present scholarly prac-
tices, born-digital archives and web archives are entirely
omitted, as the authors solely speak about curated digital
collections designed by (digital) archivists for the research
community. Web archives are much less organised and cu-
rated then digital libraries or databases, and for this reason,
are far less usable for (and used by) scholars. If Gardiner
and Musto (2015) are right in their choice to emphasise the
role of these digital sources in answering present scholarly
questions, the fact that web archives do not play a signifi-
cant role among these sources is a substantial problem for
the digital humanities. There are several reasons why web
archives are under-represented in the scholarly use of dig-
ital sources. The main reason is the lack of high-quality
metadata, as source materials must have – among others –
a publication date and its authors identified by the archival
institution, otherwise, the reference to the material (be it
paper-based or born-digital) is questionable1. The second
reason is the uniqueness and authenticity of the records.

1Winters (2017, 240) deals with the problem of website dates
in detail.

Web archives usually contain many nearly identical ver-
sions of the “same” resource. This problem is exacerbated
by the nearly inseparable dirt (recurring boilerplate text)
among relevant content. The drawbacks arising from the
unstructured nature of a web archive hinder its integration
into the network of digital cultural heritage (DCH).
As suggested in (Weber, 2018), the limitations of web
archives can be described along two main dimensions: ac-
curacy and completeness. It is very difficult to tell if an
archive actually captures all the content on the web accu-
rately related to a specific topic.
Our method, by using websites’ own archives, creates
“complete snapshots” of their real content from time to
time, which provides real populational data for the portals
included in the project. This also means that the ELTE.DH
corpus contains all documents from the selected portals’
archives which were publicly available at crawling time.
Beyond creating a corpus for NLP applications, our work
focuses on providing solutions to the aforementioned issues
by developing a trusted digital repository complying with
Linked Open Data technology. Our goal with this repos-
itory is to meet the essential demands of NLP, DCH and
other disciplines uniformly.

2. Background
When it comes to crawling, web archiving or corpus
creation, there are a number of options. The ISO/TR
14873:2013 standard describes the details of such work-
flows, however, distinct disciplines have come up with their
own solutions ignoring this standard or only partially adher-
ing to it. Holding on to the terminologies of the standard,
we have conducted selective web archiving that is enriched
with more and better metadata compared to general crawl-
ing. We argue that our method has a smaller footprint while



34

remaining easy to manage. This makes the whole workflow
sustainable and scalable. In the following sections, we will
review the already available tools and formats to place our
solution among them.

2.1. Metadata
The standardisation process of web archiving practices, ini-
tiated and controlled mainly by national libraries (Oury and
Poll, 2013), does not provide comprehensive guidelines to
the standardised encoding of the texts extracted from web
archiving activity. The situation is much better on the level
of metadata. The technical report of Statistics and Quality
Indicators for Web Archiving stresses the importance of dif-
ferent metadata types for curating web resources2: “Long
term preservation also includes keeping safe the metadata
associated with the resources in the Web Archive, which
are critical for supporting collection management, access
and preservation activities” (ISO/TC 46/SC 8 N).
The Metadata Encoding and Transmission Standard
(METS) distinguishes four metadata types to be used in
curated collections sourced from web archiving: (a) De-
scriptive metadata, (b) Structural metadata, (c) Provenance
metadata, (d) Rights metadata. This is the theoretical stand-
point, but since the creation of such metadata requires a
lot of manual work, it is impossible to find a collection of
archived web documents that complies with these require-
ments on metadata entirely. Therefore, there is virtually
no reliable digital cultural heritage source for researchers.
In contrast, there are metadata standards which cover fine-
grained requirements. The only standard that could gain
large-scale adoption is Dublin Core, which is not refined
enough to comply with the aforementioned standards. Our
repository uses Schema.org, a metadata standard we have
chosen for several reasons:

• Schema.org is designed explicitly for storing informa-
tion about web resources

• It has a dynamic, community based development (in
contrast with robust standards, such as METS)

• It is increasingly popular on the web, which makes it
easy to extract metadata from the HTML source

• It is compatible with semantic web technology
(Linked Open Data)

• It has a growing usage in the digital cultural heritage
domain (e.g. Europeana)

2.2. Existing Hungarian Corpora
The Szeged corpus is the largest, manually annotated cor-
pus (Vincze et al., 2010) in the Hungarian language con-
taining 1.2 million tokens, KorKorpusz (31,492 tokens) is
similar but smaller corpus based on a recent pilot project
(Vadász, 2020). The first Hungarian gigaword corpus was
the Hungarian Gigaword Corpus (Oravecz et al., 2014)
with 1,532,933,778 tokens. Both aforementioned corpora

