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Abstract
Distributed word embeddings have become ubiquitous in natural language processing as they have been shown to improve performance
in many semantic and syntactic tasks. Popular models for learning cross-lingual word embeddings do not consider the morphology
of words. We propose an approach to learn bilingual embeddings using parallel data and subword information that is expressed in
various forms, i.e. character n-grams, morphemes obtained by unsupervised morphological segmentation and byte pair encoding. We
report results for three low resource languages (Swahili, Tagalog, and Somali) and a high resource language (German) in a simulated a
low-resource scenario. Our results show that our method that leverages subword information outperforms the model without subword
information, both in intrinsic and extrinsic evaluations of the learned embeddings. Specifically, analogy reasoning results show
that using subwords helps capture syntactic characteristics. Semantically, word similarity results and intrinsically, word translation
scores demonstrate superior performance over existing methods. Finally, qualitative analysis also shows better-quality cross-lingual
embeddings particularly for morphological variants in both languages.
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1. Introduction
Considering the internal word structure when learning
monolingual word embeddings has shown to produce better
quality word representations, particularly for morphologi-
cally rich languages (Luong et al., 2013; Bojanowski and
others, 2017). However, the most popular approaches for
learning cross-lingual embeddings have yet to use subword
information directly during learning in the cross-lingual
space.
One of the most widely used approaches for monolingual
embeddings (fastText) (Bojanowski and others, 2017) ex-
tends the continuous skip-gram model with negative sam-
pling (SGNS) (Mikolov et al., 2013a) to learn subword in-
formation given as character n-grams and then represent-
ing words as the sum of the n-gram vectors. SGNS has
also been used to learn bilingual embeddings using par-
allel data, the most notable approach being BiSkip (a.k.a,
BiVec) (Luong et al., 2015a). This joint model learns bilin-
gual word representations by exploiting both the context
co-occurrence information through the monolingual com-
ponent and the meaning equivalent signals from the bilin-
gual constraint given by the parallel data.
We propose a combined approach that integrates subword
information directly when learning bilingual embeddings
leveraging the two extensions of the SGNS approach. Our
model extends the BiSkip model that uses parallel data by
learning representations of subwords and then representing
words as the sum of the subword vectors (as was done in
the monolingual case for character n-grams (Bojanowski
and others, 2017)). As subwords, we consider character n-
grams , morphemes obtained using a state-of-the-art unsu-
pervised morphological segmentation approach (Eskander
et al., 2018) and byte pair encoding (BPE) (Sennrich et al.,
2016).

* Equal Contribution

We report results for learning bilingual embeddings for
three low resource languages (Swahili-swa, Tagalog-tgl,
and Somali-som) and a high resource language (German-
deu), all of which are morphologically rich languages.
For German, we simulate a low-resource learning scenario
(100K parallel data). Our results show that our method
that leverages subword information outperforms the BiSkip
approach, both in intrinsic and extrinsic evaluations of the
learned embeddings (Section 3.). Specifically, analogy rea-
soning results show that using subwords helps capture syn-
tactic characteristics. Qualitative and intrinsic analysis also
shows better-quality cross-lingual embeddings particularly
for morphological variants.

2. Methodology
Our proposed method to learn bilingual embeddings uses
both parallel data and information about the internal struc-
ture of words in both languages during training. In SGNS,
given a sequence of words w1, ..., wT , the objective is to
maximize average log probability where c represents the
context:

1/T

T∑
t=1

∑
c

logp(wc|wt), (1)

This probability can be calculated with a softmax function
as below:

logp(wc|wt) =

∑
eu

T
wt

vwc∑W
eu

T
wt

vw
(2)

where W is the size of the vocabulary, and uwt
and vwc

are
the corresponding word vector representations for wc and
wt in R . BiSkip (Luong et al., 2015b) uses sentence-level
aligned data (parallel data) to learn bilingual embeddings
by extending the SGNS to predict the surrounding words
in each language, using SGNS for both the monolingual
and cross-lingual objective. In other words, given two lan-
guages l1 and l2, BiSkip model trains four SGNS models
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(a) Training and Alignment Schema for word wi in language lj

