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Abstract
Automatic phoneme segmentation is an important problem in speech processing. It helps in improving the recognition quality by pro-
viding a proper segmentation information of phonemes or phonetic units. Inappropriate segmentation may lead to recognition accuracy
falloff. The problem is essential not only for recognition but also for annotation purpose. In general, segmentation algorithms rely on
large datasets for training where data is observed to find the patterns among them. But this process is not straight forward for languages
that are under resourced because of less availability of datasets. In this paper, we propose a method that uses geometrical properties of
waveform trajectory where intra signal variations are studied and used for segmentation. The method does not rely on large datasets for
training. The geometric properties are extracted as linear structural changes in a raw waveform. The methods and findings of the study
are presented.
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1. Introduction
Speech recognition is a well-known area that deals with
the understanding of spoken units (words, sentences) that
has been spoken. It is fair to say that a speech recogni-
tion system should be equipped with a good segmentation
procedure. A segmentation algorithm essentially identi-
fies the boundaries between two consecutive phonemes in
a word or sentence. For an input signal S[n], a segmen-
tation algorithm provides a set of points b0, b1, ..., bn such
that the regions separated by these points belong to different
phonemes. Phoneme segmentation has to be looked care-
fully to improve recognition accuracy. This problem has
been studied by researchers in different ways.
A conventional segmentation procedure relies on features
that can help to understand the changes in speech signals.
This information is further processed by any modeling tech-
nique of choice to identify the required boundaries. So it
is a common practice that a boundary detection involves
some feature extraction methods. In literature, a variety of
these techniques have been used for this purpose. They are
generally categorized as temporal and spectral. Temporal
features (Ali et al., 1999) like energy, ZCR (Zero Cross-
ing Rate), Pitch period, LPCCs (Linear Predictive Cepstral
Coefficients) are useful in understanding temporal changes
in a speech signal. Spectral features like MFCCs (Mel
Frequency Cepstral Coefficients), formants, etc. are used
to analyze frequency components in a signal. In addition
to these, phonetic studies are proven to be helpful in the
segmentation task. Research has shown that HMM based
systems alone are not sufficient to understand the temporal
changes effectively (Yan et al., 2006). It is understood from
the studies that structural processing methods are superior
to conventional methods in capturing temporal patterns of
the signals (Deng and Strik, 2007). Modeling speech trajec-

tory properties are useful to capture the temporal dynamics
over the signal which can help to develop dynamic speech
models (Liu and Sim, 2012). Even though these meth-
ods are effective in capturing temporal dynamics, compu-
tational cost and the need for a vast dataset are not relaxed.
The present work aimed to develop a reasonable method
for phoneme segmentation by incorporating the structural
properties of a waveform which can work well on small-
sized datasets. The proposed method uses attributes of
waveform trajectories to identify the appropriate boundary
points using Canonical Correlation Analysis (CCA).
The paper is organized as follows: The next section de-
scribes trajectory methods that were used for pattern anal-
ysis. Section 3 gives an overview of the CCA method.
Section 4 explains the proposed approach for segmentation.
The data and experimental setup is described in Section 5.
Section 6 explains the results found in the study and Section
7 concludes the paper.

2. Trajectories for Pattern Analysis
In an Euclidean space, a trajectory is defined as a curve
that is formed by the observation of the path that a moving
object makes. The points in the path are characterized as
ordered positional points. Trajectories that were initially
known as Linear Trajectory Segmental Models (LTSMs)
have been used to analyze speech signals for past 3 decades
(Russell and Holmes, 1997). The need for LTSMs point
back to the independence assumption in HMM systems.
The basic underlying idea in these systems is understand-
ing and equipping models with the knowledge of tempo-
ral patterns across segments of a signal. These dynamic
features help in overcoming the problem of independence
assumption in HMM systems. In LTSMs, each segment
is treated as a homogeneous unit that helps in capturing
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the inter-segmental dependencies too (Yifan Gong, 1997).
Trajectories are suitable in pattern analysis for two reasons
(Siohan and Yifan Gong, 1996):

