
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, pages 87–92
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

87

Spyder: Aggression Detection on Multilingual Tweets

Anisha Datta1, Shukrity Si1, Urbi Chakraborty2, Sudip kumar Naskar2

Jalpaiguri Govt. Engineering College, India 1

Jadavpur University, India 2

{sukriti.si98, dattaanishadatta, urbichakraborty}@gmail.com, sudip.naskar@cse.jdvu.ac.in

Abstract
In the last few years, hate speech and aggressive comments have covered almost all the social media platforms like
facebook, twitter etc. As a result hatred is increasing. This paper describes our (Team name: Spyder) participation
in the Shared Task on Aggression Detection organised by TRAC-2, Second Workshop on Trolling, Aggression and
Cyberbullying. The Organizers provided datasets in three languages – English, Hindi and Bengali. The task was to
classify each instance of the test sets into three categories – “Overtly Aggressive” (OAG), “Covertly Aggressive” (CAG)
and “Non-Aggressive” (NAG). In this paper, we propose three different models using Tf-Idf, sentiment polarity and
machine learning based classifiers. We obtained f1 score of 43.10%, 59.45% and 44.84% respectively for English, Hindi
and Bengali.

Keywords: Aggression Detection, Cyberbullying, Tf-Idf, Sentiment polarity, Machine learning

1. Introduction

According to data of smartinsights
(https://www.smartinsights.com/social-media-
marketing/social-media-strategy/new-global-social-
media-research/), the number of social media users in
2019 was above 3 billion. Due to this huge increase,
different types of user generated contents can be
seen on social media. Many social media platforms
like twitter, facebook, instagram, blogs etc. give
users the opportunity to post status, pictures, videos,
etc. and anyone can comment and reply to the
comments on the posts. The social media posts and
comments can be appreciative, affectionate, funny,
aggressive, hate-speech or even sarcastic. Due to
the huge interaction between people on social media,
the incidents of aggression can be seen growing day
by day in the form of trolling or hate-speech. The
impact of this phenomenon is immense, as it can even
lead anyone to commit suicide, two communities to
start riot, etc (Phillips, 2015). For this reason, this
research topic is of great importance and it has gained
popularity among researchers in the last few years.
The objective of this research topic is to automatically
identify aggressive posts in social media, there by
detecting the social media offenders and prevent any
undesirable incidents. Research on this topic is very
trending and is also a need of the hour.
This workshop focuses on the applications of NLP and
Machine Learning to tackle these issues. This includes
two shared tasks out of which we have participated on
the 1st task as detailed below -
The task was to identify the aggressive posts from
the social media texts. The participants were pro-
vided with the datasets containing three languages –
English, Hindi and Indian-Bengali. People nowadays
use multiple languages to write comments or posts on
social media. A very important aspect of this task
is to handle code-mixing and code-switching in lan-

guages since these are abundantly used in social media
platforms. The datasets that we were provided with
contain three classes “Overtly Aggressive” (OAG),
“Covertly Aggressive” (CAG) and “Non-Aggressive”
(NAG) where Overtly means totally aggressive,
Covertly means bullying or trolling indirectly contain-
ing almost no or less aggressive words and the third
one is not aggressive at all.
For our experiments we used three different models for
three different languages. We used Tf-Idf vectorizer
to vectorize the word-tokens. For English dataset, we
used the XGBoost classifier followed by the bagging
method. For Hindi dataset, we used the Gradient
Boosting classifier and many different types of features
like aggressive words lexicon, sentiment scores, parts
of speech tags etc. Lastly we used the Gradient
Boosting Classifier for Bengali dataset.
The rest of the paper is organized as follows. Section-2
gives a brief account of the related works. Section-3
presents a description of the datasets. In section-4,
the system architecture and the feature engineering
are explained. Section-5 presents the results and
comparison. Section 6 concludes the paper and
provides avenues for future work.