(b) MultiSeg model illustration for MorphAll case

Figure 1: MultiSeg Architecture

Somali English
Word Wax aanan si fiican umaqlin ayuu ku celceliyey . he repeated something that I could not hear well .
Stem Wax aan si fiic maql ayuu ku celcel . he repeat someth that I could not hear well .
Alignment Wax:something aanan:something aanan:I si:that si:could fiican:well umaqlin:hear ayuu:not ku:NA celceliyey:repeated

Table 1: English-Somali Alignment

jointly which predict words between the following pairs of
languages:

l1 → l1, l2 → l2, l1 → l2, l2 → l1 (3)

However, in this model each word is assigned a distinct
vector. To take into account the morphology of words in
both languages, we extend BiSkip to include subword in-
formation during learning. The approach is based on the
idea introduced by Bojanowski and others (2017) for the
monololingual fastText embeddings, where the SGNS is

extended to learn the representation of character n-grams
and then represent the word as the sum of its n-gram vec-
tors as in Equation 4 where N is set of character n-grams
and cn is the word embedding for n-gram n.

w = 1/|N |
∑
n∈N

cn (4)

In our approach, which we call MultiSeg, we consider sub-
words as character n-grams (between 3 and 6 as in fast-
Text), or as morphemes, or as byte pair enconding (BPE)
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Figure 2: Alignment algorithm

that are computed by merging most frequent adjacent pairs
of characters in the corpora. When considering morphemes
as subwords, we either split the words into prefix, stem
and suffix, or we consider all morphemes, that is the stem
and all affixes. We use an unsupervised morphological seg-
mentation approach (Eskander et al., 2018; Eskander et al.,
2019) based on Adaptor Grammars that has been shown
to produce state-of-the-art results for a variety of morpho-
logically rich languages (e.g., Turkish, Arabic, and 4 Uto-
Aztecan languages which are low resource and polysyn-
thetic).
We denote our proposed method using each subword
type as MultiSegCN (uses char n-gram as representa-
tion during training), MultiSegM (uses prefix, stem, suf-
fix morphemes), MultiSegmorphall

(uses all morphemes),
MultiSegBPE (uses byte pair encondings), MultiSegAll

(uses all subword types as representations during training).
Figure 1a shows all possible segmentations for a given word
in a language. Once best alignment is chosen, e.g. word-
level or stem-level alignment, it is passed as input data to
the training algorithm. As an example, Figure 1b shows
subword structure i.e. morphological segmentation, of two
parallel sentences, one in English and the other in low re-
source language. First sentence consists of five words and
the corresponding aligned sentence consists of four words
and internally, they are made up of various counts of seg-
ments i.e. one root and one or more prefixes and suffixes.
For the current word in training (highlighted in the Figure
1b), corresponding aligned word in the other sentence is
also highlighted and their internal alignment is shown. Sim-
ilarly, within the same sentence, the current word’s internal
alignment with neighboring words in its context is shown.
For aligning segments of the words, we consider several
possibilities i.e. word and stem-based alignment and pick
the best one as shown in Figure 2. Example Somali and En-
glish sentences and their stemmed output is shown in Table
1. In the case that alignment based on stem performs better
than alignment based on words, word level alignment can
still be constructed through stem-to-word connection.

