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Abstract
Cree is one of the most spoken Indigenous languages in Canada. From a speech recognition perspective, it is a low-resource language,
since very little data is available for either acoustic or language modeling. This has prevented development of speech technology that
could help revitalize the language. We describe our experiments with available Cree data to improve automatic transcription both
in speaker- independent and dependent scenarios. While it was difficult to get low speaker-independent word error rates with only
six speakers, we were able to get low word and phoneme error rates in the speaker-dependent scenario. We compare our phoneme
recognition with two state-of-the-art open-source phoneme recognition toolkits, which use end-to-end training and sequence-to-
sequence modeling. Our phoneme error rate (8.7%) is significantly lower than that achieved by the best of these systems (15.1%).
With these systems and varying amounts of transcribed and text data, we show that pre-training on other languages is important for
speaker-independent recognition, and even small amounts of additional text-only documents are useful. These results can guide practical
language documentation work, when deciding how much transcribed and text data is needed to achieve useful phoneme accuracies.
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1. Introduction
As part of a governmental effort to preserve, revitalize, and
promote the more than 70 Indigenous languages being spo-
ken in Canada, we are exploring speech recognition tech-
nology for its potential to help transcription in language
documentation and to facilitate access to recorded archives.
Developing speech models for Indigenous languages is also
important for applications valued by communities, such as
creation of learning materials with synchronized text and
speech, or dictionaries searchable by voice. We report
here our work on Cree, one of the most spoken Indigenous
languages in Canada, more specifically East Cree, spoken
along James Bay coast. We hope to apply similar algorithm
to help create speech recognition systems for other Indige-
nous languages.
From a speech recognition perspective, there is very little
audio available in East Cree and even smaller amounts of
audio are transcribed. Only a small amount of text (related
mostly to the Bible) in Cree can be found for language mod-
eling. We were able to get about 4.5 hours of transcribed
audio from the internet: 9 videos from 5 speakers recalling
stories, for a total of 1 hour (5939 words), and recordings
related to readings of the Bible from one female speaker
(3.5 hours, 21205 words). We also have 1247 CBC radio
broadcasts in Cree which are not transcribed. Each CBC
broadcast is about 1 hour long. We also had access to an-
nual reports and Bible texts (differing from the read Bible
audios) for training the language model. We outline here
the experiments we have run in order to get good transcrip-
tion accuracy for Cree with the available data described
above.
The low resource transcription and keyword spotting ef-
fort received a great impetus from the IARPA Babel pro-
gram1. In this program there were 10 languages with 10
hours (limited language pack or LLP) or 80 hours (full lan-

