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Abstract
Towards developing high-performing ASR for low-resource languages, approaches to address the lack of resources are to make use
of data from multiple languages, and to augment the training data by creating acoustic variations. In this work we present a single
grapheme-based ASR model learned on 7 geographically proximal languages, using standard hybrid BLSTM-HMM acoustic models with
lattice-free MMI objective. We build the single ASR grapheme set via taking the union over each language-specific grapheme set, and we
find such multilingual graphemic hybrid ASR model can perform language-independent recognition on all 7 languages, and substantially
outperform each monolingual ASR model. Secondly, we evaluate the efficacy of multiple data augmentation alternatives within language,
as well as their complementarity with multilingual modeling. Overall, we show that the proposed multilingual graphemic hybrid ASR with
various data augmentation can not only recognize any within training set languages, but also provide large ASR performance improvements.

Keywords: Multilingual graphemic acoustic models, hybrid speech recognition, data augmentation

1. Introduction
It can be challenging to build high-accuracy automatic
speech recognition (ASR) systems in the real world due
to the vast language diversity and the requirement of exten-
sive manual annotations on which the ASR algorithms are
typically built. Series of research efforts have thus far been
focused on guiding the ASR of a target language by using
the supervised data from multiple languages.
Consider the standard hidden Markov models (HMM) based
hybrid ASR system with a phonemic lexicon, where the
vocabulary is specified by a pronunciation lexicon. One
popular strategy is to make all languages share the same
phonemic representations through a universal phonetic al-
phabet such as International Phonetic Alphabet (IPA) phone
set (Lin et al., 2009; Liu et al., 2016; Pulugundla et al., 2018;
Tong et al., 2019), or X-SAMPA phone set (Wells, 1995;
Knill et al., 2013; Knill et al., 2014; Wiesner et al., 2018). In
this case, multilingual joint training can be directly applied.
Given the effective neural network based acoustic modeling,
another line of research is to share the hidden layers across
multiple languages while the softmax layers are language
dependent (Huang et al., 2013; Heigold et al., 2013); such
multitask learning procedure can improve ASR accuracies
for both within training set languages, and also unseen lan-
guages after language-specific adaptation, i.e., cross-lingual
transfer learning. Different nodes in hidden layers have been
shown in response to distinct phonetic features (Nagamine et
al., 2015), and hidden layers can be potentially transferable
across languages. Note that the above works all assume the
test language identity to be known at decoding time, and the
language specific lexicon and language model applied.
In the absence of a phonetic lexicon, building graphemic
systems has shown comparable performance to phonetic
lexicon-based approaches in extensive monolingual evalu-
ations (Kanthak and Ney, 2002; Gales et al., 2015; Trmal
et al., 2017). Recent advances in end-to-end or sequence-
to-sequence ASR models have attempted to take the union
of multiple language-specific grapheme (i.e. orthographic
character) sets, and use such union as a universal grapheme
set for a single sequence-to-sequence ASR model (Watanabe