1. A speech trajectory is also influenced by the context

2. Trajectories formed by different phonetic units can
create independent clusters based on the contextual in-
formation

However the models that are based on HMM are suitable
for large vocabulary speech recognition (Mitra et al., 2013).
Trajectories are not only used for speech signal analysis,
but also for pattern analysis in different areas like road net-
work (Atev et al., 2010), databases (Jeung et al., 2008), traf-
fic management, etc.
In general, a trajectory contains vital information like spa-
tiality and temporal patterns of an object. There can be
different ways of treating trajectories as segments sequence
and points sequence. The similarities in these entities can
contribute to crucial knowledge. The similarity metrics to
measure the affinity vary on the kind of trajectory. The ef-
fectiveness of the comparison method depends on the un-
derlying components that the trajectory represents. Huan-
huan et al. proposed a fusion based similarity method for
traffic flow patterns (Li et al., 2018). The method com-
bines different techniques like Merge Distance (MD), Multi
Dimensional Scaling (MDS) and Density Based Spatial
Clustering of applications with noise (DBSCAN) to iden-
tify traffic flow patterns and customary routes from vehicle
movements. One of the fusion techniques is given by Equa-
tion 1.

MMTD(t1, t2) = 1− (w1, w2)
(
dist1(t1, t2)
dist2(t1, t2)

)
(1)

where dist1 and dist2 are different similarity measure-
ments and each measure is treated with unequal weigh-
tages. MMTD is maximum-minimum trajectory distance
(Xiao et al., 2019) (Lin et al., 2019). The present work uses
CCA as measurement metric which is described in the next
section.

3. Canonical Correlation Analysis (CCA)
Canonical correlation analysis (CCA) was introduced by
Hoteling for multi-variate analysis. It helps to find the rela-
tion between multiple variables simultaneously that makes
analysis easy. The fundamental step in CCA is to find a
set of transforming variables that can transform variables
such that the transformation in the corresponding new co-
ordinates is maximally correlated. In the process, a set of
variables called as canonical weights are used. The solu-
tion to this is computationally expensive and time consum-
ing. Therefore, it is convenient to solve the problem as an
eigen value problem. The objective function to solve CCA
for two variables x and y can be expressed by Equation 2:

C =

(
0 Cxy
Cyx 0

)(
a
b

)
= ρ2

(
Cxx 0
0 Cxx

)
(2)

whereCxy andCyx are the covariances between variables x
and y where asCxx,Cyy are auto covariances of variables x
and y respectively. There are various applications for CCA

in the signal processing domain. It has been useful in find-
ing relations which can help for multi-view learning (Liu et
al., 2018). Heycem et.al. applied the technique for feature
selection for the problem of depression recognition from
speech signals (Kaya et al., 2014). Wang et.al. used CCA
to learn acoustic features that can improve phonetic recog-
nition (Wang et al., 2015). Apart from the above mentioned
applications, CCA is also useful in areas like Blind Source
Separation (BSS). The problem aims to recover the original
signal when an unknown linear mixture of statistically inde-
pendent signals are available (Borga and Knutsson, 2001).
Another approach based on CCA focuses to improve the
signal to noise ratio (SNR) in EEG data that is recorded
from multiple channels (de Cheveigné et al., 2019).
In the present work, knowledge from a set of multiple fea-
tures is used to detect boundary points in a word. The com-
plete procedure is explained in Section 4..

4. Proposed Approach for Segmentation
The proposed method uses cumulative knowledge of multi-
ple geometric features and use that to form a multi-view tra-
jectory feature vector. The feature vector is then analyzed
dynamically to extract the phonetic boundaries. There are

1. Basic feature set (τ)

2. Derived features (τD)

3. Multi-view boundary detection algorithm

Each component is explained in next subsequent subsec-
tions. Basic and derived features are defined in the next
subsection. The segmentation algorithm is explained in
Section 4.2.