2http://netpreserve.org/resources/IIPC_
project-SO_TR_14873__E__2012-10-02_DRAFT.
pdf

contain text only from curated sources (newspapers, liter-
ary texts, social media, legal texts, etc.) that are not entirely
from the Internet. The first Hungarian web corpus that was
created by Kornai and his colleagues (Halácsy et al., 2004)
is called the Hungarian Webcorpus. It was later superseded
by the 1.2 billion token Pázmány corpus3 (Endrédy and
Prószéky, 2016) and the 2.5 billion token HuTenTen corpus
(Jakubı́ček et al., 2013), two larger corpora entirely from
the web. Nowadays, large corpora are utilising the Com-
mon Crawl archive like the OSCAR corpus (Ortiz Suárez
et al., 2019) with 5.16 billion (2.33 billion deduplicated)
words in Hungarian. However, the documents presented in
these corpora often contain gaps due to deduplication.
All of these corpora – except the ones based on Common
Crawl – have the same flaw, namely that after their creation
and publication, several errors were discovered in the tools
used to create them, and these errors could not be corrected
as expected. The reason being that their original source
HTML files have been deleted – and these are unavailable
in an unmodified form on the web.
Since then, there have been numerous attempts to create
web-based corpora, but these were not published and could
not arouse public interest, as web corpora and crawling be-
came increasingly common tools. The speciality of the cor-
pus and the method presented in this paper lies in the fact
that it unites the experience from the above mentioned cor-
pora into a manually curated gigaword web corpus, which
includes metadata and can be built from the source of the
downloaded web pages in a reproducible manner.

3. From the web to a corpus
To put our method into a larger perspective, in the following
sections we will describe the process of corpus creation in
an abstract workflow (see Figure 1.), where the elements
have to be further specified by certain design decisions.

3.1. The Web Crawler
Classical web crawling can be characterised by only a few
parameters that are set at the start of the process. These pa-
rameters include the initial seed of URLs where to start the
crawl from, the maximal depth, and the breadth to restrict
the crawler’s movement. In some cases a set of targeted
domains is also specified. Although there are only a few
widely used crawler engines, it is hard to characterize these
as most web libraries (e.g. Python requests, wget,
etc.) can be used for crawling nowadays and the desired
output varies from corpora to “exact offline duplicates” of
websites. Here we would like to mention three crawler
engines: both Heritix4 and Apache Nutch (Laliwala and
Shaikh, 2013) are used in the Internet Archive and Com-
mon Crawl projects. The third crawler engine is Spiderling
(Suchomel and Pomikálek, 2012), which was developed by
the authors of Sketch Engine (Kilgarriff et al., 2014). These
crawlers are fast, generalised tools, but for targeted or spe-

3The Pázmány corpus was the first Hungarian corpus which
separated edited text (news articles) from unedited text (com-
ments).

4https://github.com/internetarchive/
heritrix3

http://netpreserve.org/resources/IIPC_project-SO_TR_14873__E__2012-10-02_DRAFT.pdf
http://netpreserve.org/resources/IIPC_project-SO_TR_14873__E__2012-10-02_DRAFT.pdf
http://netpreserve.org/resources/IIPC_project-SO_TR_14873__E__2012-10-02_DRAFT.pdf
https://github.com/internetarchive/heritrix3
https://github.com/internetarchive/heritrix3


35

parameters
internet

WARC

corpusNLP

front	enddeduplication

boilerplate	removal

metadata	extraction

normalization

generic tailored

error	correction	without	web	archiving

error	correction	with	web	archiving

crawler

Figure 1: The abstract workflow of web corpus creation. Parallelogram-shaped boxes denote the optional phases, the grey
background denotes the produced data.

cialised crawling they became tedious to use. This may
explain the numerous different libraries used for crawling.
Nowadays, we do not even have to use a crawler as we
can begin the process with Common Crawl, The Internet
Archive and similar resources. In this case, the first step
is to clean the actual data, and remove collected garbage.
Due to the nature of the internet, there are numerous ag-
gressive SEO traps out in the web that are used to optimise
the page rank in search engines that end up in the archive.
These traps are placed in such a manner that they can di-
vert crawler bots from their original course when these bots
stumble upon them. Such general bots cannot distinguish
“normal” pages from these traps, a task that humans are
able to carry out in a matter of seconds. Another common
problem using these sources is the need for deduplication
(see Section 3.3.), which causes the waste of resources on
both sides (crawler and deduplicator).
To overcome these problems, Indig et al. (2019) built a new
NLP-oriented crawler tool called Corpus Builder, which
utilises a very different approach from the above: a two-
level crawling method. By using targeted crawling of large
or medium portals, they claim that with their method, it is
possible to crawl only the targeted portals virtually with-
out duplication, with a small footprint and in a sustainable
manner. Their main idea is the exploitation of two different
levels of recurring patterns (“archives” and “article” pages)
that can be discovered by analysing the structure of differ-
ent web pages.