Dataset Parallel Sentences Vocabulary TD
Swahili 24,900 48,259 7,720
Tagalog 51,704 43,646 9,523
Somali 24,000 66,870 12,119
German 100,000 59,333 57,617

Table 2: Data Statistics (TD: Test Dictionary pairs)

2.1. Training of Bilingual Embeddings
This section describes the data used for training our bilin-
gual word embeddings and our evaluation setup, including
the evaluation datasets and measures.
We build bilingual embeddings for Swahili-English,
Tagalog-English, Somali-English and German-English.
For Swahili, Tagalog and Somali, we use parallel corpora
provided by the IARPA MATERIAL program1. Data statis-
tics for each language i.e. size of parallel corpora, vo-
cabulary and dictionaries, are listed in Table 2. For Ger-
man, we use the Europarl dataset (Koehn, 2005). Since the
size of this parallel dataset is much larger than the others
(1,908,920), we select a random subset of 100K parallel
sentence to imitate a low-resource scenario. This is impor-
tant as parallel corpora is more costly to obtain than other
bilingual resources, such as dictionaries. For all the mod-
els, symmetric word alignments from parallel corpora are
learned via the fast align tool (Dyer et al., 2013). For align-
ing segments of the words, we compute word and stem-
based alignments and between the two, aligning based on
stem performs better across all languages and dimensions.
We train embeddings with different dimensions, d = 40
and d = 300, for 20 iterations. Our code for training Multi-
Seg embeddings, pre-trained cross-lingual embeddings and
evaluation scripts such as word translation score and cover-
age will be publicly available2.
We evaluate our approach both intrinsically and extrinsi-
cally on various monolingual and cross-lingual tasks and
compare the performance to the BiSkip baseline. Recall,
that BiSkip does not use any subword information when
training the bilingual embeddings.

2.1.1. Intrinsic Evaluation
Word Translation Task. An important intrinsic evalu-
ation task for learning bilingual embeddings is the word
translation task a.k.a. bilingual dictionary induction which
assesses how good bilingual embeddings are at detecting
word pairs that are semantically similar across languages
by checking if translationally equivalent words in different
languages are nearby in the embedding space. As our eval-
uation dictionaries, we use bilingual dictionaries derived
from Wiktionary using Wikt2Dict tool (Acs et al., 2013)
which has polysemous entries in both directions. We gener-
ate Swahili-English, Tagalog-English. Somali-English and
German-English dictionaries (the sizes are given in Table
2). We argue that these dictionaries are more reliable as
evaluation dictionaries compared to Google Translate dic-
tionaries, which are generally used only for evaluation. We
calculate precision at k, where k = 1 and k = 10) (P@1,
P@10) for both source-to-target and target-to-source direc-
tions and take an average of these scores as the final accu-
racy. We take the definition of the task from (Ammar et al.,
2016). In conjunction with P@1 and P@10, we also re-
port coverage as in (Ammar et al., 2016), given as the total
number of common word pairs (l1, w1), (l2, w2) that exist
in both the test dictionary and the embedding, divided by
size of the dictionary. The precision at 1 (P@1) score for

1MATERIAL is an acronym for Machine Translation for En-
glish Retrieval of Information in Any Language (Rubino, 2016)

2https://github.com/vishalanand/MultiSeg

https://github.com/vishalanand/MultiSeg
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Model Dimension

German Swahili Tagalog Somali
Coverage: 0.159 Coverage: 0.212 Coverage: 0.116 Coverage: 0.195
P@1 P@10 P@1 P@10 P@1 P@10 P@1 P@10

BiSkip
40 0.278 0.379 0.528 0.666 0.554 0.698 0.404 0.630

300 0.358 0.492 0.613 0.749 0.640 0.770 0.513 0.729

MultiSegCN
40 0.296 0.429 0.580 0.728 0.624 0.774 0.440 0.708

300 0.376 0.566 0.632 0.749 0.666 0.828 0.525 0.830

MultiSegM
40 0.309 0.438 0.580 0.731 0.626 0.780 0.451 0.704

300 0.382 0.559 0.632 0.788 0.673 0.818 0.532 0.815

MultiSegMall

40 0.306 0.435 0.580 0.731 0.625 0.778 0.449 0.701
300 0.380 0.556 0.631 0.784 0.674 0.822 0.538 0.813