2. Related Work
Although aggression detection in text is a relatively
new research topic, quite a few research work have been
carried out on this topic (AmirHRazavi and Matwin.,
2010; Ritesh Kumar and Chennuru, 2018; Ritesh Ku-
mar and Zampieri, 2020). (Duyu Tang and Qin, 2014)
showed how positive and negative emoticons can be
used for this work. (Kwok and Wang., 2013) used
uni-gram model for this task. (Chikashi Nobata and
Chang, 2016) used different types of syntactic features
and embedding features for aggression detection in
text. (Mohammad, 2012) mapped hashtags like ‘yuck’,
‘joy’ into different types of emotions and classified the
texts. In (Or˘asan, 2018), they used Support Vector



88

Machine and Random Forest as classifiers and emo-
jis and sentiment scores were used as features. (Ne-
manja Djuric and Bhamidipati, 2015) used word em-
beddings which worked better than bag of words to de-
tect aggressive text. (Jan Deriu and Jaggi, 2016) also
did the work with the help of emotional sentiment.
However, all the research works mentioned above are
based on the English language (Jun-Ming Xu and Bell-
more, 2012). These days, with the increasing availabil-
ity of multi-lingual keypads in the mobile devices and
the support for multi-lingual contents in the websites,
detecting aggression from multi-lingual texts has be-
come a necessity. (Vinay Singh and Shrivastava, 2018)
used CNN and LSTM to detect aggression on Hindi-
English code-mixed texts. In (Shukrity Si, 2019), an
ensembling method were used with the help of Ag-
gression lexicons, sentiment scores, POS tags and,
emoticons on English and Hindi-English code-mixed
languages. (Kalika Bali and Vyas, 2014) proposed a
model for English-Hindi code-mixed comments from
facebook. (Yogarshi Vyas and Choudhury, 2014) pro-
posed a model for Hindi-English codemixed language
which is based on the feature - parts of speech. There
has also been work on aggression detection in other
languages like Chinese (Hui-Po Su and Lin, 2017),
Arabian (Hamdy Mubarak and Magdy, 2017), Dutch
(Stephan´ Tulkens and Daelemans, 2016), etc.
Our work is based on three languages - English, Hindi
and Indian Bengali. There are English-Hindi code-
mixing cases too in the datasets. We proposed different
models for the different languages and the models are
based on machine learning algorithms like XGBoost
and Gradient Boosting and features like Tf-Idf, senti-
ment scores, POS tags and aggressive words lexicon.
The methodology is described elaborately in Section 4.

3. Datasets
The TRAC 2020 Shared Task Organizers (Bhat-
tacharya et al., 2020) provided datasets in 3 languages
– English, Hindi and Indian Bengali. The English
dataset contains 5,120 texts for training and 1,201
texts for testing. The Indian Bengali dataset contains
4,785 texts for training and 1,188 texts for testing (in
both Roman and Bangla script). The Hindi dataset
contains 4,981 texts for training and 1,200 texts for
testing (in both Roman and Devanagari script). Ta-
ble 1 presents the statistics of the shared task datasets
provided by the Organizers.

Table 1: Dataset statistics

Data Training Test
English 5,120 1,201
Hindi 4,981 1,200
Bengali 4,785 1,188

Some examples are shown in figure 1.

Figure 1: Examples of given texts with categories

The preprocessing steps and further classification pro-
cess are described as follows.

4. Methodology
Different feature models are used for these 3 different
languages in classification process. Though same vec-
torizing tool is used in all of these three that is Tf-Idf
Vectorizer. Three different models are described be-
low.
For English Task-A, we have used Tf-Idf Vectorizer
(taking unigram and bigram sequence of words) with
500 maximum words as features. We use XGBoost
classifier (with learning rate 0.01 and random state 1)
to train the given dataset. Then we have used bag-
ging classifier where the base classifier is also XGBoost
(maximum samples=0.5, maximum features=0.5). No
extra data is used here for training.
For Bengali dataset, we have used Tf-Idf Vectorizer
(max words = 500 , bigram) as feature to vectorize
the word tokens. Then we have used Gradient Boost-
ing Classifier for classification. We are using the given
dataset and no extra data is used for training here.
For Hindi dataset, we have used Tf-Idf Vectorizer,
aggressive word lexicons , sentiment scores(taking
compound score from positive and negative scores
of individual words) and part of speech tags (as
some POS tags are important in classification like-
adverbs,adjectives etc.) as features. And we have used
Gradient Boosting Classifier for classification. No ex-
tra data is used for training here.
Now we describe the vectorizer tool, classification al-
gorithms and other feature models in details.