1https://www.iarpa.gov/index.php/research-programs/babel

guage pack or FLP) of transcribed audio. Many different
DNN training algorithms have been experimented within
the Babel program (Gales et al., 2014) (Knill et al., 2014)
(Huang et al., 2013) (Trmal et al., 2014) (Chen et al., 2013)
(Zhang et al., 2014). In (Gales et al., 2014) they experiment
with both DNN and tandem systems and achieve token er-
ror rates (TER) between 60% and 77% with LLP, depend-
ing on the language and training algorithms. They also ex-
periment with data augmentation by automatically labeling
untranscribed data. In (Gales et al., 2014) and (Knill et al.,
2014), they experiment with zero resource acoustic models
where the acoustic models are trained using multiple lan-
guages to get good representation of phonemes. However,
the language-independent TER is poor (over 80% TER).
Another data augmentation method is to jointly train DNNs
from multiple languages (Huang et al., 2013) (Trmal et al.,
2014). Only the output layer is trained separately for each
language.
All the languages in the Babel program are spoken by mil-
lions of people. Only the data to train the acoustic and
language models was restricted. In contrast, the number
of speakers speaking East Cree is estimated to be around
10,000 and very little transcribed audio data is available.
The audio data that is available is spoken by only a few
speakers. That is why we could only get 4.5 hours of tran-
scribed audio from 6 speakers. For language modeling,
written text in Cree was hard to get. There are no large
volume publications in Cree. Most of the text is on Bible
scriptures or annual community or town reports. Even in
these reports, text in Cree is only a very small part of the
report. We managed to extract about 260,000 words of text
in Cree (written in syllabics) from all sources.
Speaker-dependent word or phoneme error rate (WER or
PER) becomes an important issue for resource poor lan-
guages (Adams et al., 2018). Generally, we can find au-
dio from a very few speakers, so getting good speaker-
independent WER becomes difficult. The question is
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whether we can transcribe part of the audio from one
speaker, train acoustic models, and then recognize the rest
with reasonable accuracy. In this case, correcting a tran-
script with some errors might be much faster than transcrib-
ing from scratch.
This was shown in previous work on phoneme recognition
for resource-poor languages (Adams et al., 2018). Time-
aligned phoneme transcripts can be used to transcribe the
audio in a low resource language more efficiently, reducing
time and effort. The cited work used Persephone, an open
source toolkit for phoneme recognition. We compare our
system with Persephone and show that we get significantly
lower phoneme error rates both with traditional DNN sys-
tems and also with sequence-to-sequence training.
We show here the word error rate and phoneme error rate
we can achieve with just 4.5 hours of transcribed audio and
260k words of text for language modeling. We measure
both speaker-dependent and speaker-independent WER.
With the most advanced algorithms, we can achieve 24.6%
WER for speaker-dependent recognition, and 70% WER
for speaker-independent recognition. The 24.6% WER is
probably good enough to significantly reduce transcription
time for one speaker of Cree, for example, for the anchor of
the CBC broadcasts in Cree.

2. Acoustic and Language Model Data
The complete data set for training acoustic and language
models is outlined in Table 1.

data amount source
transcribed 1 hour beesum

video stories
read biblical 3.5 hours biblical

text website
CBC radio 1343 hours CBC radio
broadcasts archives

biblical text 160,000 biblical
words website

text from 110,000 annual reports of
annual reports words Cree organisations

Table 1: Amount of audio and text data in Cree from var-
ious sources. The CBC radio broadcasts in Cree are not
transcribed. There are 9 transcribed video stories from 5
speakers. The read biblical text is from 1 female speaker.

One male and one female speaker from video data were
used for testing (a total of 17 minutes of audio), and the
remaining 3 video speakers were used in the training set (a
total of 43.6 minutes of audio). The audio from one female
speaker reading scriptures was divided into test (17.5 mins)
and training (3.1 hours) sets. In order to increase the size
of the training set for acoustic modeling, the training au-
dio was speed perturbed, with factors of 0.9 and 1.1 times,
before training the deep neural net (DNN) acoustic models.
The 4-gram language model was trained on a mix of annual
reports and Bible texts downloaded from the internet and
different from the read Bible audios described above. The
texts were split into 253,245 words for training and 6,737

words for development. Only the words in the LM train-
ing set were used as the 4-gram LM vocabulary: a total of
27189 words.
The perplexity of the language model (LM) represents how
well the LM represents the word sequences in the text. The
lower the perplexity, the better the language model. The
4-gram LM has 82.9 perplexity on the LM dev set, 317
on video transcripts, and 159.7 on Bible transcripts. The
weighted out-of- vocabulary (OOV) rate is 7% on LM dev
set, 24.9% on video transcripts, and 9.1% on Bible tran-
scripts. So we expect much lower WER on bible transcripts
(lower OOV rate and lower perplexity) than on video tran-
scripts using this LM.
We use the same pronunciation dictionary for acoustic
model training and decoding: it contains all the words in
the LM training set (27189 words) plus the words in the
video transcripts for a total of 29598 words. However, dur-
ing decoding, words not in the language model will be con-
sidered as out-of-vocabulary (OOV). All the texts use the
Unified Canadian Aboriginal Syllabics character set2, and
all the words are transcribed in X-SAMPA3 phoneme set,
by directly mapping each syllabic character to its phone-
mic representation.