3.1.1. The Article Crawler
The first and obvious level is the recurring boilerplate con-
tent on the actual web pages of a portal. Objects of the same
type are usually stored in the database back end and gen-
erated on demand into specifically formatted web pages.
This is the internal nature of the data. In this paper, we
call these pages “articles” regardless of their content type:
whether they represent news articles, images with captions
in a gallery, product descriptions and customer reviews in a
webshop, posts in a forum or blog, etc. The output pages for
these content types look the same in narrower time frames

for a certain portal, but they can be very different from web-
site to website. These pages are generated on the server-
side, so we must collect HTMLs and extract their content.
If we collect a mass amount of web pages representing the
same objects from the same portal using the same template
selectively or classify them after collection, the (uniform)
boilerplate can be easily removed with a few simple rules
per class, therefore this task does not require complex tools.

3.1.2. The Archive Crawler
The second level arises from the first: how can we sys-
tematically collect such web pages on a given portal? The
answer is very simple: portals created for human readers
are very likely to have some kind of a “table of contents”,
“product or topic list” or an “article archive”, which display
all available pages in a structured form. Because objects are
traditionally stored in taxonomies – e.g. temporal (years,
months) or other feature-based (colour, shape, price, etc.) –
that can be enumerated and each object has finite number
of possible values. If we enumerate articles for right feature
values, we will gather links to all pages of the same layout
systematically from the given portal.

3.1.3. The Possible Parameters for Portals
Using the two-step method described above, it is possible
to gather a massive number of web pages even from only
a small number of portals that will have virtually no du-
plication and effectively zero garbage pages in contrast to
the general crawling methodology. This method has been
successfully tested on three Hungarian news portals (Indig
et al., 2019), while the further generalisation of the method
for the steps following the crawling of different portals with
different schemes and layouts requires further elaboration.
Indig et al. (2019) assembled the minimal number of pa-
rameters that are needed to handle such portals in a unified
framework. The major highlights of the configuration are
showcased as the following:

• The date of the first and last article, or page number
where applicable



36

• The archive URL format with the placeholders to be
substituted

• The function for finding the next-page URL for the
archive where applicable

• The function to get the article URLs from the archive
pages

• Boolean variables to answer the following questions:
is the archive paginated, infinite scrolling, or date-
based?

One can distinguish between crawl-based (applicable for
the current crawl), portal-based (which applies to the
crawled portal regardless of crawl settings), and portal-
specific configurations. Our method follows the latter di-
rection for crawling. For problems not addressed by Indig
et al. (2019) we present our solutions in Section 4.

3.2. Boilerplate Removal
There are a lot of pages that present the same type of ob-
jects or articles surrounded by the same boilerplate content
(i.e. scheme or template) – menu, advertisements, etc. in a
portal. In most cases, this boilerplate content can be charac-
terised by not having multiple paragraphs with many lines
of text, but containing short texts, as well as many links and
pictures (Pomikálek, 2011). The process of boilerplate re-
moval can be broken down into two steps presented in the
following sections.

3.2.1. Normalisation
By normalisation we mean the reformatting of visual ele-
ments into a simpler visual annotation (e.g. the elements
of Markdown language or XML tags) to create a common
ground for the text of different portals in the resulting cor-
pus. Normalisation is not a trivial task: most tools extract
paragraphs as plain text, however, visual formatting ele-
ments are essential for humans and may also help the ma-
chine reader, therefore these elements should be kept and
standardised.

3.2.2. Metadata extraction
Curated metadata is the cornerstone of proper (web) archiv-
ing. It can be regarded as gold standard labels for each
document, which can later be utilised for training or bench-
marking ML algorithms (i.e. authorship attribution, key-
word extraction, topic modelling, etc.). There are automatic
tools for extracting metadata from the crawled web pages
such as the Web Curator Tool5 or Apache Tika6. These
tools extract standards compliant descriptive metadata au-
tomatically from the crawled web pages, but they are very
complex and it is difficult to understand and improve their
method for the specific portals. Moreover, they are plagued
with the same problems as other boilerplate removal tools
(see Section 3.2.3.): their heuristics and output formats are
wired in by design and it is very hard to change these with-
out major conflicts.
When the these programs yield deficient output for the tar-
geted portals – for example due to the lack of knowledge

5https://webcuratortool.readthedocs.io/
6http://tika.apache.org/

about the typographical rules of the language, or when
the output is missing some important variables, – it is in-
evitable to implement a custom metadata extractor method-
ology. We decided to use this method to allow future mod-
ifications, to be able to compare results with the presented
generic tools (see Section 3.2.3.), and also to demonstrate
how easily our method can be implemented. Our findings
will be described in Section 4..