4.1. Tf-Idf Vectorizer
A machine can’t understand raw text data but only
number vectors. So the text input must be converted
into vector of numbers. There are many tools available
in python for this conversion. Bag of Words (BoW),
Count Vectorizer, Tf-Idf Vectorizer are some of the ex-
amples. Tf-Idf doesn’t only count the occurrences of
any word in a document, but also gives importance to
the words which are more useful in revealing the docu-
ment’s nature. It is the multiplication of Tf (Term Fre-
quency) and Idf (Inverse Document Frequency) which



89

have the formulae as follow -
Tf(t) =

frequencyoftermtinasentence

totalno.oftermsinthatsentence

Idf(t) = log
no.ofsentencesinadocument

totalno.ofsentenceswhichcontaintermt
By taking the log of the inverse count of term t, the
value for the words (terms) occurring much frequently
in the document (like stopwords, less important words)
gets reduced making the classification task easier.

4.2. XGBoost
XGBoost stands for Extreme Gradient Boosting. We
used XGBoost here for the English dataset. It is a new
algorithm and an implementation of Gradient Boosted
Decision Tree. It is mainly used for better performance
and it reduces the execution time also. It has many
features such that system features, model features, al-
gorithm features.

4.2.1. System Features
For better and fast performance this feature is included
in the XGBoost library. It has out of core computing,
distributed computing, cache optimization and paral-
lelization.

• Out of Core Computing - This is a special feature
that works for very large dataset. Large dataset
generally does not fit into memory. So this feature
can overcome this situation.

• Distributed Computing - This feature is used to
run very large models which needs a machine-
cluster.

• Cache Optimization - It is used for optimizing the
algorithm and data structure.

• Parallelization - It uses all CPU cores parallely
during the time of training.

4.2.2. Model Features
Model features include regularization methods and dif-
ferent types of gradient boosting algorithm.

• Stochastic Gradient Boosting - It is a special form
of Gradient Boosting Machine that sub-samples
the column and row.

• Regularization - It includes L1 and L2 regulariza-
tion which help to overcome overfitting.

4.2.3. Algorithm Features
This feature is included to increase the efficiency of
available resources and computational time. To do this
it uses block structure, continued training and sparse
aware method.

4.2.4. Bagging with XGBoost
Then we used bagging classifier keeping XGBoost as
our base classifier.
Bagging is one type of ensembling method that is used
for better prediction. For bagging, the original dataset
is divided into many random subsets. Then the base
classifier is fitted (here XGBoost) into the subsets.

Then the output is given by aggregating (voting or
averaging) their individual predictions. This method
is known as bagging and with this we can minimize the
variance of the model. We used bagging classifer with
the help of XGBoost to classify the English task.

4.3. Gradient Boosting Machine
Gradient Boosting machine (GBM) was used for Hindi
and Bengali dataset. Weak learner by training can
become a strong learner - on this assumption GBM
works. Gradient Boosting Classifier is mainly consist-
ing of three major components - a loss function, a weak
learner and an additive model. On training the loss
function is optimized, the weak learner is used to pre-
dict on the basis of the task and the additive model
is used so that the weak learner can minimize the loss
function.

• Loss Function - In supervised learning, error
should always be minimized during the training.
To calculate the error first we have to take a func-
tion, it is called loss function. Loss function is
generally taken on the basis of problem statement.
The main criteria of a loss function is that it must
be differentiable. For classification, we can use
logarithmic loss and for regression, squared error
can be used. For our task, we used logarithmic
loss as our loss function.

