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Abstract
Character-based Neural Network Language Models (NNLM) have the advantage of smaller vocabulary and thus faster training times
in comparison to NNLMs based on multi-character units. However, in low-resource scenarios, both the character and multi-character
NNLMs suffer from data sparsity. In such scenarios, cross-lingual transfer has improved multi-character NNLM performance by
allowing information transfer from a source to the target language. In the same vein, we propose to use cross-lingual transfer for
character NNLMs applied to low-resource Automatic Speech Recognition (ASR). However, applying cross-lingual transfer to character
NNLMs is not as straightforward. We observe that relatedness of the source language plays an important role in cross-lingual pretraining
of character NNLMs. We evaluate this aspect on ASR tasks for two target languages: Finnish (with English and Estonian as source) and
Swedish (with Danish, Norwegian, and English as source). Prior work has observed no difference between using the related or unrelated
language for multi-character NNLMs. We, however, show that for character-based NNLMs, only pretraining with a related language
improves the ASR performance, and using an unrelated language may deteriorate it. We also observe that the benefits are larger when
there is much lesser target data than source data.
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1. Introduction
Multilingual training of language models has successfully
leveraged datasets from other languages to improve Neu-
ral Network Language Modeling (NNLM) performance in
low-resource scenarios (Kim et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2019; Aharoni et al., 2019).
One such method for training NNLM is the multi-task-
based approach, where multiple language corpora train the
model simultaneously (Aharoni et al., 2019). Another ap-
proach is cross-lingual pretraining, where the NNLM is
trained on a set of source languages followed by fine-tuning
on the target language (Kim et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2019). The second ap-
proach, explored in this work, is favorable when re-training
with the large source data is time-consuming as an existing
trained source model’s weights can be transferred to the tar-
get model and then fine-tuned on the smaller target data.
Cross-lingually pretrained NNLMs have utilized multi-
character units to construct large shared vocabulary to allow
the positive transfer of information from source to target.
Instead of multi-character units, we explore a single char-
acter as a modeling unit for applying cross-lingual pretrain-
ing. This choice has the advantage of reducing the vocab-
ulary size by several orders of magnitude and providing a
larger intersection of vocabulary terms than multi-character
units. In this paper, we apply cross-lingual pretraining to
character NNLMs. However, this off-the-shelf application
is not trivial. For multi-character based NNLMs, cross-
lingual pretraining works by sharing information across
various source languages independent of relatedness to the
target language in terms of closeness in the language fam-
ily tree1. In contrast, for character-based NNLMs, a source

1https://en.wikipedia.org/wiki/Language_
family

language in the same family subtree as the target (related)
affects the downstream performance positively than from
an unrelated source language.
We experiment with available Finnish and Swedish Auto-
matic Speech Recognition (ASR) systems in a simulated
low-resource ASR scenario by limiting the language mod-
eling resources. We apply pretraining with two source lan-
guages (Estonian and English) for Finnish ASR and three
source languages (Danish, English, and Norwegian) for
Swedish ASR. In our experiments, we observe perplex-
ity and ASR performance improvements when pretraining
NNLMs with related languages (i.e. Estonian for Finnish
and Danish and Norwegian for Swedish), whereas pretrain-
ing NNLMs on English performs adversely.
We also study the impact on cross-lingual transfer due to
the target data size and number of source model layers
transferred. Relatively, smaller amounts of target language
data than the source language data leads to more consider-
able ASR performance improvements. Moreover, we find
that pretrained NNLMs perform best when we transfer only
the parameters of the lowest layer of the source model.