et al., 2017; Toshniwal et al., 2018; Kim and Seltzer, 2018;
Kannan et al., 2019). It allows for learning a grapheme-
based model jointly on data from multiple languages, and
performing ASR on within training set languages. In various
cases it can produce performance gains over monolingual
modeling that uses in-language data only.
Since HMM-based hybrid model remains a competitive
ASR approach especially in low/medium-resource settings
(Lüscher et al., 2019; Wang et al., 2020), in our work, we aim
to examine the same approach above of building a multilin-
gual graphemic lexicon, while using a hybrid ASR system –
based on Bidirectional Long Short-Term Memory (BLSTM)
and HMM – learned with lattice-free maximum mutual in-
formation (MMI) objective (Povey et al., 2016). Our initial
attempt is on building a single cascade of an acoustic model,
a phonetic decision tree, a graphemic lexicon and a lan-
guage model – for 7 geographically proximal languages that
have little overlap in their character sets. We evaluate it
in a low resource context where each language has around
160 hours training data. We find that, despite the lack of ex-
plicit language identification (ID) guidance, our multilingual
graphemic hybrid ASR model can accurately produce ASR
transcripts in the correct test language scripts, and provide
higher ASR accuracies than each language-specific ASR
model. We further examine if using a subset of closely re-
lated languages – along language family or orthography –
can achieve the same performance improvements as using
all 7 languages.
Though extensive end-to-end or sequence-to-sequence ASR
works have been built on multilingual graphemic models,
to the best of our knowledge, there is no prior work in hy-
brid ASR that uses a single multilingual graphemic lexicon
(rather than an IPA or X-SAMPA based phonetic lexicon) for
multiple training languages. In this work, we show for the
first time that multilingual graphemic hybrid ASR can pro-
vide large improvements across all training languages, even
though almost each training language has distinct graphemic
set.
We proceed with our investigation on various data augmen-
tation techniques to overcome the lack of training data in
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the above low-resource setting. Given the highly scalable
neural network acoustic modeling, extensive alternatives
to increasing the amount or diversity of existing training
data have been explored in prior works, e.g., applying vocal
tract length perturbation and speed perturbation (Ko et al.,
2015), volume perturbation and normalization (Peddinti et
al., 2015), additive noises (Amodei et al., 2016), reverbera-
tion (Peddinti et al., 2015; Ko et al., 2017; Kim et al., 2017),
and SpecAugment (Park et al., 2019). In this work we focus
particularly on techniques that mostly apply to our wildly
collected video datasets. In comparing their individual and
complementary effects, we aim to answer: (i) if there is
benefit in scaling the model training to significantly larger
quantities, e.g., up to 9 times greater than the original train-
ing set size, and (ii) if any, is the data augmentation efficacy
comparable or complementary with the above multilingual
modeling.
Improving accessibility to videos “in the wild” such as auto-
matic captioning on YouTube has been studied in (Liao et
al., 2013; Soltau et al., 2017). While allowing for applica-
tions like video captions, indexing and retrieval, transcrib-
ing the heterogeneous social media videos of extensively
diverse languages is highly challenging for ASR systems.
On the whole, we present empirical studies in building a
single multilingual graphemic hybrid ASR model capable of
language-independent decoding on multiple languages, and
in effective data augmentation techniques for video datasets.

2. Multilingual Graphemic Hybrid ASR
In this section we first briefly describe our deployed hybrid
ASR architecture based on the weighted finite-state trans-
ducers (WFSTs) outlined in (Mohri et al., 2008). Then we
present its extension to multilingual training. Lastly, we
discuss its language-independent decoding and language-
specific decoding.

2.1. Graphemic ASR with WFST
In the ASR framework of a hybrid BLSTM-HMM, the de-
coding graph can be interpreted as a composed WFST of
cascade H ◦ C ◦ L ◦ G. Acoustic models, i.e. BLSTMs,
produce acoustic scores over context-dependent HMM (i.e.
triphone) states. A WFST H , which represents the HMM
set, maps the triphone states to context-dependent phones.
While in graphemic ASR, the notion of phone is turned to
grapheme, and we typically create the grapheme set via mod-
eling each orthographic character as a separate grapheme.
Then a WFST C maps each context-dependent grapheme,
i.e. tri-grapheme, to an orthographic character. The lexicon
L is specified where each word is mapped to a sequence of
characters forming that word. G encodes either the transcript
during training, or a language model during decoding.

2.2. A Single Multilingual ASR Model Using
Lattice-Free MMI

To build a single grapheme-based acoustic model for multi-
ple languages, a multilingual graphemic set is obtained by
taking a union of each grapheme set from each language
considered, each of which can be either overlapping or non-
overlapping. In the multilingual graphemic lexicon, each

word in any language is mapped to a sequence of characters
in that language.
A context-dependent acoustic model is constructed using
the decision tree clustering of tri-grapheme states, in the
same fashion as the context dependent triphone state tying
(Young et al., 1994). The graphemic-context decision tree is
constructed over all the multilingual acoustic data including
each language of interest. The optimal number of leaves
for the multilingual model tends to be larger than for a
monolingual neural network.
The acoustic model is a BLSTM network, using sequence
discriminative training with lattice-free MMI objective
(Povey et al., 2016). The BLSTM model is bootstrapped
from a standard Gaussian mixture model (GMM)-HMM
system. A multilingual n-gram language model is learned
over the combined transcripts including each language con-
sidered.