3.2.3. Existing Tools and Techniques
As web page layouts, coding styles, and HTML standards
differ throughout the portals and were used differently over
the years, the boilerplate removal task is mostly solved by
clever heuristics, which makes it hard for the users to cre-
ate general measurements and comparisons between them.
It is also hard to set their parameters, fix, extend or modify
their functionality. Some tools are designed to remove boil-
erplate from a single page, while others use multiple pages
of the same layout to delete recurring elements (Endrédy
and Novák, 2013). In this paper, we could not survey all
the available methods, therefore we are comparing JusText
(Pomikálek, 2011), a tool created directly for NLP-centric
web crawling and Newspaper3k (Ou-Yang, 2013), created
especially for news portal crawling. Both modules are still
popular and widely-used because of their simplicity and ef-
fectiveness. They both remove formatting and yield plain
text paragraphs, but the latter tool supports extracting meta-
data from web pages and has other features to simplify the
crawling process for beginners.
We followed the route marked by Indig et al. (2019) and
created our own handcrafted boilerplate removal rules. At
first we found ourselves in a dilemma about choosing be-
tween regular expressions and HTML parsers. Regular ex-
pressions are simple, and it is also easier to train machines
to create them, while HTML parsers are easier to create,
read and maintain for humans, but are harder to automate.
As some of the portals recently added to the corpus have
very complex layouts, it is not feasible to further extend the
number of portals using regular expressions. For example,
it may be impossible or become very unpractical to encode
various attributes and their combinations (which might be
in arbitrary order due to the structure of HTML).
We compared the aforementioned methods on our gold
standard data set7. This measurement is presented in Sec-
tion 5., followed by other details of our method.

3.3. Deduplication and NLP
Sometimes the exact same content – available on several
domains – can be stored in the web archive multiple times,
but, of course, we need one intstance only. There are great
tools for deduplication (like Onion (Pomikálek, 2011)), but
their waste of valuable resources, such as disk space and
network bandwidth is not ideal. When using targeted crawl-
ing, such as Indig et al. (2019), we can select only those
distinct URLs which are needed and so bypass the process
of deduplication.

7Some elements were kept or thrown away by design decision
that may not match with the compared tools or future use cases.
However, we support the change of these decisions by the user.

https://webcuratortool.readthedocs.io/
http://tika.apache.org/


37

The main problem with deduplication – besides wasting re-
sources – is that some parts of a document or the whole doc-
ument may become missing because it had been recognised
and deleted as a duplicate. This undermines the complete-
ness of the crawling which is the the first priority for some
user groups (e.g. humanists and sociologists). The pub-
licly available corpora that were created for NLP purposes
have further disabilities: their sentences are scrambled to
avoid the infringement of copyright laws. This makes the
analysis of full documents – an emergent trend – impossi-
ble. The role – and legal privilege – of national libraries is
to preserve documents in its entirety, even for born-digital
materials. This role can be fulfilled with our method, in
contrast to the traditional ones.
Different levels of NLP annotation can optionally be ap-
plied before or between the deduplication with the plethora
of available tools. Until recently, texts have been stored
only after this step in some format, however, the increas-
ing performance of NLP tools makes it advisable to store
crawled content also in raw format (e.g. WARC files) to be
able to correct errors found in the processing pipeline. This
is mainly important to humanists, sociologists and other
scholars outside NLP where the specific text is the subject
of analysis, in contrast to NLP, where only the amount of
text matters.

3.4. The Final Format and Front End
The process of creating the output from the HTML files can
be split into four steps for easier maintainability:

• Simplification of HTML by finding the tightest bound-
ing HTML tag of the whole text content and decom-
posing unneeded subtrees8

• Extraction of paragraphs and metadata from the
HTML tree keeping only specific – intended – format-
ting

• Rewriting elements to a unified format by standardis-
ing site-specific formatting

• Writing the output file according to the expected for-
mat. In this step, the fields get their final place and
canonical names

The first three steps contain well-defined portal specific in-
structions, while the fourth is only dependent on the output
format, which – as it is totally separated from the others –
can comply with the actual purpose and front end in the fu-
ture. Some user groups have special requirements, such as
full documents and metadata, while others only require the
raw text. Nonetheless, both requirements can be achieved
at the same time.
In the field of NLP, three main use cases exist. To search
patterns in large corpora, the classic vertical format used
primarily by the Sketch Engine (Kilgarriff et al., 2014) is
recommended. If the aim is to process the corpus with a

8There are three classes of decomposing rules: a) general rules
used for every portal, b) “must-have” portal-specific rules, c) rules
which follow certain design decisions about the data to be ex-
tracted.

wide variety of standard NLP tools, the CoNLL-U format9

is adequate. If the goal is to put documents to a full text
search engine or into a language model, it is necessary to
comply with the input expectation of such software, which
is usually raw text.
In the field of digital humanities, – especially in philology,–
the XML document markup language and the Text Encod-
ing Initiative (TEI) recommendation have become domi-
nant over the decades (Schreibman et al., 2008). TEI makes
the versioning and annotation of the enriched articles pos-
sible in an easy and reliable way, and it is also capable
of storing metadata and the body of the document struc-
turally in one file. This format satisfies NLP users as well,
while opening the resulting corpus for other audiences in-
cluding librarians, humanists and sociologists. TEI also al-
lows the verification of the authenticity of the source text by
the metadata and increases the reproducibility of research
which has an increasing importance in the ‘distant reading’
paradigm (Da, 2019). Text can be converted to a simpler
form corresponding to the actual use case, while keeping
the master copy untouched, in a similarly to how it is done
with images by resizing and cropping them on demand dy-
namically.