4.1. Trajectory Features
A speech signal records the nature of vibrations when the
vocal chord moves for uttering a sound. The resultant wave-
form consists of peaks and valleys which helps to under-
stand salient features of the spoken unit and person who
has uttered. Thus the waveform records different acoustic
events which can be used for various purposes like classi-
fication, segmentation, etc. One of the crucial properties
of a trajectory is its shape. Each event that is recorded in
a speech signal can be distinct in structure. The structural
properties of phonetic units have become an interesting area
of study (Minematsu, 2005). The reason for this is that the
features corresponds to phonetic characteristics with varia-
tions in a lucid way. And also the structural properties of
waveform trajectories are useful in understanding the dy-
namic nature of different phonetic units. In the present
work, a set of geometric features are proposed to capture
the transitional behavior of the waveform that can be fur-
ther used in identifying boundary points between different
phonetic units. The feature set as a whole contains two dif-
ferent classes i.e. primitive and derived properties. The
primitive properties are those characteristics that are inher-
ent in a waveform. They are listed as follows:

1. Peak

2. Valley

3. Peak position
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4. Valley position

In the second stage, the aforementioned features are trans-
formed further to obtain derived attributes. This set con-
tains the following elements:

1. Peak width

2. Valley width

3. Slope of peaks and valleys

4. Disparity of peaks and valleys

For a segment of speech signal S[n] with size m, the terms
are defined in Definitions 1 to 8.

Definition 1 A data point pi is said to be as peak if pi−1 <
pi > pi+1 where ∀i ∈ Z

Definition 2 A data point pi is said to be a valley if pi−1 >
pi < pi+1 where ∀i ∈ Z

Definition 3 Peak position is any integer k, such that 0 <
k < m where peak is found at kth location

Definition 4 Valley position is any integer k, such that
0 < k < m where valley is found at kth location

Definition 5 The data point pk being a peak point between
the valleys vq and vr, the difference r− q is defined as
peak width for the peak pk ∀k, q, r ∈ Z and q < k <
r

Definition 6 The data point vk being a valley point be-
tween two peaks pq and pr, the difference r − q is
defined as Valley width of valley vk ∀k, q, r ∈ Z and
q < k < r

Definition 7 The slope between two points x = (x1, y1)
and y = (x2, y2) is defined by Equation 3.

Slope(x, y) =
y2 − y1
x2 − x1

(3)

Definition 8 The Disparity between two points pi and pk
is given by Equation 4.

Disparity(pi, pk) =
√
(pi − pk)2,∀i, k ∈ Z (4)

To understand the terms, let us consider Figure 1. In the
figure, peaks and valleys are indicated as Pi and Vi re-
spectively where i represents the sequence in which they
occur in a waveform. The next term, peak-width is the
width of the curve in a waveform between two valley po-
sitions. In the same way, valley width is the distance be-
tween two peaks in which a valley is present. Slope is the
general gradient between two points in a geometric space.
The points that are considered here are a pair of peaks (or
valleys). This feature gives information of two adjacent
peaks (or valleys). In the segmentation algorithm, the av-
erage slope between peaks (and valleys) of each frame in
the source signal is studied. Finally, the property ’Dispar-
ity’ between two points (peaks or valleys) is the continuous
variation between the heights of peaks and depth of valleys.
The property ’slope’ considers the position at which the

peaks (or valleys) occur whereas ’Disparity’ does not re-
gard this property. The derived features of the word ”Zero”
are shown in Figure 2. Figure 2-a shows the normalized
source signal, Figure 2-b and Figure 2-c give slope and dis-
parity of peaks respectively. Slope and disparity of valleys
are shown in Figure 2-d and Figure 2-e respectively. The
procedure used for segmentation is explained in next sub-
section.
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Figure 1: Peaks and valleys of a speech segment

Figure 2: Peak attributes for the word ”zero”