2.3. Language-Independent and
Language-Specific Decoding in the WFST
Framework

Given the multilingual lexicon and language model, the
multilingual ASR above can decode any within training
set language, even though not explicitly given any infor-
mation about language identity. We refer to it as language-
independent decoding or multilingual decoding. Note that
such ASR can thus far produce any word in the multilin-
gual lexicon, and the hypothesized word can either be in the
vocabulary of the considered test language, or out of test
language vocabulary as a mismatched-language error.
We further consider applying language-specific decoding,
assuming the test language identity to be known at decoding
time. Again consider the decoding graph H ◦ C ◦ L ◦ G,
and H & C are thus multilingual while the lexicon L and
language model G can include only the words in test lan-
guage vocabulary. The multilingual acoustic model can
therefore make use of multilingual training data, while its
language-specific decoding operation only produces mono-
lingual words matched with test language identity.

3. Data Augmentation
In this section, we consider 3 categories of data augmen-
tation techniques that are effectively applicable to video
datasets.

3.1. Speed and Volume Perturbation
Both speed and volume perturbation emulate mean shifts
in spectrum (Ko et al., 2015; Peddinti et al., 2015). To
perform speed perturbation of the training data, we produce
three versions of each audio with speed factors 0.9, 1.0,
and 1.1. The training data size is thus tripled. For volume
perturbation, each audio is scaled with a random variable
drawn from a uniform distribution [0.125, 2].

3.2. Additive Noise
To further increase training data size and diversity, we can
create new audios via superimposing each original audio
with additional noisy audios in time domain. To obtain
diverse noisy audios, we use AudioSet, which consists of
632 audio event classes and a collection of over 2 million
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manually-annotated 10-second sound clips from YouTube
videos (Gemmeke et al., 2017).
Note that in our video datasets, video lengths vary between
10 seconds and 5 minutes, with an average duration of about
2 minutes. Rather than constantly repeating the 10-second
sound clip to match the original minute-long audio, we su-
perimpose each sound clip on the short utterances via audio
segmentation. Specifically, we first use an initial bootstrap
model to align each original long audio, and segment each
audio into around 10-second utterances via word boundaries.
Then for each utterance in the original train set, we can
create a new noisy utterance by the steps:

1. Sample a sound clip from AudioSet.

2. Trim or repeat the sound clip as necessary to match the
duration of the original utterance.

3. Sample a signal-to-noise ratio (SNR) from a Gaussian
distribution with mean 10, and round the SNR up to 0
or down to 20 if the sample is beyond 0-20dB. Then
scale the sound clip signal to obtain the target SNR.

4. Superimpose the original utterance signal with the
scaled sound clip signal in time domain to create the
resulting utterance.

Thus for each original utterance, we can create a variable
number of new noisy utterances via sampling sound clips.
We use a 3-fold augmentation that combines the original
train set with two noisy copies.

3.3. SpecAugment
We consider applying the frequency and time masking tech-
niques – which are shown to greatly improve the perfor-
mance of end-to-end ASR models (Park et al., 2019) – to
our hybrid systems. Similarly, they can be applied online
during each epoch of LF-MMI training, while time warping
requires the need for realignment and thus does not fit hybrid
model training.
Consider each utterance (i.e. after the audio segmentation in
Section 3.2.), and we compute its log mel spectrogram with
ν dimension and τ time steps:

1. Frequency masking is appliedmF times, and each time
the frequency bands [f0, f0+f) are masked, where f is
sampled from [0, F ] and f0 is sampled from [0, ν − f).

2. Time masking is optionally appliedmT times, and each
time the time steps [t0, t0 + t) are masked, where t is
sampled from [0, T ] and t0 is sampled from [0, τ − t).

As in (Park et al., 2019), we increase the training schedule
accordingly, i.e., number of epochs.

