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Abstract
Sign language research most often relies on exhaustively annotated and segmented data, which is scarce even for the most studied sign
languages. However, parallel corpora consisting of sign language interpreting are rarely explored. By utilizing such data for the task of
keyword search, this work aims to enable information retrieval from sign language with the queries from the translated written language.
With the written language translations as labels, we train a weakly supervised keyword search model for sign language and further
improve the retrieval performance with two context modeling strategies. In our experiments, we compare the gloss retrieval and cross
language retrieval performance on RWTH-PHOENIX-Weather 2014T dataset.
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1. Introduction
Most of the existing data in sign language comes from the
public media, where one finds news, shows, TV series, and
movies interpreted for the Deaf in sign language. Although
the amount of data available in this format is great in scale,
these parallel corpora are often considered too noisy and
unreliable for sign language research. The grammar and
word ordering of the written/spoken language and the cor-
responding sign language interpreting do not match one to
one, and thus, translations in the written language cannot be
directly used to train current automatic recognition systems
that require at least ordered glosses as the label.

Since the effective utilization of these parallel corpora
would greatly increase the overall number of data available
for sign language studies, researchers actively try to convert
this weakly supervised and noisy data into a more conve-
nient format for research. Pfister et al. (2013) and Kelly et
al. (2011) use the weak supervision coming from the trans-
lations to automatically extract isolated signs with multiple
instance learning (MIL) based strategies, and train models
with the segmented data. In a different direction, Camgoz et
al. (2018) dropped segmentation out of the equation and ap-
plied state-of-the-art neural machine translation approaches
to directly translate sign language videos to the written lan-
guage in an end-to-end manner. In this work, by utilizing
a similar strategy, we train an end-to-end keyword search
model by searching the sign language sentence for words
coming from the translations in written language.

Although keyword search is a new application for sign lan-
guages, it is a well-studied problem for spoken languages.
The most common strategy is to use lattices generated by
automatic speech recognition (Saraclar and Sproat, 2004).
More recently, end-to-end keyword search strategies also
started to appear (Audhkhasi et al., 2017). We previously
used end-to-end methods for gloss search from sign lan-
guage videos in (Tamer and Saraçlar, 2020), and this work
is an extension of that.

The main contribution of this work on top of our previous
model is the introduction of the context modeling for cross-

lingual keyword search. Rescoring keyword search predic-
tions with the predictions for other keywords (Karakos et
al., 2013) and the predictions of the same keyword at an-
other close time instant (Richards et al., 2014) is a known
strategy in spoken keyword search. In this work, we ap-
ply this rescoring strategy to our model’s cross-lingual key-
word search and show that model’s own predictions for
other keywords can be used to boost keyword search per-
formance.

The rest of this paper is organized as follows. In Section 2,
the previously-introduced end-to-end keyword search net-
work is summarized briefly. In Section 3, the modifications
made specifically for cross-lingual search is explained. In
Section 4, the dataset and evaluation metrics are given.
Lastly, in Section 5, in addition to giving our results for key-
word search and comparing them to gloss search, we further
discuss how this weakly supervised training strategy helps
automatic segmentation of parallel corpora between written
language and sign language interpreting.

2. Weakly Supervised Keyword Search for
Sign Language

The model structure is summarized in Figure 1. After the
video is converted into a sequence of skeleton joints, the
rest of the keyword search model is trained end-to-end by
searching for text or gloss queries in the sign language sen-
tence. In short, the aim of this training strategy is to repre-
sent both a query and the relevant part of the sign language
sentence by a similar vector in a mutual latent space. This is
done by the joint training of spatio-temporal graph convo-
lutional network (ST-GCN) encoder, word embedding, and
the attention based selection mechanism.

2.1. ST-GCN Encoding of the Sign Language
Sentence

Spatial Temporal Graph Convolutional Networks (Yan et
al., 2018) first introduced for the skeleton-based action
recognition is used for the encoding of the skeleton se-
quence. In this model, a graph connecting neighboring
skeleton joints and the same joints across frames (see the
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Figure 1: After pose estimation with OpenPose, the rest of the framework is trained end-to-end.

connected graph in Figure 1) is formed and 12 layers of
graph convolution operations take place on top of this con-
nected graph as described in our previous work (Tamer and
Saraçlar, 2020).