4.2. Multi-View Boundary Detection Algorithm
The features that are described in the previous section are
analyzed to understand the boundaries of the phonetic units.
The algorithm observes the dynamic changes of the wave-
form over the entire signal by capturing the variations with
the extracted features. First, the given speech signal is di-
vided into equal-sized frames and a set of basic features (τ )
are extracted from each signal. From the basic features, a
set of derived features are drawn. Thus the complete fea-
ture set is a matrix in which each set of derived features are
present. This is a multi-view representation of the wave-
form trajectory features that will be processed to find the
segmentation points.
The segmentation procedure comprises of two stages: In
the first stage, the feature matrix is analyzed by the CCA
procedure which will give a set of coefficients for each fea-
ture set simultaneously. These coefficients represent the
correlation between the subsets of each feature set which
will be used next. In the second stage, a pair of sequential
frames that are adjacent will be used to generate correla-
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tion coefficients. Finally, the coefficients generated in first
and second stages are then compared to get the variance
between them. The crucial steps in the segmentation pro-
cedure can be summarized as follows:

1. The input signal S[n] is divided into a set of frames
f0, f1, ..., fn of equal size.

2. Each frame is then transformed to a set of primitive
features : Sp, Sv, Spi, Vvi, where:

• Sp is set of peaks

• Sv is set of valleys

• Spi is set of integers that represent peak positions

• Vvi is set of integers that represent valley posi-
tions

3. The features obtained in Step 2 are then transformed
to a set of trajectory features τ = τsv, τsp, τdpv, τdp.

4. The feature sets τ are analyzed using CCA which
gives a set of coefficients represented by CCAτ .

5. The features sets belonging to subsequent frames are
correlated to get the new coefficients. Each set con-
sists of features belonging to 3 adjacent frames. The
number of frames is empirically chosen so that varia-
tions can be captured in the corresponding CCA coef-
ficients.

6. Variance between coefficients computed in Step 4 and
Step 5 are compared. The peaks in this set forms the
boundary points. Thus the peaks in each set are com-
bined to identify the boundary points using the CCAτ
computed by Equation 5.

Bp = {CCAτdp ∪ CCAτdpv ∪ CCAτsp ∪ CCAτsv}
(5)

The final variances obtained for each derived feature set are
shown in Figure 3. From the diagram, it can be observed
that the changes needed for identifying the phonemic vari-
ations are recorded in as peak points in the final variances.
But different varieties of variations can be seen separately
from features. Therefore it is required to combine the points
obtained from each features to get the final boundary points.
The detailed algorithm and the flowchart are given in Algo-
rithm 1 and Figure 4 respectively. In the next section, the
background setup used for the experiments is described.

5. Experimental Setup
The algorithms were implemented using Python plat-
form. The CCA implementation that is available in Pyr-
cca (Bilenko and Gallant, 2016) library was used in the al-
gorithm. The data used in present work is English digits
belong to the Indian accent. The speakers belong to dif-
ferent regions (states) in India. They include male and fe-
male speakers. We used 50 speakers data in the analysis.
Each English digit was recorded 15 times for all speakers.
The digits were recorded using the Cool Edit software with
16KHz sampling rate, mono channel and 16 bits resolution.
The behaviour of the algorithm for different cases are dis-
cussed in the next section.

Figure 3: CCA of different features for the word ”zero”

6. Results and Analysis
In the present study, a set of trajectory features are consid-
ered to be useful after conducting experiments on various
properties. The properties that were observed are shown
in Table 1. Figure 5 gives an idea of the nature of these
features. They were not used as part of feature set in the
segmentation process rather they are useful in understand-
ing the characteristics of regions belonging to different pho-
netic units. Some observations are presented in each sub-
sequent subsections separately. The analysis of the algo-
rithm’s nature for peaks and valleys are presented sepa-
rately in subsequent subsections.