2. Related Work
In our work, we follow the cross-lingual pretraining scheme
utilizing a shared vocabulary as proposed by Zhuang et al.
(Zhuang et al., 2017), where they transfer all the hidden
layers except the final layer from the source model to the
target model. For NNLMs, such an application does not
obtain the best results. In sections 6. and 7., we present
results to support this observation.
Concurrently, Lample and Conneau (Conneau and Lam-
ple, 2019) have also shown that cross-lingual pretraining
can improve the performance of language models on intrin-
sic measures like perplexity. They train a multi-character

https://en.wikipedia.org/wiki/Language_family
https://en.wikipedia.org/wiki/Language_family
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Language Vocabulary Train Dev
Finnish ASR

English (En) 232K 116M 107K
Estonian (Et) 1.7M 97M 33K
Finnish (Fi) 1.1M 17M 130K

Swedish ASR
Danish (Da) 2.7M 365M 222K
English (En) 466K 366M 107K
Norwegian (No) 2.4M 381M 194K
Swedish (Sv) 936K 45M 158K

Thousands (K), Millions (M)

Table 1: The table reports the word vocabulary, training set
(Train) and development set (Dev) sizes of the languages
used in the experiments.

transformer-based language model with a masked language
model training procedure for cross-lingual pretraining. In
their model, multi-character units from both the source and
target languages are combined to form one large vocabu-
lary. This large shared vocabulary leads to a large output
layer, which can be inefficient to train. The layer size can
be reduced by shortlists and class-based models (Goodman,
2001; Le et al., 2011), or approximated by applying a hi-
erarchical softmax (Morin and Bengio, 2005). Instead, we
choose characters as the basic unit of modeling, which pro-
vides a more natural way of reducing the vocabulary size.
Simultaneously, this choice supports the cross-lingual in-
formation transfer by providing a larger intersection of vo-
cabulary terms than multi-character units.
For cross-lingual pretraining, language relatedness remains
an unexplored factor, which becomes the focus of our work.
Prior work has applied cross-lingual transfer by using sev-
eral unrelated languages as a source. Using related lan-
guage can be crucial in low-resource scenarios as we dis-
cover in Section 6. and 7. In our work, we limit cross-
lingual transfer from one source language allowing a sim-
pler setup for better analysis, in future, we would like to ex-
plore the impact of relatedness when the number of source
languages is increased dramatically.

3. Datasets
We create two setups to evaluate cross-lingual pretraining
for NNLMs. In the first setup, English (En) and Estonian
(Et) are the high-resource sources of language modeling
corpora, and Finnish (Fi) is the low-resource target lan-
guage. In the second setup, Danish (Da), English, and Nor-
wegian (No) are the high-resource source languages, and
Swedish (Sv) is the low-resource target language.
Estonian and Finnish are contained in the Finnic language
subtree, and Danish, Norwegian, and Swedish belong to
the North Germanic language subtree. Thus, these source-
target set of languages are considered as related languages.
For both Finnish and Swedish, English, being part of the
West Germanic language subtree, is considered as a more
unrelated language. We also chose English as it has a large
intersection for the character set, but is less mutually intel-
ligible in comparison.
The English text is obtained from the training data of 2015
MGB Challenge (Bell et al., 2015) consists of BBC news
transcripts. The Estonian corpus consists of web crawl text
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Figure 1: The figure displays the source and target NNLMs
with the hidden layers used in our experiments. In cross-
lingual pretraining, the source-language-trained hidden lay-
ers initialize parts (dotted lines) of the target-language net-
work shown by the arrows. In contrast, the rest is randomly
initialized (bold lines in the target network).

and spontaneous conversational transcripts from Meister et
al. (2012) and has been used by Enarvi et al. (2017). The
Finnish corpus is from Finnish Text Collection containing
text from newspaper, books and novels (CSC - IT Center
for Science, 1998) and has been used by Smit et al. (2017).
The Swedish, Danish, and Norwegian corpora, containing
newspaper articles, are downloaded from Språkbanken cor-
pus2 and have been used by Smit et al. (2018). For Finnish
as the target, more data for English was available than for
Estonian, so we extract only a portion of English dataset
to allow for a similar average of words per line for both
datasets. We list the corpora statistics for the various lan-
guages used in our experiments in Table 1.