4. Experiments
4.1. Data
Our multilingual ASR attempt was on 7 geographically
proximal languages: Kannada, Malayalam, Sinhala, Tamil,
Bengali, Hindi and Marathi. The datasets were a set of
public social media videos, which were wildly collected
and anonymized. We categorized them into four sets:
clean, noisy, extremeI (xtrmI) and extremeII

Language Train Test
clean noisy xtrmI xtrmII

Kannada 125.5 1.5 9.9 0.8 2.7
Malayalam 127.7 4.5 9.2 0.7 1.0

Sinhala 160.0 13.9 25.0 8.6 8.8
Tamil 176.9 2.8 16.4 0.5 0.7

Bengali 160.0 7.4 24.9 25.0 16.4
Hindi 160.0 22.2 21.5 19.4 19.8

Marathi 148.6 2.7 13.7 0.3 0.5

Table 1: The amounts of audio data in hours.

(xtrmII). xtrmI differed from xtrmII in chronological
order, and were both more acoustically challenging than
clean and noisy categories.
For each language, the train and test set size are described
in Table 1, and most training data were of noisy category.
On each language we also had a small validation set for
model parameter tuning. Each monolingual ASR baseline
was trained on language-specific data only.
To create the grapheme set, we consult the unicode charac-
ter ranges of each language, and also include apostrophe,
hyphen and zero width joiner in the final character sets. The
character sets of these 7 languages have little overlap ex-
cept that (i) they all include common basic Latin alphabet,
and (ii) both Hindi and Marathi use Devanagari script. We
took the union of 7 character sets therein as the multilingual
grapheme set (Section 2.2.), which contained 432 charac-
ters. In addition, we deliberately split 7 languages into two
groups, such that the languages within each group were
more closely related in terms of language family, orthogra-
phy or phonology. We thus built 3 multilingual ASR models
trained on:

(i) all 7 languages, for 1059 training hours in total,

(ii) 4 languages – Kannada, Malayalam, Sinhala and Tamil
– for 590 training hours,

(iii) 3 languages – Bengali, Hindi and Marathi – for 469
training hours,

which are referred to as 7lang, 4lang, and 3lang respectively.
Note that Kannada, Malayalam and Tamil are Dravidian
languages, which have rich agglutinative inflectional mor-
phology (Pulugundla et al., 2018) and resulted in around
10% OOV token rates on test sets (Hindi had the lowest
OOV rate as 2-3%). Such experimental setup was designed
to answer the questions:

(i) If a single graphemic ASR model could scale its
language-independent recognition up to all 7 lan-
guages.

(ii) If including all 7 languages could yield better ASR
performance than using a small subset of closely related
languages.

4.2. Model Configurations
Each bootstrap model was a GMM-HMM based system
with speaker adaptive training, implemented with Kaldi
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Language Model clean noisy xtrmI xtrmII Average % Gain
Kannada monolingual 56.9 56.6 58.7 57.6 57.5 –

monolingual + fm 53.3 54.8 56.9 56.4 55.4 3.7
monolingual + sp 53.1 54.7 56.4 55.2 54.9 4.5
monolingual + fm + sp 50.3 53.1 54.8 53.9 53.0 7.8
monolingual + sp + noise 50.7 53.3 54.8 53.6 53.1 7.7
monolingual + fm + sp + noise 49.7 52.5 54.9 52.7 52.5 8.7
multilingual, 4lang 50.2 53.4 55.7 53.4 53.2 7.5
multilingual, 7lang 49.7 53.5 54.9 55.6 53.4 7.1
multilingual, 7lang + lang-specific decoding 49.4 52.5 54.6 53.7 52.5 8.7
multilingual, 7lang + fm + sp + noise 46.6 52.0 53.0 53.3 51.2 11.0

Malayalam monolingual 56.5 53.2 70.3 55.9 59.0 –
multilingual, 4lang 52.8 51.6 65.8 53.4 55.9 5.3
multilingual, 7lang 52.1 51.9 66.3 54.0 56.1 5.0

Sinhala monolingual 45.4 39.5 62.7 51.8 49.9 –
multilingual, 4lang 42.1 38.4 59.7 50.3 47.6 4.6
multilingual, 7lang 42.9 38.3 59.3 49.9 47.6 4.6