MultiSegBPE
40 0.294 0.421 0.575 0.719 0.595 0.750 0.449 0.682

300 0.373 0.541 0.626 0.776 0.656 0.809 0.534 0.791

MultiSegAll
40 0.305 0.440 0.570 0.726 0.611 0.778 0.454 0.724

300 0.367 0.556 0.620 0.798 0.665 0.825 0.531 0.829

Table 3: Word translation scores and coverage percentages for all languages

Language English Deu/Swa/Tgl/Som BiSkip MultiSegCN MultiSegM MultiSegMall MultiSegMBPE

German
correct berichtigen x
correction berichtigung x x x

Swahili
office afisi x
officer afisa x x x x x

Tagalog
mine akin x
my aking x x x x x

Somali
approve ansixinta x
approving ansixiyay x

Table 4: Qualitative Analysis: x show if the method correctly learned the word translation

one word pair (l1, w1), (l2, w2) both of which are covered
by an embedding E is 1 if cosine(E(l1, w1), E(l2, w2)) ≥
cosine(E(l1, w1), E(l2, w

′

2)) ∀w
′

2 ∈ Gl2 here Gl2 is the
set of words of language l2 in the evaluation dataset, and co-
sine is the cosine similarity function. Otherwise, the score
is 0. The overall score is the average score for all word
pairs covered by the embedding. Precision at 10 (P@10) is
computed as the fraction of the entries (w1, w2) in the test
dictionary, for which w2 belongs to the top-10 neighbors of
the word vector of w1.

Analogy Reasoning Task. Analogy reasoning task con-
sists of questions of the form if A is to B then what is C
to D, where D must be predicted. Question is assumed to
be correctly answered if the closest word to the vector is
exactly the same as the correct word in the question. We
use the datasets for English (Mikolov et al., 2013b) which
consist of 8,869 semantic and 10,675 syntactic questions.
Some of the example semantic categories are Capital City,
Currency, City-in-State and Man-Woman and some of the
example syntactic categories are opposite, superlative, plu-
ral nouns and past tense.

Word Similarity Task. Word similarity datasets contain
word pairs which are assigned similarity ratings by humans.
These rankings are then compared with cosine similarity
between the word vectors based on the Spearman’s rank
correlation coefficient to estimate how well they capture se-
mantic relatedness. In our evaluations, we use three word
similarity datasets: WordSimilarity-353 (WS353) (Finkel-
stein et al., 2001), Stanford Rare Word (RW) similarity
dataset (Luong et al., 2013), and Stanford’s Contextual
Word Similarities (SCWS) dataset (Huang et al., 2012).

2.1.2. Extrinsic Evaluation
As extrinsic evaluation of our embeddings in a downstream
semantic task, we use Cross-Language Document Classi-
fication (CLDC)3 (Klementiev et al., 2012). In this task,
a document classifier is trained using the document repre-
sentations derived from the cross-lingual embeddings for
language l1, and then the trained model is tested on docu-
ments from language l2. The classifier is trained using the
averaged perceptron algorithm and the document vectors
are the averaged vector of words in the document weighted
by their idf values. For this task, we only have dataset for
German-English, and we report results where we train on
1, 000 documents and test on 5, 000 to be consistent with
the original BiSkip setup.

3. Results
The performance on the word translation task for all lan-
guages is shown in Table 3, where the best scores are
highlighted in red for dimension 40 and blue for dimen-
sion 300. MultiSeg methods outperform BiSkip for all lan-
guages both for P@1 and P@10. Among MultiSeg meth-
ods, across languages, morphological segmentation based
models have the best scores followed by MultiSegAll espe-
cially for P10 and with 40 dimension. MultiSegCN with
300 dimension also performs well across languages specif-
ically for P10. Through an error analysis, we noticed that
some of the performance gain for MultiSeg was due to the
fact that these models were able to learn word translations
of morphological variants of words. Table 4 lists some of