2.2. Query Embedding and the Attention-based
Selection Mechanism

Query embeddings, vectors representing each query in our
vocabulary, are learned through attention based selection
mechanism. Let q represent the word embedding for the
query and si the ith member of the encoded sign language
sentence; the similarity score between q and si is obtained
for all i ∈ (1, T ) through the scoring function

score(q, si) = β

[
q · si
‖q‖ · ‖si‖

]2
+ θ (1)

with β and θ learnable parameters. From the similarity
scores, a single context vector c is obtained

c =
∑
i

[
exp (score(q, si))∑
i′ exp(score(q, si′))

]
· si (2)

and a simple fully connected layer decides on whether the
query q is found in the entire s1:T sequence.

2.3. Training Strategy
The stability of the training is ensured by searching for all
the queries in our vocabulary in the same sign language sen-
tence. With the skeleton sequence and all the queries in
our vocabulary at the input, the network is trained to min-
imize the binary cross entropy loss between its predictions
for each query and the labels obtained by simply giving 1 if
the query is in the translation and 0 if it is not.

3. Query-Specific Context Modeling for
Cross-Lingual Keyword Search

The motivation behind query-specific context modeling is
that, when doing cross-lingual retrieval, words in the spo-

ken language do not match one to one with their sign lan-
guage glosses. Furthermore, for some less frequent words,
the predictions we get by training with only small amount
of data are most often unreliable. To remedy these prob-
lems, we define two prediction rescoring strategies that use
model’s own predictions for other queries within the vocab-
ulary V . For a single sign language sentence, let~l represent
the |V | dimensional correct labels, s.t. we have one label
∈ {0, 1} for each query, and ~p represent the |V | dimen-
sional vector comprised of the trained model’s predictions.
Our aim is to come up with a new predictions vector ~̃p that
is better than the original ~p. We do this by two different
strategies: (i) a statistical context model based on bag-of-
words TF-IDF vectors, and (ii) a machine-learning based
multi-layer perceptron (MLP) context model.

3.1. Statistical Context Modeling with TF-IDF
Vectorization

Term Frequency Inverse Document Frequency (Ramos and
others, 2003) vectorization is a well known strategy for lan-
guage modeling. While calculating a weight for a query
inside a document, this algorithm gives high weights to
queries that are seen multiple times in this document (high
term frequency), and low weights to ones that are seen
in many other documents (inverse document frequency).
Thus, by finding the similarity between each keyword in
the vocabulary V and the document, we obtain a |V | di-
mensional vectoral representation of the document. Let ~di
be the l1 normalized TF-IDF vector for the ith document in
our training set, the document context model ~dq for query q
is found by averaging over all the documents in our training
set that contain this specific query:

~dq = avg(~di : tfidf(q, ~di) > 0) (3)

Then, by looking at the cosine similarity between this
query-specific document context vectors ~dq and our



219

model’s prediction vector ~p, we obtain the new scores. The
new prediction score for the ith query in the vocabulary
p̃(qi) is formulated as

p̃(qi) = 1−
~dq · ~p
|~dq||~p|

(4)

and the new prediction vector ~̃p is simply the new prediction
values for all the queries in our vocabulary V .

~̃p =
[
p̃(q1), ..., p̃(qi), ..., p̃(q|V |)

]ᵀ
(5)

3.1.1. Fusion Strategy
The statistical context modeling for the query, by itself,
does not give better results than the model’s own predic-
tions. However, when combined with the original predic-
tions through a hyperparameter, it boosts the prediction
scores. With ~p being the model’s original predictions and
~̃p the predictions obtained through query context modeling,
the final predictions are obtained by combining the two pre-
dictions using a hyper-parameter γ:

log ~̃p′ = γ · log ~p+ (1− γ) · log ~̃p (6)

In our experiments, we tuned the hyperparameter γ to max-
imize the mean average precision (mAP) score in the de-
velopment set. For different graph layout options, results
given at Table 2 are with the γ values of 0.40 for the upper
body only layout, 0.54 for the upper body and dominant
hand combined, and 0.58 for all upper body, the dominant
hand and the passive hand combined.

3.2. Multilayer Perceptron Based Context Model
For a sign language sentence in our training set, we trained
a simple multi-layer perceptron with |V | dimensional pre-
dictions vector ~p as the inputs and labels vector ~l as the
target. The network is comprised of two hidden layers of
size 256 with ReLU activations and a dropout probabilty of
20%. We finished the training with early stopping when the
loss in the development set was not reducing any further.