• Weak Learner - For Gradient Boosting, Decision
Tree is taken into consideration for weak learner.
The learner should be greedy and that is why tree
is chosen here. Tree are constructed in a greedy
way. Trees generally choose the best split points
to minimize the scores. And later an additive
model is added with this weak learner.

• Additive Model - Additive model is used to mini-
mize the error of loss function. For this algorithm,
trees are added but one at a time and for this, the
trees should not be changed. Gradient Descent
method is also used here and it helps to minimize
the error during the addition of trees. After the
errors are calculated the weights are updated for
minimizing the error. The new output is added to
the old output of the existing tree and the process
is continued. In this way, Gradient Boosting is
heading towards a better result.

4.4. Aggressive Word Lexicon
For doing the task, we observed the dataset very care-
fully and we observed that the texts contain many bad
words and slang languages. We considered these as an
important feature and named these as aggressive word
features. So, we made a lexicon of these aggressive
words which can be used to write hate comments and
used it to build our model. Here is some examples of
aggressive words.
e.g - ”chutiya”, ”jhant”, ”������” etc.
These types of words are frequently used in texts la-
belled as ’OAG’. So, this feature is very important to



90

identify the ’OAG’ class in our task. We used this
lexicon for Hindi dataset only.

4.5. Sentiment Score
Observing the dataset, we can say that aggression is
one kind of sentiment and for this, we used sentiment
score as one of our features. Generally if the senti-
ment of a text is very negative, then there is a high
chance that the text would be OAG. Because, OAG
text contains many slang words which belongs to nega-
tive sentiment category. We used this feature for Hindi
dataset. Hindi-sentiwordnet is used to get the senti-
ment score of each word present in the dataset. There
are three types of sentiment in sentiwordnet - posi-
tive, negative and neutral. We tagged all the tokens
accordingly this and used sentiment score as a feature.

4.6. POS Tag
POS tag represents part of speech tag. We observed
that adjectives and adverbs are highly used in case of
OAG and CAG. Higher the present of adjective and
adverb higher the chance of the text is to be a OAG
or CAG. We used this feature for Hindi dataset and
to do this sentiwordnet was used. There are four parts
of speech in sentiwordnet - noun, verb, adjective and
adverb. We tagged the word-tokens according to their
parts of speech and constructed a feature matrix and
used it to build our model.

5. Results and Discussion
In this section, we will discuss about all our of results
in details. Table 2 shows the result of English dataset.
We got the weighted F1 score of 43.10% and accuracy
of 58% for this model.
The performance of our model is not so good in the

System F1 (weighted) Accuracy
Bagging (XGBoost) 0.4310 0.58

Table 2: Results for Sub-task EN-A

shared task competition. The comparison with other
models is shown in Table 3.

Table 3: Comparison Table for English Dataset

Julian Sdhanshu krishan Our
thvs Model

F Score 80.29 75.92 44.17 43.10

From the table, we can clearly see that our perfor-
mance is very poor. So we need many modifications
in our model and we will discuss about the poor
performance of our model in the end of this section.
Table 4 shows the result of Hindi dataset. We got the
F1 score of 59.45% and accuracy of 62.08%.
The comparison with other models in this dataset is
shown in Table 5.

System F1 (weighted) Accuracy
GBM 0.5945 0.6208

Table 4: Results for Sub-task HIN-A

Table 5: Comparison Table for Hindi Dataset

Julian abaruah bhanu Our
prakash2708 Model

F Score 81.27 79.43 14.06 59.45

The performance of our model for Hindi dataset is
slightly better than the previous one. But still it
needs lot of modification.
The result for Bengali dataset is shown in Table 6. We
got the F1 score of 44.84% and accuracy of 59.76%.
The comparison with other models for this Bengali

System F1 (weighted) Accuracy
GBM 0.4484 0.5976

Table 6: Results for Sub-task BEN-A

dataset is shown in Table 7.
Our performance on Bengali dataset is also not good
and we will modify our model for better performance.