3CLDC code is provided by the authors.
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(a) BiSkip (b) MultiSegCN

Figure 3: t-SNE visualization of English-Swahili vectors

(a) BiSkip (b) MultiSegCN

Figure 4: t-SNE visualization for English-Tagalog vectors

the examples for the words from the test bilingual dictio-
naries and their morphological variants and show whether
or not they are predicted correctly using each technique.
For all of the languages, BiSkip is only able to predict zero
or one form of the word correctly, whereas MultiSeg pre-
dict various forms of the words correctly in both English
and other languages.
Qualitatively, two-dimensional visualizations of cross-
lingual word vectors are produced using t-Distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten
and Hinton, 2008) dimensionality reduction method. Fig-
ures 3 and 4 show similar words related to the word done
for Swahili and Tagalog respectively. It can be seen that
MultiSegCN learns better word representations than BiSkip
by placing morphologically and semantically related words
in both languages closer (done− nagawa, did− ginawa,
doing − ginagawa). Similar graphs for Somali are pro-
vided in Figure 5 for all MultiSeg approaches. As an il-
lustration, in Figure 5d, qaranimo is close to togetherness
while the same (nationhood) is also shown in a coarser
fashion in 5c, while other approaches could not capture this
representation.
Word similarity, analogy reasoning and CLDC results for
English and German are summarized in Table 5 where

Spearman’s rank correlation coefficients (ρ ∗ 100) are re-
ported for word similarity task and accuracy is reported
for analogy reasoning task (as percentages) and for CLDC.
MultiSeg approaches outperform BiSkip for all languages
and for all tasks except semantic analogy. For syntac-
tic and overall analogy reasoning scores, MultiSegAll per-
forms the best which demonstrates that with better crosslin-
gual embedding, a performance increase is seen in mono-
lingual space, i.e. English. For CLDC task, morpho-
logical segmentation approaches, i.e. MultiSegM and
MultiSegMAll

perform the best. For word similarity task,
overall MultiSegBPE and MultiSegAll performs the best
for English and MultiSegBPE and MultiSegMAll

for Ger-
man.

Word similarity and analogy reasoning results for English
using low resource languages’ cross-lingual embeddings
are shown in Table 6. Again, MultiSeg approaches out-
perform BiSkip for all languages and for all tasks except
for Somali semantic analogy and among them, MultiSegAll

performs the best overall for all languages. A more detailed
analysis of analogy reasoning task (Mikolov et al., 2013b)
including breakdown of each semantic and syntactic cat-
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(a) BiSkip (b) MultiSegCN

(c) MultiSegBPE (d) MultiSegMall

Figure 5: t-SNE visualization for English-Somali vectors

Model Dimension
Word Similarity Analogy Reasoning CLDC

German English English eng→deu deu→engWS353 WS353 SCWS RW Semantic Syntactic All

BiSkip
40 26.32 22.18 23.62 12.97 3.10 5.30 5.01 0.828 0.666

300 25.40 22.65 21.65 8.30 3.30 7.74 7.16 0.839 0.667

MultiSegCN
40 27.60 25.77 25.91 13.64 1.20 27.56 24.11 0.814 0.662

300 33.23 26.77 28.68 14.37 1.80 41.36 36.18 0.812 0.69

MultiSegM
40 31.10 28.48 25.61 16.44 2.80 21.64 19.18 0.841 0.710

300 33.47 33.08 28.21 13.84 1.30 35.78 31.27 0.861 0.734

MultiSegMall

40 31.35 30.14 26.85 16.60 2.80 22.15 19.62 0.836 0.724
300 36.00 27.42 28.43 13.35 2.50 39.25 34.44 0.864 0.652