Tamil monolingual 44.2 44.4 49.0 52.7 47.6 –
multilingual, 4lang 40.7 42.8 46.6 50.9 45.2 5.0
multilingual, 7lang 40.1 42.7 46.1 51.7 45.2 5.0

Bengali monolingual 53.4 50.8 68.2 58.0 57.6 –
multilingual, 3lang 45.5 47.0 62.6 53.3 52.1 9.5
multilingual, 7lang 45.7 48.1 63.9 54.7 53.1 7.8

Hindi monolingual 36.9 38.2 58.4 45.0 44.6 –
monolingual + fm 33.2 34.8 54.1 40.9 40.8 8.5
monolingual + sp 33.6 34.9 55.0 41.1 41.2 7.6
monolingual + fm + sp 32.1 33.4 52.7 39.5 39.4 11.7
monolingual + sp + noise 32.0 33.5 52.6 39.5 39.4 11.7
monolingual + fm + sp + noise 30.9 32.2 50.7 38.2 38.0 14.8
multilingual, 3lang 32.2 33.9 53.5 40.3 40.0 10.3
multilingual, 7lang 31.9 33.8 53.6 40.8 40.0 10.3
multilingual, 7lang + lang-specific decoding 31.8 33.4 52.7 40.1 39.5 11.4
multilingual, 7lang + fm + sp + noise 28.5 30.8 49.6 36.7 36.4 18.4

Marathi monolingual 38.2 39.8 63.2 49.0 47.6 –
multilingual, 3lang 34.9 37.4 56.4 46.3 43.7 8.2
multilingual, 7lang 35.2 38.1 56.5 46.1 44.0 7.6

Table 2: WER results on each video dataset. Frequency masking is denoted by fm, speed perturbation by sp, and additive
noise (Section 3.2.) by noise. 3lang, 4lang and 7lang denote the multilingual ASR models trained on 3, 4 and 7 languages,
respectively, as in Section 4.1.. Lang-specific decoding denotes using multilingual acoustic model with language-specific
lexicon and language model, as in Section 2.3.. Average is unweighted average WER across 4 video types. Gain (%) is the
relative reduction in the Average WER over each monolingual baseline.

(Povey et al., 2011). Each neural network acoustic model
was a latency-controlled BLSTM (Zhang et al., 2016),
learned with lattice-free MMI objective and Adam optimizer
(Kingma and Ba, 2015). All neural networks were imple-
mented with Caffe2 (Hazelwood et al., 2018). Due to the
production real time factor (RTF) requirements, we used the
same model size in all cases – a 4 layer latency-controlled
BLSTM network with 600 cells in each layer and direction –
except that, the softmax dimensions, i.e. the optimal deci-
sion tree leaves, were determined through experiments on
validation sets, varying within 7-30k. Input acoustic features
were 80-dimensional log-mel filterbank coefficients. After
lattice-free MMI training, the model with the best accuracy
on validation set was used for evaluation on test set. We
used standard 5-gram language models in all cases. Each

multilingual 5-gram language model is learned simply via
combining transcripts of each language.