Confusion matrices are given to visualize the results
for all of the three languages. This matrix gives the
actual measurement to test the performance of our
model. It compares between the true (actual result)
and predicted (model prediction) classes. As for
binary classification, the confusion matrix looks like
the Table 8.

Here TP means True Positive (predicted as true and
actually it is true), FP means False Positive (predicted
as true but actually it is false), FN means False Nega-
tive (predicted as false but actually it is true) and TN
means True Negative (predicted as false and actually
it is false).
In our model, this is 3-class classification and so the
confusion matrix is of 3*3 matrix. The confusion ma-
trix for the Bengali dataset is shown in figure 2. The
confusion matrix for the English dataset is shown in
figure 3.
The confusion matrix for the Hindi dataset is shown
in figure 4.
This model gives good results but these could be bet-
ter if we could modify our model in some ways more.
There are some modifications that can be done as
follows-
(1) We can use extra resources like aggressive words
lexicon for Bengali and English datasets as well. It
will help to distinguish the aggressive texts from oth-
ers like in Hindi dataset.
(2) We have used bagging classifier (ensembling



91

Table 7: Comparison Table for Bengali Dataset

Julian abaruah saikesav Our
564 Model

F Score 82.18 80.82 46.84 44.84

Predicted(row)/ Posi- Nega-
True(col) tive tive

Pos TP FP
Neg FN TN

Table 8: Confusion Matrix of Binary Classification

method) in case of English data only with base classi-
fier as XGBoost. But this method can be applied to
other two datasets as well for improvement.
(3) We have used only machine learning classifiers for
this 3-class classification. But we can implement deep
learning models also. Although the datasets are not
very large and it might not give good results, but we
can try this in future for more exploration.

6. Conclusion
After observing the results we can come to a conclu-
sion. The performances of our models is poor and
all models need many modifications for better perfor-
mance. We observed that deep learning methods like
LSTM, RNN or CNN-LSTM with pre-trained word
embedding methods like glove gave good results for
some researches. As we did not use any deep learning
technique in our work we can use it and results can
be better for this. We will work on this task in future
to modify the models and a general model have to be
made which can work fine for datasets of any language.

CA
G

NA
G

OA
G

Predicted label

CAG

NAG

OAG

Tr
ue

 la
be

l

225

2 710

251

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Confusion Matrix for Sub-task BEN-A)

CA
G

NA
G

OA
G

Predicted label

CAG

NAG

OAG

Tr
ue

 la
be

l

5 219

690

285 1

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Confusion Matrix for Sub-task EN-A

CA
G

NA
G

OA
G

Predicted label

CAG

NAG

OAG

Tr
ue

 la
be

l

10 102 79

8 270 47

33 186 465

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: Confusion Matrix for Sub-task HIN-A

This can be done in future.

7. Bibliographical References
AmirHRazavi, DianaInkpen, S. and Matwin., S.
(2010). Offensive language detection using multi-
level classification. In Canadian Conference on Ar-
tificial Intelligence, pages 16–27. Springer.

Bhattacharya, S., Singh, S., Kumar, R., Bansal, A.,
Bhagat, A., Dawer, Y., Lahiri, B., and Ojha, A. K.
(2020). Developing a multilingual annotated corpus
of misogyny and aggression.

Chikashi Nobata, Joel Tetreault, A. T. Y. M. and
Chang, Y. (2016). Abu-sive language detection in
online user content. In Proceedings of the 25th In-
ternational Conference on World Wide Web, pages
145–153. International World Wide Web Confer-
ences Steering Committee.



92

Duyu Tang, Furu Wei, N. Y. M. Z. T. L. and Qin,
B. (2014). Learning sentiment-specific word embed-
ding for twitter sentiment classification. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 1555–1565.

Hamdy Mubarak, K. D. and Magdy, W. (2017). Abu-
sive language detection on arabic social media. In
Proceedings of the First Workshop on Abusive Lan-
guage Online, pages 52–56.