MultiSegBPE
40 32.03 33.83 25.51 15.11 1.70 11.28 10.03 0.812 0.720

300 30.45 33.64 26.83 13.64 1.70 19.71 17.36 0.846 0.723

MultiSegAll
40 26.97 28.59 26.86 16.82 1.20 34.80 30.41 0.822 0.631

300 29.58 31.57 28.67 15.52 1.90 48.95 42.79 0.828 0.713

Table 5: German-English Monolingual and Cross-lingual Evaluation Results

egories can be seen in Figure 6 for Swahili.4 Semantic
analogy task consists of questions such as capital countries,
currency, city-in-the-state and hence it does not necessar-
ily benefit from our subword based approach. For German
and Somali, BiSkip has the best performance in this cate-
gory whereas for Swahili and Tagalog MultiSeg approaches
perform the best. On the other hand, syntactic analogy con-
sists of questions about base/comparative/superlative forms
of adjectives, singular/plural and possessive/non-possessive

4We obtained similar graphs for other languages.

forms of common nouns; and base, past and third per-
son present tense forms of verbs. Accordingly, our rep-
resentation is able to perform better for syntactical analogy
questions where MultiSeg methods consistently outperform
BiSkip in all of the categories. Among the MultiSeg repre-
sentations, MultiSegCN performs the best.
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Language Model Dimension Word Similarity Analogy Reasoning
WS353 SCWS RW Semantic Syntactic All