4. Method
We examined several Hungarian news portals and increased
the number of examined portals to six, compared to the
three portals examined by Indig et al. (2019) in order to
test how the presented method can be applied to portals of
different structures. First, we selected mainstream Hungar-
ian news portals, because these contain a vast number of
articles. As a secondary priority, we included portals that
are special from the perspective of used web technology
and architecture. We wanted to reach a milestone, where
adding new portals and maintaining the existing ones is a
routine task that can be handled by as little manpower as
possible. In this section, we describe the main highlights of
our crawling method compared to (Indig et al., 2019) (for
further comparisons see Section 3.)

4.1. HTML Parsers vs. Regular Expressions
We decided to change the regular expressions used in Cor-
pusbuilder (Indig et al., 2019) for Python functions, which
use an HTML parser to handle the input as an HTML tree.
Using HTML trees enabled us both to simplify many reg-
ular expression patterns and to support many different lay-
outs. With this change, the accuracy of extracting article
URLs from the page archives has dramatically increased,
as we found that on some portals different columns may be
hosted on different domains, or – while using the same site
template – they may not match the expressions written for
extracting URLs. This can be recognised by tree search-
ing expressions more easily than with regular expressions.
This, of course, sacrifices speed for clarity and precision,
but saves us from HTML fragments slipping through regu-
lar expressions.

9https://universaldependencies.org/
format.html

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html


38

4.2. The Refined Archive Crawler
The date-based pagination handling logic (Indig et al.,
2019) was separated from other pagination methods, as it
allows sorting and can be used to filter crawling by specific
date intervals, since we found that date-based pagination
can be and is combined freely with the other methods. We
also introduced support for open (date) intervals.
Our other significant change was in handling infinite
scrolling10 and active archives11 together in an easy-to-
understand form by extracting the page URLs before deter-
mining the URL of the next archive page. We have broken
down the possible patterns of finding the next archive page
URL to the following cases:

• There is no pagination at all

• There is a next page link which we need to use

• There is infinite scrolling: we use the page number
from the base value to “infinity” where no more article
URLs are detected

• There is page numbering: we use the page number
from the base value to a portal-specific maximum

• There is page numbering, but we expect the archive to
expand during crawling (can be identified by finding
known article URLs during crawling)

By using these features, all examined portals could be han-
dled, therefore we narrowed down our experiments to six
portals that showcase all of the described features, and al-
lows them to be thoroughly tested.

4.3. Advanced Metadata Extraction
Metadata can be extracted from multiple sources from an
article page. We identified and handled the following:

• Date, title and column are frequently encoded in the
URLs

• HTML meta tag properties which can be encoded
according to various conventions (like Dublin Core,
Schema.org, etc.) that are mainly included for Search
Engine Optimization (SEO) purposes

• The increasingly popular JSON-LD, storing properties
that were previously stored as meta tags, but in a more
structured form

• From the content of the HTML itself, where it is in-
cluded to be displayed for the user

There are several portals that use more than one of the
above sources of metadata. We also found examples where
different sources yielded contradicting results or missing
values, these are probably due to bugs in the websites’ en-
gines. Older articles tend to have more of these errors

10A technique used to dynamically add new content to the page
when the user scrolls down.

11If new elements are added to the archive during crawling, the
list of articles will be divided to pages in a way that their content
URLs will appear on different pages than as expected. This makes
it impossible to handle archive pages’ URLs as permalinks.

as they were probably converted from a previous layout
and the conversion introduced such errors12. Some portals
partially or fully generate metadata dynamically by using
JavaScript and non-standard data-sources. This practically
makes it impossible to extract such metadata with tradi-
tional tools and forces us to use a portal-specific solution.

4.4. Converting HTML to the Output Format
To handle millions of pages without reading them – through
“distant reading” –, we invented utilities to examine, anal-
yse and normalise the tags and the scheme used by a por-
tal, and then freely convert it to the new and customisable
output format. We started with cutting the HTML to the
relevant part, as mentioned in Section 3.4..
The first utility function helps to filter out tags that do not
contain any text. Next, we introduced placeholders to sim-
plify some elements (e.g. links). The second function aids
in simplifying the tags by manually selecting groups that be-
long to the same class (e.g. formatting, embedded content,
etc.), but are specialised to the portal’s scheme.
This method is quite effective even without portal-specific
parameters. Table 1 shows how the number of tags (from
one of the examined domains) is reduced after using these
tools allowing further fine-grained modifications in an iter-
ative manner.

No. of tags %
all tags 33,466 100
text containing tags 18,517 55
after simplify tags 359 10
relevant tags 267 7

Table 1: Illustration of how the number of tags to be anal-
ysed manually decreases in magnitude.