3. Experiments with Transcribed Data
Since the amount of training data for Cree is very small,
we decided to run two separate experiments. In one ex-
periment we train deep neural net (DNN) acoustic mod-
els from the training data for Cree only. In the second ex-
periment, we train models from about 4000 hours of tran-
scribed English, and then adapt the resulting models to
the Cree training data. Currently, the state-of-the-art DNN
models are lattice-free maximum mutual information (LF-
MMI) trained factored time delay neural networks (TDNN-
F) (Povey et al., 2018)(Povey et al., 2016) and bidirectional
long short memory neural networks (BLSTM) (Graves et
al., 2013) models. So in the two experiments, we train both
BLSTM models and TDNN-F models. In both these exper-
iments, we use the same i-vector extractor trained from a
large English dataset with many speakers. I-vectors repre-
sent speaker characteristics and adding these i-vector fea-
tures to the standard mel frequency cepstral coefficients
(MFCC) results in significant reduction in word error rates
(WER).
For the first experiment, we trained both the GMM/HMM
and DNN models from just the Cree training data. We
used 40-dimensional MFCC features, and 100 dimensional
i-vectors (Gupta et al., 2014) (Saon et al., 2013) (Senior
and Lopez-Moreno, 2014) to represent speaker characteris-
tics. For the small TDNN-F models (768-dimensional sys-
tem with a linear bottleneck dimension of 160), LF-MMI
training was followed by two iterations of discriminative
training with sMBR (scalable Minimum Bayes Risk) crite-
ria. In each iteration, the alignment between the audio and
the audio transcript was created from the previous models
followed by 3 epochs of sMBR discriminative training. For
the BLSTM models, we did two iterations of back propaga-
tion training. In the first iteration, the models were trained

2https://unicode.org/charts/nameslist/c 1400.html
3https://fr.wikipedia.org/wiki/X-SAMPA
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by back propagation using 6 epochs of training. In the sec-
ond iteration models from the first iteration were used for
alignment and as the initial models. In second iteration also
we did 6 epochs of training.
The various results are shown in Table 2, which shows
that BLSTM models give lower WER (74.3%) for video
(speaker-independent) test set than either GMM-HMM or
TDNN-F models. The TDNN-F models give the low-
est WER (25.9%) for the scriptures test set (speaker-
dependent). So three hours of audio is enough to give
useful speaker-dependent results. By useful we mean that
new audio from the same speaker can be transcribed and
time-aligned with these models, and the resulting transcrip-
tion can be corrected in significantly less time than manu-
ally transcribing the whole audio from scratch. Such tran-
scription of large amounts of archived audio from a single
speaker at a reasonable cost is of interest for many indige-
nous languages.

Model WER WER
architecture video scriptures
GMM-HMM 77.1% 35.0%

BLSTM 1st BP 75.1% 27.9%
(1) BLSTM 2nd BP 74.3% 27.1%
TDNN-F LF-MMI 96.0% 27.0%

TDNN-F LF-MMI + sMBR 89.7% 26.0%
(2) + 2nd sMBR 90.1% 25.9%

Table 2: Word error rates for video (speaker-independent)
and scriptures (speaker-dependent) test sets with a total of
3.85 hours of Cree training data. BP refers to back propa-
gation, while sMBR is discriminative training with sMBR
criterion.