6.1. Peak Attributes Analysis
To understand meaningful cues from speech, an analysis of
the nature of peaks in different classes of sounds like vow-
els, fricatives and stops are done. These clues are further
used to find the boundaries of phonemes. It is helpful to
know the regions where changes are occurring correspond-
ing to the behaviour of attributes. Peaks can be classified
into different types based on height and width. Vowels like
/i/ and /e/ have the regions with higher peaks and vowels
/a/, /o/ and /u/ have wider peaks. Figure 5 shows differ-
ent statistics of peaks. We can understand that the vowel
regions have comparatively more wider peaks than non-
vowel regions. The analysis of slope was carried in two
ways:
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Algorithm 1: Boundary detection algorithm
Input:
S[n]: Speech segment of length n
k: Size of the frame
Output:
BP: Boundary points of phonetic units

1 begin
2 Step 1: Normalize S[n]
3 Step 2: Divide S[n] into frames with equal size k
4 Step 3: Let Fn be number of frames
5 for i← 0 to Fn do
6 Step 3.1: Find peaks using Definition 1
7 Step 3.2: Find valleys using Definition 2

8 Step 4: for i← 0 to Fn do
9 for j ← 0 to Max(npeaks, nvalleys) do

10 Step 4.1
11 Tsp ← Slope(peaksj , peaksj+1)
12 Step 4.2

Tsv ← Slope(valleysj , valleysj+1)
13 Step 4.3

Tdp ← Disparity(peaksj , peaksj+1)
14 Step 4.4

Tdv ← Disparity(valleysj , valleysj+1)

15 τi ← {Tspi , Tsvi , Tdpi , Tdvi}
16 Step 5:
17 for i← 0 to Fn do
18 canonicalcoefi ← CCA(τi)

19 Step 6:
20 for i← 0 to Fn do
21 coeffnewi ←

CCAvalidate((τi, ..., τi+3), (τi+3, ..., τi+6))
22 variancei ←

CCAV ariance(canonicalcoefi, coeffnewi)
23 Step 7: BP←

peaks(variancesp) ∪ peaks(variancesv) ∪
peaks(variancedp) ∪ peaks(variancedv)

24 return BP

S.No. Attribute
1 Peak
2 Peak width
3 Peak position
4 Average difference between adjacent peak values
5 Average slope between adjacent peak values
6 Valley
7 Valley width
8 Valley position
9 Average difference between adjacent valley values
10 Average slope between adjacent valley values

Table 1: Attributes used for analysis

1. Slope between adjacent peaks in the same frame

2. Slope between peaks of adjacent frames

This attribute is used for understanding structural signif-
icance at phoneme boundaries. Slope between adjacent
peaks in the same frame does not have much variations.The

Figure 4: Flowchart for the boundary detection algorithm

difference between frames belonging to the same phonetic
unit is small. But it is observed that this value is more at
the phoneme boundaries. Slope between peaks of vowel
regions and non-vowel regions give enough variations that
helps in understanding the boundary points. Figure 6 and
Figure 7 show slope and disparity between peaks of adja-
cent frames for the words ”Zero” to ”Nine”. It can be ob-
served that the changes in the wave forms are evident so that
structural clues can be captured by features. There has been
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Figure 5: Peak statistics of the word ”zero”

an interesting phenomena observed especially in vowel re-
gions. There is a linear growth of the slope and disparity at
the beginning of the vowel region and they start decaying at
the middle part and continuing till the boundary is reached.
This nature is observed both in intra-frame and inter-frame
situations. There is a sudden increase in the slope value at
the boundaries of different phonemes.
The average disparity between peaks within vowel region is
more than non-vowel regions. Figure 7 shows the disparity
between peaks for the word ”Zero”. We can observe that
there are prominent changes at boundary frames. The dis-
tance between inter frame analysis is to understand the na-
ture of the peak values with their neighbouring frames. This
distance is more at the phoneme boundaries when com-
pared to interior regions of phonemes. Anyhow this value
is high in vowel regions similar to intra-frame difference.
The difference between two frames is stable in the regions
belonging to the same phoneme. Therefore it is inferred
that intra-frame difference can be used to identify the syl-
lable boundaries whereas inter frame difference is useful in
identifying phoneme boundaries. Figure 12 shows distance
between peaks in adjacent frames for the word ”Zero”. It
also shows that changes can be observed clearly at bound-
ary frames of phoneme or syllable.