Hui-Po Su, Zhen-Jie Huang, H.-T. C. and Lin, C.-
J. (2017). Rephrasing profanity in chinese text. In
Proceedings of the First Workshop on Abusive Lan-
guage Online, pages 18–24..

Jan Deriu, Maurice Gonzenbach, F. U. A. L. V. D. L.
and Jaggi, M. (2016). Swisscheese at semeval-2016
task 4: Sentiment classification using an ensemble
of convolutional neural networks with distant su-
pervision. In Proceedings of the 10th International
Workshop on Semantic Evaluation, number EPFL-
CONF-229234, pages 1124–1128.

Jun-Ming Xu, Kwang-Sung Jun, X. Z. and Bellmore,
A. (2012). Learning from bullying traces in social
media. In Proceedings of the 2012 conference of the
North American chapter of the association for com-
putational linguistics: Human language technolo-
gies, pages 656– 666. Association for Computational
Linguistics.

Kalika Bali, Jatin Sharma, M. C. and Vyas, Y. (2014).
i am borrowing ya mixing?” an analysis of english-
hindi code mixing in facebook. In Proceedings of
the First Workshop on Computational Approaches
to Code Switching, pages 116–126.

Kwok, I. and Wang., Y. (2013). Locate the hate: De-
tecting tweets against blacks. In Twenty-Seventh
AAAI Conference on Artificial Intelligence.

Mohammad, S. M. (2012). emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics-Volume 1: Proceed-
ings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation, pages 246–255.
Associa-tion for Computational Linguistics.

Nemanja Djuric, Jing Zhou, R. M. M. G. V. R. and
Bhamidipati, N. (2015). Hate speech detection with
comment embeddings. In Proceedings of the 24th
International Conference on World Wide Web Com-
panion, pages 29–30. International World Wide Web
Con-ferences Steering Committee.

Or˘asan, C. (2018). Aggressive language identifica-
tion using word embeddings and sentiment features.
Proceedings of the First Workshop on Trolling, Ag-
gression and Cyberbullying, pages 113–119.

Phillips, W. (2015). This is why we can’t have nice
things: Mapping the relationship between online
trolling and mainstream culture. Mit Press.

Ritesh Kumar, Guggilla Bhanodai, R. P. and Chen-
nuru, M. R. (2018). Trac-1 shared task on aggres-
sion identification: Iit(ism)@coling’18.

Ritesh Kumar, Atul Kr. Ojha, S. M. and Zampieri, M.
(2020). Evaluating aggression identification in social
media. In Ritesh Kumar, et al., editors, Proceedings
of the Second Workshop on Trolling, Aggression and
Cyberbullying (TRAC-2020), Paris, France, may.
European Language Resources Association (ELRA).

Shukrity Si, Anisha Datta, S. B. S. K. N. (2019). Ag-
gression detection on multilingual social media text.
10th ICCCNT - 2019.

Stephan´ Tulkens, Lisa Hilte, E. L. B. V. and Daele-
mans, W. (2016). A dictionary-based approach to
racism detection in dutch social media. In Proceed-
ings of the Workshop Text Analytics for Cybersecu-
rity and Online Safety (TA-COS), Portoroz, Slove-
nia.

Vinay Singh, Aman Varshney, S. S. A. D. V. and Shri-
vastava, M. (2018). Aggression detection on social
media text using deep neural networks. Empirical
Methods in Natural Language Processing (EMNLP-
2018).

Yogarshi Vyas, Spandana Gella, J. S. K. B. and Choud-
hury, M. (2014). Pos tagging of english-hindi code-
mixed social media content. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 974–979.


	Introduction
	Related Work
	Datasets
	Methodology
	Tf-Idf Vectorizer
	XGBoost
	System Features
	Model Features
	Algorithm Features
	Bagging with XGBoost

	Gradient Boosting Machine
	Aggressive Word Lexicon
	Sentiment Score
	POS Tag

	Results and Discussion
	Conclusion
	Bibliographical References