4. Building Language Models
We train character NNLMs for our experiments and mark
both the left and right ends of characters except when at the
beginning or the end of a word (e.g., model = m+ +o+ +d+
+e+ +l) to achieve best results (Smit et al., 2017). With this
marking scheme, we can differentiate the characters from a
word into beginning (B), middle (M), end (E) and singleton
units. This notation becomes relevant in Section 6., where
analyze the differences in perplexity per word position.
We build Recurrent Neural Network Language Models
(RNNLM) with a projection layer (200 neurons), an LSTM
layer (1000 neurons), a highway layer (1000 neurons) and
a softmax output layer (displayed in Figure 1). In our ex-
periments, both the source- and target-language neural net-
works have the same architecture. We train the RNNLMs
using TheanoLM (Enarvi and Kurimo, 2016), applying the
adaptive gradient (Adagrad) algorithm to update the model
parameters after processing a mini-batch of training exam-
ples. The mini-batch size for models was 64, with a se-
quence length of 100. We used an initial learning rate of
0.1 in all the experiments and a dropout of 0.2 was used to
regularize the parameter learning.

2https://www.nb.no/sprakbanken

https://www.nb.no/sprakbanken
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Finnish Test Set Perplexity
Fi0 (baseline) 3788
l 4 3 2 1
En→Fi 4195 4617 5458 4211
Et→Fi 3402 3585 3901 3009

Swedish Test Set Perplexity
Sv0 (baseline) 311
l 4 3 2 1
En→Sv 334 322 337 315
No→Sv 285 311 312 287
Da→Sv 291 292 317 291

Table 2: The table reports NNLM’s test set perplexity for
Finnish and Swedish using different cross-lingual initial-
izations. For Finnish, English and Estonian are used as the
source languages for pretraining. For Swedish, we use Dan-
ish, English and Norwegian as source languages. The best
results in each category are marked in boldface.

5. Exploring Cross-Lingual Pretraining
Cross-lingual pretraining involves first training the neural
network on a source language. Then, starting from the in-
put layer, the source network’s hidden layers initialize the
target-language neural network partially or wholly. In a
partial initialization, we initialize the uninitialized layers
randomly. This initialization step is followed by training
on the target language, also referred to as the fine-tuning
step. In both the pretraining and the fine-tuning step, the
output-layer vocabulary consists of character units from all
the source languages and the target language. The pretrain-
ing step transfers coarser-level information from input to
higher layers into the target model and during fine-tuning,
the target model refines this transferred information to a
more fine-grained level.
We study neural network models across three dimensions:
1) the source language used for pretraining step; 2) us-
ing the number of target-model hidden layers (l) initialized
starting from the input layer; and 3) the amount of target
language data. We represent the LM pretrained using the
source language y and fine-tuned using target language z
as y → z. We vary l from 1 to 4 for the architecture in Fig-
ure 1, which also shows an example for l = 3. Here l = 1
would refer to just initializing with the projection layer and
l = 4 would refer to initializing with all the layers. We
increase the amount of target data size to match the source
data size. Varying these parameters allows us to understand
their effect on transfer capacity of cross-lingual pretraining.

6. Perplexity Experiments
Table 2 presents the test set perplexity of Finnish and
Swedish LMs. When using related source languages — like
Estonian for Finnish, or Danish and Norwegian for Swedish
— to pretrain the models, we obtain better perplexity than
the baseline and when English (the unrelated source lan-
guage) is used, which leads to a worse perplexity for all ls.
Using related source languages, the pretrained target LMs
outperform the baseline results for most values of l but, no-
tably, when initialized with configurations l = 1, 4 of the
source model. Here, we note that Finnish perplexity values
are large due to long words and the domain mismatch be-

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

BC MC EC BV MV EV

D
iff

. 
(%

) 
o
f 

ch
a
ra

ct
e

r 
P
P
L 

(X
 -

 F
i)

Types of character units

X=Et→ Fi l=1
X=Et→ Fi l=2
X=Et→ Fi l=3
X=Et→ Fi l=4
X=En→ Fi l=1
X=En→ Fi l=2
X=En→ Fi l=3
X=En→ Fi l=4

Figure 2: The figure shows the relative differences (%)
in character perplexity (PPL) for three different types of
character units of different Finnish NNLMs on the test set.
These character units exist due to the marking scheme used
here: beginning (B), middle (M) and end (E), which can
further be classified into consonants (C) and vowels (V).