6.2. Valley Attributes Analysis
The second crucial feature of waveform in the framework
is valley attributes. In this class, the nature of valley was
studied by understanding the properties of deeper valleys,
higher valleys, positive valleys, negative valleys, etc. Fig-
ure 10 shows the statistics of these attributes. The mean
and standard deviation of these properties of valleys are
shown in each sub figure. These graphs suggest that there
is a temporal variation across the frames in these statis-
tics which implies that the properties are significant for
phoneme boundary analysis. We can understand variations
in valleys for different segments of the speech sub-units.
Useful observations from the analysis are listed below:

1. Deeper valleys and shallow over valleys are found
more in vowel regions than non-vowel regions.

2. Valleys in vowels are wide.

3. Standard deviation in vowel regions are comparatively
higher than non-vowel regions.

These qualities mean that the structural variation can be
achieved from valley features also. For example, vowels
/i/ and /o/ have differences in the properties in terms of val-
leys. Vowel /i/ has deeper valleys compared to vowel /o/.
It shows that there is more deviation between vowel and
non-vowel regions. These statistics suggest that it is mean-
ingful to use valley properties for understanding structural
significance. The two properties Slope and disparity of the
words ”Zero” to ”Nine” are shown in Figure 8 and Figure
9 respectively. We can see the structural consistency in dif-
ferent utterances of the same digit for a speaker.

Figure 6: Valley statistics for the word ”zero”

6.3. Characteristics of Method in Noisy
Conditions

The method was also evaluated in the presence of noise
in input signals. Here, the white noise up to 20dB SNR
was considered. Figure 11 shows a source speech signal
along with the CCA coefficients of each feature vector. A
comparison between Figure 3 and Figure 11 helps in under-
standing the nature of the algorithm in noisy signals. The
first point to understand is that there is a variation in struc-
ture of same feature vectors. In this example, the disparity
vector differs in variance of CCA coefficients. The noise
presence makes the adjacent frames belonging to two dif-
ferent phonetic units much higher in their variation that is
reflected in the CCA coefficients. The multi-view analysis
enables the method to learn necessary clues from differ-
ent vectors. Therefore, the failure of capturing the bound-
ary points in one case does not influence much in the final
boundary points. So the results suggest that the proposed
approach can be effective in noise conditions also.
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6.4. Performance of the Algorithm
The proposed approach is successful in identifying the
boundary points in 90% of the cases. The mis-identification
of boundary points are influenced by speaker’s characteris-
tics in failure cases. This include accent, pauses between
the phonetic units, etc. The time complexity of the ap-
proach includes two major parts including feature extrac-
tion step and CCA. Time complexities of different steps are
as follows:

1. Peak and valley computation: O(n).
2. Finding the trajectory properties need constant time
O(1) for each elementary operation which constitutes
a linear time complexity O(n) for n samples.

3. Lastly, CCA algorithm requires O(n3) time complex-
ity equivalent to eigen value decomposition method
(Uurtio et al., 2017).

Therefore total time complexity of the approach works out
to [ O(n) + 4 x O(n) + 2 x O(n3)]. The run time require-
ment of the method is approximately 470 milli seconds.
The method was tested on a system with the following con-
figuration:

- Processor : i5 (3.20 GHz)

- Memory : 8 GB

Figure 7: CCA of different features for the word ”zero” (Noisy
signal)

7. Conclusions and Future Work
In this paper, a phoneme segmentation approach based on
multi-view geometrical features is proposed. The structural
properties of speech trajectories are used to find the bound-
aries between phonetic units using the CCA method. The
dissimilarities in geometrical features across a speech tra-
jectory are used as parameters to identify boundary points.
To prove the approach, Indian accented spoken English dig-
its data was used in the experiments. The experiments gave
reasonable results from which we can infer that the method
is effective in identifying the boundary points. Since the ap-
proach does not require a training process, the requirement
of large data sets are dispensed with. Also as the complex-
ity of the method is reasonable, the run time is less and
hence the method is very suitable for low or zero resource
languages. The dataset is shared in 1 for the future use of
the researchers. The method is being studied at the sentence
level for the Hindi language that is spoken in India.
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