4.4.1. The Tree Representation
Possible layouts for all URLs of a domain were described
with the help of a tree-representation: the subtrees of the
contents’ tightest bounding HTML tag for all pages were
merged, counting the frequencies of each element and the
cumulative length of their immediate text. It was also
marked if a specific tag had no child elements in the tree.
The resulting frequency distribution allows efficient exam-
ination and handling of subtrees for all URLs at once.
In order to be able to make decisions concerning the re-
maining tags, we built a tag dictionary. To each tag (or sim-
plified tag), we assigned the average length of the contained
text, the average number of descendants, and the average
length of the immediate text supplemented with a sample of
occurrences (URLs). This dictionary was augmented with
the operation to perform at each occurrence of that specific
tag. As we formalised the operators, their execution was
made by the code automatically generated from the dictio-
nary. These steps can be iterated to gain more insight on
the portal’s scheme and finally arrive to the desired form.

12This can be solved by crawling articles as soon as possible
after their publication.



39

4.4.2. Rewriting Rules and Transformation Methods
When standardising and rewriting elements, we found the
following operators useful:

• decomposing (deleting the tag with its contents, e.g.
advertisements, boilerplate)

• unwrapping (deleting the tag, keeping its contents, e.g.
text anchors)

• unwrapping all descendants (simplifying a block)

• rewriting tags context-free

• splitting tags to super-subordinate pairs (e.g. when the
content and formatting properties are in the same tag)

• rewriting tags context-specific (special blocks)

These operators can be applied sequentially in the proper
order for every URL. We narrowed down the various lay-
outs (e.g. left, right, top block) into a few, portal indepen-
dent types of blocks that we intended to keep. The context-
specific rules mark the root tag for each block we found, so
their subtrees can be handled by independent dictionaries
in the same way. The analysis of the visual layout of the
examined portals shows that there are no blocks embedded
into other blocks. This property allows us to rely on the
described two-level transformation with a low number of
distinct tag dictionaries modified by the defined operators.
To conclude, normalising the tags and then rewriting them
to the final schema are independent steps which can be
achieved with successive approximation in an iterative
manner. This allows us fine-grained control to change de-
sign decisions or customise the output (TEI XML in our
case) easily at all times.

5. Evaluation
We ran our crawling on a low-end desktop machine (In-
tel i3, 4 GB RAM) for 30 days on a 100 MB/s connection
(with rate-limiting to avoid the hammering of the remote
servers) using circa 100 GB of disk space to demonstrate
the effectivity of the method presentes here. It is not possi-
ble to compare this method’s crawling performance to other
general crawler engines mentioned earlier, as the workflow
and methodology differ significantly (see Section 3.1.). It is
possible, however, to compare the crawling accuracy to the
most widely used archiving practice: the Internet Archive
(see Section 5.2.). It is also possible to compare our site-
specific rule-based boilerplate removal and metadata ex-
tractor functions to the mainstream crawling methods (see
Section 3.2.3.).
The goal of the compared tools and their design differs sig-
nificantly so the way how to make an objective compari-
son was not at all obvious. When comparing our method
with the aforementioned tools, we strived to highlight per-
formance differences due to design, while separating them
from the strengths and weaknesses stemming from the
methods themselves.

5.1. The data set
We extracted a total of 2,227,180 articles from six Hun-
garian news portals, this signifies 984 million words (with-
out tokenisation) of extracted text without metadata from
November 1998 until September 2019. We visualised the
annual distribution of articles to see the estimated growth
in the number of articles and the expected number of ar-
ticles per year (see Figure 2). The figure shows a clearly
growing tendency in the number of articles published on
the crawled portals during the last twenty years – except
2019, which does not qualify as a full year at the time of
measurement. In the case of the six portals, this means that
more than 200 articles have been published on average ev-
ery day in the recent years. These numbers tells us that by
adding new portals the quantity of the crawled articles and
the volume of the corpus can be increased quickly and eas-
ily with low human resource investment and a lightweight
technical infrastructure.

1997
1999

2001
2003

2005
2007

2009
2011

2013
2015

2017
2019

Year

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000 No. of Articles

Figure 2: The annual distribution of 2,227,180 articles from
six portals from November 1998 to September 2019. The
number of articles per year is increasing. The decrease at
2019 is due to the fact that it is not a full year at the time of
measurement.

In Table 2, we can see the performance of the boilerplate
removal tools in different scenarios. We examined Jus-
Text and Newspaper3k on the full HTML code, the arti-
cle body and constrained to the original and the cleaned up
paragraphs. We wanted to check whether an educated ini-
tial guess (on the text’s location) helps these programs or
not. As the former package does not extract metadata sep-
arately, we present numbers with metadata and provide the
number of words without metadata in brackets. The num-
bers have some small differences that suggests that a more
detailed evaluation of the content is needed. We also com-
pared the actual values of the extracted metadata (author,
publication date, title) in terms of precision and recall for
Newspaper3k (see Table 3). Our educated initial guess does
not help metadata extraction, but for the text extraction it
has a potential because it rules out unwanted content in one
step. It is clear from these that our method is superior to
the compared ones, however, a content-based comparison
of the extracted paragraphs is needed in order to be able
to evaluate the mentioned methods objectively. We argue
that if full articles are chosen, the precision provided by



40

our method is needed to ensure that the right amount and
quality of texts can be extracted with the compared meth-
ods.