tween the training (books, newspaper articles and journals)
and test (broadcast news) sets.
On characters, similar trends of perplexity improvement for
related vs unrelated source language and different values of
l are observed. Character perplexity differences for Finnish
are presented in Figure 2 for different types of units, i.e.,
consonant (C) and vowels (V) dependent on their position
in words beginning (B), middle (M) and end (E). In Fig-
ure 2, most perplexity improvements are obtained for mid-
dle consonants (MC) and middle vowels (MV), which are
more frequent than other character units. For other char-
acter units, small but consistent improvements are obtained
by Et→Fi (l = 1) LM over other baseline and other LMs.
For Swedish, similar improvements to Finnish results
are observed for MC and MV, but some dips are seen
for Danish-pretrained LMs on end consonants (EC). For
brevity, we do not present this result in the paper. Over-
all, improvements from related-language pretraining im-
pacts the different types of characters, enabled by a large
intersection in the source-target character set.
We suspect that pretraining with a related language finds
more useful information than with an unrelated one. To in-
vestigate this effect, we calculate the cosine similarity be-
tween pretrained and baseline LMs’ output layer embed-
dings. We first find an affine transformation to align pre-
trained LM’s embeddings with the baseline’s embedding
space, and then calculate the average similarity between the
two sets. On Finnish, the English-pretrained embeddings
have a higher average similarity (0.53) to the baseline em-
beddings than the Estonian-pretrained embeddings (0.51).
On Swedish, similar results are observed with cosine sim-
ilarity for the English-, Norwegian- and Danish-pretrained
embeddings at 0.43, 0.42 and 0.42. They suggest that the
related-language pretrained LMs have more conflicting in-
formation than the English-pretrained LMs. As they also
perform better in terms of perplexity, the related-language
pretraining seems to learn information that is complemen-
tary to the baseline LM.

7. Speech Recognition Experiments
For training the Finnish acoustic models, we used 1500
hours of Finnish audio from three different sources, namely,
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Language Baseline Architecture
Fi0 (baseline) 16.44
l 4 3 2 1
En→Fi 16.70 16.90∗ 17.34∗ 16.56
Et→Fi 16.20 16.14∗ 16.61 16.01∗

Linear interpolations
En→Fi + Fi0 16.00∗ 16.24∗ 16.34 15.95∗

Et→Fi + Fi0 15.89∗ 15.87∗ 16.04∗ 15.74∗

Table 3: The table reports WER on Finnish ASR task using
different cross-lingual initializations for RNNLMs used in
rescoring. Here English and Estonian are used as the source
languages for pretraining. Asterisks (*) denote statistical
significance while comparing against Fi (16.44) using the
matched pairs test with p < 0.05. The best results in each
section are marked in boldface.
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Figure 3: The figures display WERs on Finnish ASR mea-
sured when varying the amount of source language data and
when varying the amount of target language data.

the Speecon corpus (Iskra et al., 2002), the Speechdat
database (Rosti et al., 1998) and the parliament corpus
(Mansikkaniemi et al., 2017). For testing, we used a
broadcast news dataset from the Finnish national broad-
caster (Yle) containing 5 hours of speech and 35k words
(Mansikkaniemi et al., 2017). For training Swedish acous-
tic models, we used 354 hours of audio provided by the
Språkbanken corpus. From the original evaluation set, we
used a total of 9 hours for development and evaluation.
The acoustic models were trained with the Kaldi toolkit
(Povey et al., 2011) with a similar recipe as (Smit et al.,
2017). Instead of phonemes, we use grapheme-units, as this
allows for a trivial lexicon that maps between the acoustic
and language modeling units. We evaluate the ASR perfor-
mance in terms of Word Error Rates (WER).
For the first-pass, we train a variable-length Kneser-Ney
(Kneser and Ney, 1995) n-gram LM using the VariKN
toolkit (Siivola et al., 2007). Then, RNNLMs, built in Sec-
tion 4., are used to rescore the lattices. We also linearly
interpolate cross-lingually pretrained NNLMs with target-
only NNLM while optimizing the interpolation weight.
We test the statistical significance of our results using the
Matched Pairs Sentence Segment Word Error Test from
NIST Scoring toolkit3 to compare different systems. Ta-