In the second scenario, we train initial models from a very
large dataset, and then adapt these models to the Cree train-
ing set. The idea is to have a model with well-trained
phoneme set, and then to adapt these phonemes to Cree
with the small training set for Cree. Phonemes that occur in
the Cree training audio will get trained by Cree data, while
other phonemes will still have a somewhat decent repre-
sentation in these models. For the very large dataset, we
used about 4000 hours of transcribed English audio avail-
able to us. This audio included Hub4, RT03, RT04, Market,
WSJ, Librispeech, Switchboard, and Fisher data. This data
is available from LDC. We added Inuktitut data available to
us from the same Indigenous languages project, in an effort
to cover some of the Cree phonemes missing from English.
We used the same X-SAMPA phoneme set for this scenario
also.
We then adapt both BLSTM and TDNN-F models trained
above to the Cree training set. For training the larger
TDNN-F (1536-dimensional system with a linear bottle-
neck dimension of 160) acoustic models, we ran multiple
iterations of discriminative training with sMBR criteria on
Cree data starting with the above models. So in the first
iteration, the alignments for the Cree data come from the
TDNN-F models trained from the 4000 hours of audio, and
is followed by three epochs of discriminative training with
sMBR criteria using the Cree data only. In the subsequent

iterations, the alignments between Cree training audio and
its transcript come from the acoustic models generated in
the previous iteration and is followed by three epochs of
discriminative training with sMBR criteria using the Cree
data only. We ran three such iterations of discriminative
training using Cree data only.
For BLSTM adaptation, in the first iteration, we do back
propagation starting with alignments from the BLSTM
models trained from 4000 hours of audio, followed by 6
epochs of back propagation training. The initial models
for this back propagation training are the BLSTM models
trained from the 4000 hours of audio. In the subsequent it-
erations of back propagation, the alignments on Cree train-
ing data come from the models generated in the previous
iteration and is followed by 6 epochs of back propagation
training. In this back propagation training also, the initial
BLSTM acoustic models come from the previous iteration.
Overall we do four such iterations. The results with this
adaptation strategy are shown in Table 3. When we com-
pare Table 2 with Table 3, we see that BLSTM models
trained from only Cree training data (first scenario) is only
slightly worse than BLSTM acoustic model trained through
adaptation from a model trained with large amount of data
(74.3% versus 74.1%). However, for TDNN-F models,
the speaker-independent WER is much lower with adapted
TDNN-F (89.7% versus 78.8%). The speaker-dependent
WER is much better when trained using the first scenario
for both TDNN-F and BLSTM models. We also tried 40-
dimensional filter-bank features instead of 40-dimensional
MFCC features, but the WER is a little bit worse. How-
ever, since each model is different, we can combine the out-
puts using ROVER (Fiscus, 1997) to get significantly lower
WER for both speaker-independent and speaker-dependent
recognition. ROVER combines multiple transcripts ob-
tained from multiple recognizers by first aligning the tran-
scripts, and then taking a majority vote. The last line in
Table 3 shows WER after ROVER.

Model WER WER
specification video scriptures

(3) BLSTM MFCC 4th BP 74.1% 29.5%
(4) BLSTM fbank 4th BP 79.0% 31.2%
(5) TDNN-F 3rd sMBR 78.8% 30.0%
(8) ROVER of 1,2,3,4,5 72.5% 25.1%

Table 3: Word error rates for video and scriptures test sets
after adaptation to a total of 3.85 hours of Cree training
data. BP refers to back propagation, while sMBR is dis-
criminative training with sMBR criterion.