Full
HTML

Article
Body

Paragraphs
orig. clean

All Text 12,99 1,757 1,085 982
Justext 1,157 1,020 919 918
Newspaper3k 992 (963) 974 (970) 919 917
Our Method 1,028 (984)

Table 2: The extracted text from different parts of the
HTML with different tools in million words. Newspaper3k
and our method is displayed with and without metadata.

Full
HTML

Article
Body

Newspaper3k (precision) 0.77 0.69
Newspaper3k (recall) 0.52 0.26

Table 3: The content-wise comparison of metadata (author,
title, publication date) extracted by Newspaper3k and our
method (=1.0).

5.2. Crawling Compared to Archive.org
We compared our results of the six crawled news portals to
the Internet Archive as the “standard” source of web archiv-
ing. We evaluated whether the same set of URLs could be
acquired using the Internet Archive, and also compared the
number of crawled articles by portals with data downloaded
from The Wayback Machine.
In the following step, based on the mime type attribute, we
removed all URLs from the Internet Archive data sets that
represent content other than articles (e.g. images, scripts,
etc.). Using the status code variable, we omitted all URLs
that were not successfully downloaded for some reason
(e.g. 404 errors and redirections). From our crawl we se-
lected the timestamp of the last article downloaded for each
domain, and removed all URLs from the Internet Archive
data that were crawled after that date.
At this point, we still had hundreds of thousands of URLs
in the Internet Archive data sets that represented e.g. cer-
tain taxonomy pages (date, category, author, search, etc.)
or any kind of content other than single articles. Thus,
we introduced a domain-level cleaning function for each
crawled website, in order to remove all URLs representing
content other than articles. This proved to be a difficult,
time-consuming, iterative task, as in case of some web-
sites, the URL structure changed multiple times over the
years, making it nearly impossible to retrospectively iden-
tify URLs that certainly lead to articles. This is one im-
portant aspect why our method is much easier to use (even
retrospectively), when the goal is to produce a clean corpus,
without duplicated content. In the case of several websites,
the URL structure was not logically constructed (e.g. tag
archives have the same URL structure as articles; randomly
generated version numbers appear at the end of some of the
URLs, but not all of them; etc.), therefore in some cases,
we had to restrict the comparison to certain columns of the

portal, as it was very difficult to clean the data sets in a more
generalised way.
Our next step was to normalise all URLs in both crawls.
We removed http, https, www from the beginning, and port
numbers (e.g. “:80”) and parameters from the end of the
URL strings. Using these normalised URLs, we created
two dictionaries to store the URLs themselves and their
slugs – the last part of the URL (after the last /) – for each
portal. For some portals the URLs could not be used for a
valid comparison, because the URL structure has changed
over time, but not the slug, therefore – in these cases – we
used the slug for our comparison.
With the steps described above, we reduced the number
of Archive.org URLs from 8.9 million to only 1.2 million
for the six crawled portals. After removing entries with
wrong status codes 75.4%, after mime-type-based clean-
ing 53.7% of the URLs remained. While only 0.7% of
URLs were removed in the date-based cleaning phase, after
running website-specific cleaning functions and compiling
the final list of URLs, just 13.5% of the initial number of
URLs remained. We found that 846,343 articles are present
both in our crawl and in the Internet Archive’s data, while
1,082,484 articles are only present in the ELTE.DH corpus.
A further 315,649 articles are only found in Archive.org’s
data. More work is needed in order to eliminate all possi-
ble bad URLs, however, it is safe to say that by using our
crawler it is easier to achieve the same results than finding
and downloading all relevant content from Archive.org.

6. Conclusion and Future Work

We have demonstrated that by using a low-end machine –
which has similar computational power as our smartphones,
the storage capacity of our pendrives nowadays – and mini-
mal manpower it is possible to create a gold-standard qual-
ity gigaword corpus with metadata which suits many au-
diences at the same time13. As the presented work was
only a pilot study to design and stabilise the workflow on
many candidate pages, we plan to apply this methodology
on several more websites, and start serving requests on site-
specific crawling to provide data for research in multiple
disciplines in a future version of this corpus.
In conjunction with the previously outlined plans, we in-
tend to support national libraries with our research as they
are responsible of keeping the data of our present for the
future researchers who can thus provide objective and bal-
anced research. One obvious step in this direction is
to conduct research on how to keep the authenticity of
web archives and how to eliminate the risks of tamper-
ing, retroactive modification and deletion of content which
undermine scholarly credibility. We plan to utilise digi-
tal fingerprinting, signatures and blockchain technology on
downloaded documents in order to keep them safe, while
making them available for the widest possible audience.

13The software is published under the GNU Lesser
General Public License v3.0 at https://github.
com/ELTE-DH/WebArticleCurator and https:
//doi.org/10.5281/zenodo.3755323

https://github.com/ELTE-DH/WebArticleCurator
https://github.com/ELTE-DH/WebArticleCurator
https://doi.org/10.5281/zenodo.3755323
https://doi.org/10.5281/zenodo.3755323


41

7. Bibliographical References
Da, N. Z. (2019). The computational case against compu-

tational literary studies. Critical inquiry, 45(3):601–639.
Endrédy, I. and Novák, A. (2013). More effective

boilerplate removal-the goldminer algorithm. Polibits,
1(48):79–83.