Swahili

BiSkip
40 13.41 9.31 15.97 9.94 2.05 2.85

300 17.25 10.05 15.64 8.01 4.28 4.66

MultiSegCN
40 25.05 20.87 17.05 9.67 18.82 17.89

300 29.43 22.06 16.62 9.39 30.91 28.71

MultiSegM
40 26.05 16.92 2.97 12.43 13.79 13.65

300 29.16 18.64 2.73 14.64 23.29 22.41

MultiSegMall

40 27.79 16.92 1.81 13.54 13.22 13.25
300 26.19 16.48 1.99 14.09 23.67 22.69

MultiSegMBPE

40 26.37 19.30 2.56 11.33 7.21 7.63
300 30.38 17.69 3.86 14.09 13.98 13.99

MultiSegAll
40 27.48 21.99 18.24 9.94 20.74 19.64

300 31.85 23.66 17.23 11.33 29.49 27.63

Tagalog

BiSkip
40 13.17 11.49 10.37 8.64 3.11 3.67

300 11.38 13.19 11.00 15.64 5.75 6.75

MultiSegCN
40 26.18 18.64 12.80 20.78 32.54 31.35

300 29.59 19.96 16.13 18.72 36.76 34.93

MultiSegM
40 18.51 16.62 -3.11 21.60 25.23 24.86

300 17.63 14.98 -2.80 19.14 28.66 27.70

MultiSegMall

40 21.08 16.24 -1.19 26.13 25.05 25.16
300 20.81 17.07 -1.57 17.49 28.71 27.57

MultiSegMBPE

40 17.24 15.67 -1.88 24.49 14.17 15.21
300 18.66 15.24 -1.67 21.81 19.60 19.82

MultiSegAll
40 27.80 21.10 13.25 21.60 35.62 34.20

300 28.95 23.21 14.73 20.16 38.31 36.47

Somali

BiSkip
40 8.04 7.06 10.48 12.82 1.87 2.48

300 10.92 9.86 11.96 10.26 2.28 2.72

MultiSegCN
40 20.39 17.65 14.94 4.49 12.28 11.85

300 26.41 19.02 13.98 2.56 22.53 21.43

MultiSegM
40 16.53 10.67 -1.26 8.97 11.90 11.74

300 15.50 11.93 0.65 5.13 24.21 23.16

MultiSegMall

40 15.83 9.44 -1.55 5.77 13.21 12.80
300 16.44 12.86 -0.72 3.21 27.66 26.31

MultiSegMBPE

40 21.63 10.12 1.96 3.21 2.47 2.51
300 19.62 11.28 0.76 4.49 4.90 4.88

MultiSegAll
40 20.77 20.03 15.11 7.05 16.77 16.23

300 25.35 19.86 13.88 1.92 29.19 27.69

Table 6: Monolingual English Evaluation of Low Resource Languages

4. Related Work
4.1. Monolingual Morphological Embeddings
There are several ways of incorporating morphological in-
formation into word embeddings. One approach adapted
by fastText embeddings (Bojanowski and others, 2017) is
to use character n-grams. In addition to whole words, sev-
eral sizes of n-grams, i.e. three to six, are used during train-
ing of the skip-gram model. This approach is language-
agnostic and can be adapted to new languages easily. An-
other approach is to have morphological segmentation as a
preprocessing step before training the embeddings (Luong
et al., 2013). Other techniques predict both the word and its
morphological tag (Cotterell and Schütze, 2015) however,
all these approaches are monolingual and work on one lan-
guage at a time.
The most closely related work to ours is (Chaudhary et
al., 2018) which uses the fastText (Bojanowski and oth-
ers, 2017) approach to include morphological information
when learning cross-lingual embeddings by combining the
high-resource and low resource corpora and training us-
ing the skip-gram objective. Their evaluation is limited to

named-entity-recognition and machine translation and re-
quires detailed linguistically tagged words on a large mono-
lingual corpus for related languages. Our approach incor-
porates supervision through small amount of parallel cor-
pora while training on subwords for any two languages in-
cluding unrelated ones.

4.2. Bilingual Embeddings
Bilingual word embeddings create shared semantic spaces
in multi-lingual contexts and can be trained using different
types of bilingual resources. Techniques such as BiSkip
(Luong et al., 2015b) use sentence aligned parallel corpora,
whereas BiCVM (Vulić and Moens, 2015) use document
aligned comparable corpora. There are also techniques that
map pre-trained monolingual embeddings into shared space
via bilingual dictionaries (Lample et al., 2018b; Artetxe et
al., 2018). Finally, there are semi-supervised and unsuper-
vised methods that require little to none bilingual super-
vision (Lample et al., 2018a; Artetxe and others, 2018).
Among these techniques, we adapted BiSkip to learn em-
beddings jointly. This eliminates the need for having pre-
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Figure 6: Swahili Analogy Reasoning Task Semantic and Syntactic Categories

trained monolingual embeddings and it has been shown to
have better accuracy than comparable corpora based ap-
proaches (Upadhyay et al., 2016). In addition, our intrin-
sic evaluations of semi-supervised and unsupervised em-
beddings did not perform well.
Recently, pre-trained contextual embeddings have been ex-
tended to other languages, e.g. XLM (Lample and Con-
neau, 2019), cross-lingual ELMo (Schuster et al., 2019)
and multilingual BERT (Devlin et al., 2019) shown to have
promising results on a variety of tasks. However, they are
not as amenable in low resource scenarios where they tend
to overfit. They are also not good at fine-grained linguis-
tic tasks (Liu et al., 2019) and geared toward sentence level
tasks. In addition, if a pretrained model is not available,
it requires lots of computing power and data to be trained
from scratch. For instance, XLM model uses 200K for low
resource and 18 million for German. For parallel data, they
use 165K for Swahili and 9 million for German.

5. Conclusions and Future Work
We present a new cross-lingual embedding training method
for low resource languages, MultiSeg, that incorporates
subword information (given as character n-grams, mor-
phemes, or BPEs) during training from parallel corpora.
The morphemes are obtained from a state-of-the-art unsu-
pervised morphological segmentation approach. We show
that it consistently performs better than the BiSkip base-
line, including on word similarity, syntactical analogy and
word translation tasks across all languages. Extrinsically,
cross-lingual document classification scores also outper-
form BiSkip. Finally, qualitative results show that our ap-
proach is able to learn better word-representations espe-

cially for morphologically related words in both source and
target language. We plan to extend our technique to train on
more than two languages from the same language family.
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