4. Experiments with Untranscribed Cree
In the MGB-3 challenge, we used closed-captioned audio
files for training the acoustic models (Gupta and Boulianne,
2018). JHU also used closed-captioned audio for training
the DNNs for Arabic audio (Manohar et al., 2017). The
closed-captioned transcripts are not verbatim transcription
of the audio. Using the transcripts from closed-captioning
as is for training acoustic models will lead to poor acous-
tic models. So the transcript from the closed-captioning
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is purified by generating another transcript through recog-
nition, then comparing the two transcripts, and only using
segments of the transcripts that match well. This results in
acoustic models that give much lower WER. For Cree au-
dio, we do not have a transcript from closed-captioning.
So we can fake closed captioning by combining (using
ROVER) decoded transcripts from many recognizers as
the closed-captioned transcript. This transcript is differ-
ent from the recognized transcript of the best recognizer,
so we can use segments of the transcripts that match well
for training new acoustic models.
As a first experiment, we used ROVER of 3 transcripts of
1247 Cree audio files (two best TDNN-F models and the
LSTM fbank model). The Cree audio files from CBC ra-
dio broadcasts have music, singing, etc. So these portions
were removed first by using a DNN-based voice activity
detector (Alam et al., 2019). The remaining segments were
decoded using the above three acoustic models. The tran-
scripts were then ROVERed to get a final transcript. This
transcript was then used as a closed-captioned transcript
to find matching segments using the best TDNN-F acous-
tic model adapted to the Cree audio (item (5) in Table 3).
Out of 1247 hours of audio, this process reduced the au-
dio to 221 hours. The 3.85 hours of Cree training audio
was then added to these segments. This 224 hours of tran-
scribed audio was then used to adapt the best TDNN-F
models to this data by another iteration of discriminative
training. The results are shown in Table 4. We have re-
duced WER for the video test set from 78.8% to 75.1%, and
for the scriptures test set from 30.0% to 28.7%. Training
BLSTM models with this 224 hours of audio gave 72.5%
(video) and 27.6% (scriptures) WER. Note that the WER
differences between the TDNN-F and BLSTM models are
much smaller after training with the 224 hours of audio.
Combining with ROVER the ctm files from all the 7 models
(item (9) in Table 4) results in 69.9% WER for the video test
set (speaker-independent) and 24.6% WER for the scripture
test set (speaker-dependent).

Training video scriptures
(6) BLSTM with 224 hours 72.5% 27.6%
(7) TDNN-F with 224 hours 75.1% 28.7%

(9) ROVER 1 thru 7 69.9% 24.6%

Table 4: Word error rates for the video and scriptures test
sets after training with untranscribed Cree radio broadcasts.

5. Phoneme Recognition
The work in (Adams et al., 2018) uses a phoneme recog-
nizer to generate time-aligned phoneme and tone sequences
for two different low resource languages, Yongning Na and
Eastern Chatino. Both training and test audio are from a
single speaker. The reason is that recordings from very
few speakers are available in a low resource language, and
the primary task is to record audio from one speaker and
to transcribe it in order to document and preserve the lan-
guage. The authors claim that as long as phoneme error rate
is low, the time-aligned phoneme sequence helps linguists
and speeds up the transcription of the audio significantly.

We measure phoneme recognition accuracy on the Cree au-
dio using three different systems: Persephone (Adams et
al., 2018), wav2letter++ (Collobert et al., 2016) (Pratap et
al., 2019), and the traditional speech recognition system
using Kaldi (Povey and others, 2011) as described in the
previous section 4. In both wav2letter++ and Kaldi sys-
tems, we decode word sequences and translate them to
phoneme sequences in order to measure the phoneme er-
ror rate (PER). We show that by just training the language
model with increasing amounts of text data, we can sig-
nificantly reduce the PER, even though the language mod-
els are trained from a very small amount of additional text.
These systems far outperform the Persephone system in this
mode.
All three systems are tested with 17.5 minutes of speech
from one female speaker reading scriptures. Some of the
experiments use additional scripture texts downloaded from
the Internet, from scripture books different from training
and test sets.
Persephone is the phoneme recognizer used in (Adams et
al., 2018), based on Tensorflow and made publicly avail-
able. The model is a bidirectional LSTM neural network
architecture with the connectionist temporal classification
(CTC) loss function. For this system, we tried training the
bidirectional LSTM models with and without speed per-
turbed Cree training data. The Persephone system did not
converge when we used both the video and scriptures train-
ing data. Long video segments caused training issues, and
video speakers are different from the scripture test speaker.
So we only used the scripture training set for training the
bidirectional LSTM models. Table 5 gives the phoneme
error rate for the scriptures test set using the Persephone
system with and without speed perturbed training set. The
PER goes down from 23.5% to 20.6% with the speed per-
turbed training set.