Gardiner, E. and Musto, R. G. (2015). The Digital Human-
ities: A Primer for Students and Scholars. Cambridge
University Press.

Indig, B., Kákonyi, T., and Novák, A. (2019). Crawling in
reverse – lightweight targeted crawling of news portals.
In Marek Kubis, editor, Proceedings of the 9th Language
& Technology Conference: Human Language Technolo-
gies as a Challenge for Computer Science and Linguis-
tics, pages 81–87, Poznań, Poland, may. Wydawnictwo
Nauka i Innowacje.

Ortiz Suárez, P. J., Sagot, B., and Romary, L. (2019).
Asynchronous Pipeline for Processing Huge Corpora
on Medium to Low Resource Infrastructures. In Pi-
otr Bański, et al., editors, 7th Workshop on the Chal-
lenges in the Management of Large Corpora (CMLC-
7), Cardiff, United Kingdom, July. Leibniz-Institut für
Deutsche Sprache.

Ou-Yang, L. (2013). Newspaper3k: Article scraping and
curation. https://github.com/codelucas/
newspaper.

Oury, C. and Poll, R. (2013). Counting the uncountable:
statistics for web archives. Performance Measurement
and Metrics, 14(2):132–141.

Pomikálek, J. (2011). Removing boilerplate and duplicate
content from web corpora. Ph.D. thesis, Masaryk uni-
versity, Faculty of informatics, Brno, Czech Republic.

Schreibman, S., Siemens, R., and Unsworth, J. (2008). A
companion to digital humanities. John Wiley & Sons.

Weber, M. S. (2018). Methods and approaches to us-
ing web archives in computational communication re-
search. Communication Methods and Measures, 12(2-
3):200–215.

Winters, J., (2017). Coda: Web archives for humanities re-
search – some reflections, pages 238–248. UCL Press.

8. Language Resource References
Endrédy, I. and Prószéky, G. (2016). A pázmány korpusz.

Nyelvtudományi Közlemények, 112:191–205.
Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I.,

and Trón, V. (2004). Creating open language resources
for Hungarian. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’04), Lisbon, Portugal, May. European Lan-
guage Resources Association (ELRA).

Jakubı́ček, M., Kilgarriff, A., Kovář, V., Rychlỳ, P., and
Suchomel, V. (2013). The tenten corpus family. In 7th
International Corpus Linguistics Conference CL, pages
125–127.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář, V.,
Michelfeit, J., Rychlý, P., and Suchomel, V. (2014). The
sketch engine: ten years on. Lexicography, pages 7–36.

Laliwala, Z. and Shaikh, A. (2013). Web Crawling and
Data Mining with Apache Nutch. Packt Publishing.

Oravecz, C., Váradi, T., and Sass, B. (2014). The Hungar-
ian Gigaword corpus. In Proceedings of the Ninth Inter-
national Conference on Language Resources and Eval-
uation (LREC’14), pages 1719–1723, Reykjavik, Ice-
land, May. European Language Resources Association
(ELRA).

Suchomel, V. and Pomikálek, J. (2012). Efficient web
crawling for large text corpora. In Adam Kilgarriff et al.,
editors, Proceedings of the seventh Web as Corpus Work-
shop (WAC7), pages 39–43, Lyon.

Vadász, N. (2020). KorKorpusz: kézzel annotált,
többrétegű pilotkorpusz épı́tése. In Gábor Berend, et al.,
editors, XVI. Magyar Számı́tógépes Nyelvészeti Konfer-
encia (MSZNY 2020), pages 141–154, Szeged. Szegedi
Tudományegyetem, TTIK, Informatikai Intézet.

Vincze, V., Szauter, D., Almási, A., Móra, Gy., Alexin,
Z., and Csirik, J. (2010). Hungarian Dependency Tree-
bank. In Proceedings of LREC 2010, Valletta, Malta,
May. ELRA.

https://github.com/codelucas/newspaper
https://github.com/codelucas/newspaper

	Introduction
	Background
	Metadata
	Existing Hungarian Corpora

	From the web to a corpus
	The Web Crawler
	The Article Crawler
	The Archive Crawler
	The Possible Parameters for Portals

	Boilerplate Removal
	Normalisation
	Metadata extraction
	Existing Tools and Techniques

	Deduplication and NLP
	The Final Format and Front End

	Method
	HTML Parsers vs. Regular Expressions
	The Refined Archive Crawler
	Advanced Metadata Extraction
	Converting HTML to the Output Format
	The Tree Representation
	Rewriting Rules and Transformation Methods


	Evaluation
	The data set
	Crawling Compared to Archive.org

	Conclusion and Future Work
	Bibliographical References
	Language Resource References