3SCTK: http://www1.icsi.berkeley.edu/
Speech/docs/sctk-1.2/sctk.htm

Language Baseline Architecture
Sv0 (baseline) 4.42
l 4 3 2 1
En → Sv 4.43 4.46 4.62 4.41
No → Sv 4.18 4.42 4.38 4.17∗

Da → Sv 4.24 4.16∗ 4.39 4.15∗

Linear Interpolations
En → Sv + Sv0 4.15∗ 4.18∗ 4.20 4.15∗

No → Sv + Sv0 4.02∗ 4.40 4.35 4.00∗

Da → Sv + Sv0 4.01∗ 4.04∗ 4.15∗ 3.98∗

Table 4: The table reports WER on Swedish ASR task
for different configurations of RNNLMs used in rescoring.
Here Danish, English and Norwegian are used as the source
languages for cross-lingual pretraining. Asterisks (*) de-
note statistical significance when comparing to Sv (4.41)
using the matched pairs test with p < 0.05. The best re-
sults in each section are marked in boldface.

bles 3 and 4 outline the performance of rescoring with
RNNLMs (Section 4.) on a Finnish and a Swedish ASR
task. The first row of both these tables displays the per-
formance of target-only trained RNNLMs (baseline). The
second part reports the performance of cross-lingually pre-
trained models (Section 5.) and the third part reports their
linear interpolations with target-only baseline models.
Similar to the perplexity results (Section 6.), related
source language pretraining improves the ASR perfor-
mance over the baseline models and the unrelated source
language pretraining degrades the performance. On Finnish
ASR, English-pretrained RNNLM (En→Fi) lags behind
the Estonian-pretrained RNNLM (Et→Fi), which also out-
performs Finnish-only models. On Swedish ASR, Dan-
ish (Da→Sv) and Norwegian (No→Sv) pretrained mod-
els outperform the baseline and English pretrained models
(En→Sv). In contrast with perplexity results, lower-layer
(l = 1) based initialization shows the most benefit over
the higher-layer (l = 2, 3, 4) initializations for both Finnish
and Swedish ASR. We note that quite like perplexity re-
sults, ASR performance on Swedish is lower than Finnish
as the Swedish task is easier than the Finnish one.
In Figure 3, we observe little performance increase by
cross-lingual pretraining when we vary the target data size
by increasing it to comparable sizes of source language
data. At least for Estonian, increasing Finnish data (target)
closes the gap between cross-lingual pretraining and target-
only model. The cross-lingual transfer seems to work best
with a larger number of resources for the related source lan-
guage in comparison to the target language.
Furthermore, interpolations of the baseline model with the
cross-lingually pretrained models improve over its con-
stituent models. On both Finnish and Swedish ASR, cross-
lingual pretraining with English combined with the base-
line model can outperform the baseline model, unlike when
used individually. This improvement can be attributed to
the regularization effect of such an interpolation. Linear in-
terpolations based on other source languages like Estonian,
Danish and Norwegian further improve the results consis-
tently across different initialization schemes. We hypothe-
size that this effect is due to the complementary informa-

http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm
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tion learned by these related-language models. Overall, the
individual systems and the interpolations based on related
source languages show a significant and the most substan-
tial improvement in performance.

8. Concluding Remarks
We investigated cross-lingual transfer for character-based
neural network language models in a low-resource sce-
nario. Cross-lingual pretraining with related source lan-
guage significantly improved (3-6% relative) over no pre-
training, whereas pretraining with unrelated source lan-
guage had adverse effects. At a character level, we sus-
pect cross-lingual pretraining works for related languages
as they share a large portion of the character set. The large
shared vocabulary provides soft alignments between char-
acters in related languages supporting the transfer of rel-
evant information from source to target models. This in-
formation transfer is in contrast to multi-character units
where the transfer is dependent on shared anchor tokens
(like numbers, proper nouns). However, we still lack an
empirical understanding of this phenomenon and in our fu-
ture work, we hope to explore this phenomenon.
Additionally, transferring the lower layer information and
having more source data than target data was significant for
low-resource ASR. As a followup to our study, we inves-
tigate the effects of language relatedness for cross-lingual
pretraining in transformer-based language models.
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