Training set PER
scriptures training set 23.5%

scriptures training set with SP 20.6%

Table 5: Phoneme error rates (PER) with Persephone for
the scripture test set after training with the scriptures train-
ing set with / without speed perturbation (SP).

Wav2letter++ is an open-source speech recognition toolkit
recently released by Facebook for sequence-to-sequence
training and decoding. It is entirely written in C++ and
is very fast. Wav2letter++ uses convolutional network
based acoustic models and a graph decoding. We have
used the same architecture as provided in their documen-
tation for Libri-speech data. Since we have much less
data, we also tried an acoustic model with dimensions re-
duced by half. This smaller acoustic model gave slightly
better results, so we give results for this acoustic model
only. For wav2letter++, the lexicon contained words and
their spellings in syllabics. So there were 141 distinct syl-
labic symbols used in the dictionary as the spelling alphabet
(compared to 26 for English). For decoding, wav2letter++
is driven by a language model. For language model, we
used the same 4-gram language model as used in the pre-
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vious section. We also used two different training crite-
ria: Connectionist Temporal Classification (CTC) and Au-
toSegCriterion (ASG). We ran wav2letter++ on a 32 GB
Linux machine with an NVIDIA GPU card inside docker.
For wav2letter++ also, training with video data included in
the training set failed due to memory allocation failure. So
we only trained with the scriptures training set with/without
speed perturbation, and with CTC or ASG criterion. Table 6
gives the phoneme error rates for the various training con-
ditions. The phoneme error rate is measured by converting
words to phoneme sequences. For wav2letter++ the lowest
PER was 15.1% on the scriptures test set when the training
used ASG criterion. So wav2letter++ gives lower PER than
the Persephone system.

Training set criterion PER
scriptures training set CTC 20.9%
scriptures training set ASG 15.1%

scriptures training set with SP ASG 16.0%

Table 6: Phoneme error rates (PER) with wav2letter++ for
the scripture test set after training with the scriptures train-
ing set with / without speed perturbation (SP).

We also translated the word error rates of different sys-
tems from sections 3. and 4. to phoneme error rates shown
in Table 7. The system numbers correspond to the num-
bered systems in Tables 2, 3, 4. The lowest phoneme er-
ror rate corresponds to system 1: BLSTM system trained
on Cree training data only with 2 iterations of back prop-
agation. The 8.7% PER is significantly lower than 20.6%
PER achieved by Persephone and 15.1% PER achieved by
wav2letter++.

System WER for scriptures PER
(1) 27.1% 8.7%
(2) 25.9% 9.1%
(3) 29.5% 9.6%
(4) 31.2% 11.5%
(5) 30.0% 10.1%
(6) 27.6% 9.0%
(7) 28.7% 10.3%
(8) 25.1% 10.0%
(9) 24.6% 9.3%

Table 7: Phoneme error rates (PER) for the various systems
in the previous section for the scripture test set (speaker-
dependent error rate).

Both wav2letter++ and Kaldi (TDNN-F and BLSTM mod-
els) decoding is driven by a language model, while Perse-
phone does not use any language model. The first two sys-
tems have access to additional information from the lan-
guage modeling text. Are they benefiting from this infor-
mation, and if so, how much additional text is needed? To
answer this question, we ran decoding with several different
language models, starting from scripture training transcrip-
tions only, and incrementally added text to the language
model training. We only trained 3-gram LMs for this com-
parison, with the vocabulary found in transcriptions only,
to make comparison with Persephone as fair as possible.