4.3. Results with Multilingual ASR
ASR word error rate (WER%) results are shown in Table
2. We found that, although not explicitly given any infor-
mation on test language identities, multilingual ASR with
language-independent decoding (Section 2.3.) - trained on
3, 4, or 7 languages - substantially outperformed each mono-
lingual ASR in all cases, and on average led to relative WER
reductions between 4.6% (Sinhala) and 10.3% (Hindi).
Note that, in contrast to the multilingual phonetic hybrid
ASR (i.e. using phonetic lexicons), it is intuitive to see ASR
performance improve when different languages share the
same phone set via IPA or X-SAMPA , since each phonetic
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modeling can use more training data than monolingual train-
ing. However, in our multilingual graphemic ASR, only
2 of 7 training languages overlapped in character sets; for
the first time, we show that, such multilingual graphemic-
context decision tree based hybrid ASR can still improve
performance for all languages.
Also, the word hypotheses from language-independent de-
coding could be language mismatched, e.g., part of a Kan-
nada utterance was decoded into Marathi words. So we
counted how many word tokens in the decoding transcripts
were not in the lexicon of corresponding test language. We
found in general only 1-3% word tokens are language mis-
matched, indicating that the multilingual model was very
effective in identifying the language implicitly and jointly
recognizing the speech.
Consider the scenario that, test language identities are
known likewise in each monolingual ASR, and we proceed
with language-specific decoding (Section 2.3.) on Kannada
and Hindi, via language-specific lexicon and language model
at decoding time. We found that, the language-specific de-
coding provided only moderate gains, presumably as dis-
cussed above, the language-independent decoding had given
the mismatched-language word token rates as sufficiently
low as 1-3%.
Additionally, the multilingual ASR of 4lang and 3lang (Sec-
tion 4.1.) achieved the same, or even slightly better perfor-
mance as compared to the ASR of 7lang, suggesting that
incorporating closely related languages into multilingual
training is most useful for improving ASR performance.
However, the 7lang ASR by itself still yields the advantage
in language-independent recognition of more languages.

4.4. Results with Data Augmentation
First, we experimented with monolingual ASR on Kannada
and Hindi, and performed comprehensive evaluations of the
data augmentation techniques described in Section 3.. As in
Table 2, the performance gains of using frequency masking
were substantial and comparable to those of using speed
perturbation, where mF = 2 and F = 15 (Section 3.3.)
worked best. In addition, combining both frequency mask-
ing and speed perturbation could provide further improve-
ments. However, applying additional volume perturbation
(Section 3.1.) or time masking (Section 3.3.) was not helpful
in our monolingual experiments, and we omit showing the
results in the table.
Note that after speed perturbation, the training data tripled,
to which we could apply another 3-fold augmentation based
on additive noise (Section 3.2.), and the final train set was
thus 9 times the size of original train set. We found that all 3
techniques were complementary, and in combination led to
large fusion gains over each monolingual baseline – relative
WER reductions of 8.7% on Kannada, and 14.8% on Hindi.
Secondly, we applied the 3 data augmentation techniques
to the multilingual ASR of 7lang, and tested their additive
effects. We show the resulting WERs on Kannada and Hindi
in Table 2. Note that on Kannada, we found around 7% OOV
token rate on clean but around 10-11% on other 3 test
sets, and we observed more gains on clean ; presumably
because the improved acoustic model could only correct
the in-vocabulary word errors, lower OOV rates therefore

left more room for improvements. Hindi had around 2.5%
OOV rates on each test set, and we found incorporating data
augmentation into multilingual ASR led to on average 9.0%
relative WER reductions.
Overall, we demonstrated the multilingual hybrid ASR with
massive data augmentation – via a single graphemic model
even without the use of explicit language ID – allowed for
relative WER reductions of 11.0% on Kannada and 18.4%
on Hindi.

5. Conclusion
Multilingual training have been extensively studied in con-
ventional phonetic hybrid ASR (Lin et al., 2009; Knill et al.,
2013) and the recent end-to-end ASR (Watanabe et al., 2017;
Toshniwal et al., 2018). In our work, for the first time, we
demonstrate that a multilingual grapheme-based hybrid ASR
model can effectively perform language-independent recog-
nition on any within training set languages, and substantially
outperform each monolingual ASR alternative. Various data
augmentation techniques can yield further complementary
improvements. Such single multilingual model can not only
provide better ASR performance, but also serves as an alter-
native to a typical production deployment, which typically
includes extensive monolingual ASR systems and a separate
language ID model. The proposed approach of building a
single multilingual graphemic hybrid ASR model without
requiring individual language ID - while being especially
competitive in low-resource settings - can greatly simplify
the productionizing and maintenance process.
Additionally, as compared to the multilingual multitask
learning plus monolingual fine-tuning methods in (Huang
et al., 2013; Heigold et al., 2013), our preliminary exper-
imentation shows that our proposed approach above can
give comparable performance without requiring separate
language ID guidance during decoding. We leave the de-
tailed studies to the future work. Also, future work will
expand the language coverage to include both geographi-
cally proximal and distant languages.
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