Table 8 shows the phoneme error rate for the various LMs,
for the best wav2letter++ system (from Table 6) and for the
BLSTM system (1). The first entry in the table is when lan-
guage model training data is limited to transcriptions in the
Cree training data only. Then all three systems have access
to the same language model information for the Cree lan-
guage. The phoneme error rate is similar for wav2letter++
(20.7%) and Persephone (20.6%), but is significantly lower
for the BLSTM system (1) (14.4%).
As more text data is made available for the LM, in the fol-
lowing lines of the table, PER continues to go down both
for wav2letter++ and the BLSTM system (1). This shows
that for the best phoneme recognition, we should use all the
available text for language modeling.

LM Training set wav2letter (1)
scriptures training (20k words) 20.7% 14.4%
scriptures training + 50k words 16.9% 10.1%
scriptures training + 100k words 15.8% 9.4%
scriptures training + 158k words 15.4% 8.7%

Table 8: Phoneme error rates (PER) for wav2letter++ and
for the BLSTM system (1) for the scripture test set with
increasing LM training set.

6. Implications for Language
Documentation and Revitalization

How can speech recognition help in language documen-
tation? There are many aspects to language documenta-
tion. One aspect is transcription of audio archives and of
audio collected from the elders in the community in order
to transcribe and preserve the language. For many native
languages, a significant portion of the transcription may be
done by linguists and second language learners. For them,
displaying time-aligned phoneme sequences and word se-
quences can be a big help. For speaker independent rec-
ognizer for Cree described above, the displays will have
too many errors. However, fortunately, significant por-
tion of the audio in general is from a few speakers. So a
speaker dependent recognizer can be trained from a few
hours of transcribed audio, and the transcription of the
remaining audio can be speeded up by displaying time-
aligned phoneme and word sequences to the transcriber. As
we have shown before, the error rates for the phonemes in
speaker-dependent scenario can be well below 10%, and for
words, below 30%.
Another issue in language documentation is to have con-
tent search capability in native audio archives. Since most
of the archives in general are spoken by a few speakers,
speaker dependent acoustic models can be used for such a
search. Usually, the search looks for a sequence of match-
ing phonemes, and a speech recognizer with less than 10%
phoneme error rate can provide reasonable search capabil-
ity with minimal false alarms.
Automatic transcription in words or phonemes, even with
relatively large error rates, opens up new avenues for re-
vitalization that simply bypass the transcription bottleneck.
The ability to easily search in an approximate automatic
transcription can be used to identify specific phrases in a
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large audio archive and catalog it by contents. Time-aligned
word or phoneme transcriptions make it easy to extract
didactic material for language learning, or produce read-
along audio books. As our work on East Cree confirms and
improves upon previous work on Yongning Na and East-
ern Chatino (Adams et al., 2018), we can hope that these
methods will apply to many other Indigenous languages.

7. Conclusion
Cree is an Indigenous language spoken in Canada. It is
a low-resource language as very little printed text or spo-
ken transcribed audio is available. We could get at most
4.5 hours of transcribed audio, over 1200 hours of untran-
scribed audio (through CBC radio broadcast archives in
Cree) and 260k words of written Cree text. So with this
limited data, we estimate word and phoneme error rates in
both speaker-independent and speaker-dependent scenario
for the best possible speech-to-text systems.
The lowest WER (word error rate) for speaker-independent
scenario we achieve is 69.9%. This error rate is too high
to accurately transcribe audio from an arbitrary speaker
of Cree. However, in the speaker-dependent scenario, we
achieved a WER of 24.6% and a PER (phoneme error rate)
of 8.7%. These error rates are small enough to help speed
up transcription significantly.
We also compare our system with two state-of-the-art end-
to-end toolkits. We show that training acoustic deep neural
network models in a traditional way still gives significantly
lower phoneme error rates, and training language models
from additional text (without audio) results in even lower
rates. Our experiments also provide quantitative informa-
tion about minimal amounts of transcription and text docu-
ments that lead to useful phoneme recognition accuracies.
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