4. Experimental Setup
4.1. Dataset
We used RWTH-PHOENIX-Weather-2014T dataset (Cam-
goz et al., 2018) to conduct our experiments. Recorded in
25 fps videos, the dataset includes weather forecasts in sign
language, their sentence-level gloss transcriptions (without
temporal alignments), and the translations into the German
language. The main reason we used this dataset for our
experiments is that, by including both gloss transcriptions
in German sign language and corresponding translations in
German, it offers a natural medium for comparing cross-
lingual keyword search with gloss search.
The dataset is partitioned into 9.2 hours of training, 37 min-
utes of development and 43 minutes of test data. In order to
use this dataset in keyword search task, we segmented the
transcriptions and translations into constituent words and
used them as our queries. In the gloss search, the vocabu-
lary consists of 1085 glosses that are seen at least once in
the training set and 398 of these are also seen at least once
in the test dataset. Thus, we report our results from this

shared vocabulary of 398 queries. Similarly, for the cross-
lingual search, we have 2887 words in the training set and
942 of these are also shared in the test set and we report
our cross-lingual results on this shared vocabulary of 942
queries.
To clarify the training procedure with an example, let us
consider the sequence in Figure 6: When training a gloss
search model, a 40-frame long sign language sentence is
labeled with −1− for 3 glosses: “nordost”, “bleiben” and
“trocken”, and −0− for the remaining 1082 glosses. When
training a cross-lingual keyword search model, the same
sequence is labeled with −1− for 6 words: “im”, “nor-
dosten”, “bleibt”, “es”, “meist”, “trocken”, and −0− for
the remaining 2881 words. A cross-lingual kws model can-
not see the glosses and vice versa; gloss and cross-lingual
search models are completely independent.

4.1.1. Skeleton Extraction from Video Frames
2D pose estimates of upper body, right and left hand are ex-
tracted through part affinity fields based OpenPose frame-
work (Cao et al., 2017). In figure 2, you can see an exam-
ple subsequence from a sign language sentence with Open-
Pose pose estimates projected on top. Since the frames are
blurry and low resolution, the pose estimation process can-
not always result in good (x, y) coordinate estimates for
each joint. To remedy this, we also used the related confi-
dence scores as the third dimension to feed into the graph
convolutional encoder.

4.2. Evaluation metrics
For a query q, precision recall values at an operating point
are defined as

Precision =
|{Retrieved} ∩ {Relevant}|

|{Retrieved|}

Recall =
|{Retrieved} ∩ {Relevant}|

|{Relevant}|

and precision-recall curve obtained at different operating
points (e.g. by changing the threshold) is one of the most
valuable metrics in evaluating the performance of informa-
tion retrieval systems.

4.2.1. Term-averaged Precision-Recall Curve and the
F1 Score

When precision and recall values associated with a thresh-
old θ is averaged over different queries q, term-averaged
precision-recall values are obtained for that threshold:

Precision(θ) =
1

|Q|
∑
q∈Q

Precision(q, θ)

Recall(θ) =
1

|Q|
∑
q∈Q

Recall(q, θ)

Thus, by sweeping through different θ thresholds, we ob-
tain the term-averaged precision-recall curve that summa-
rize the performance of the keyword search system. We
also report the maximum of F1 scores summarizing the
curve:
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Figure 2: An example subsequence from the dataset. The extracted poses for upper body, the dominant hand, and the
passive hand are shown on top of images in yellow, cyan, and magenta respectively. The poses constructed by OpenPose
framework are highly representative even though the original input images are low resolution and blurry.

maxF1 = max
θ

2 · Precision(θ) · Recall(θ)

Precision(θ) + Recall(θ)

4.2.2. Mean Average Precision (mAP)
Similarly, in object and action recognition, one of the most
used metrics is mean average precision. It roughly corre-
sponds to the area under precision-recall curves belonging
to different queries q averaged over queries.

mAP =
1

|Q|
∑
q∈Q

AveragePrecision(q)

=
1

|Q|
∑
q∈Q

1

|N |

|N |∑
n=1

Precision@n(q)

(|N |: the number of relevant documents for query q). It
is common to report mAP scores at different Intersection
over Union (IoU) thresholds. However, since we did not
have any labels for temporal alignments and segmentation,
we simply report mAP scores with IoU=0.

5. Results and Discussion
In this section, we present our gloss and cross-lingual key-
word search results obtained with different encoder graph
structures and different context modeling strategies. We
also compare cross-lingual KWS results obtained with a
translation approach and visualize the temporal localization
capabilities of our model.

5.1. Effects of Graph Layout: Upper Body, the
Dominant and the Passive Hand

The upper body, the dominant hand, and the passive hand
poses are all important components in understanding sign
language. To identify the effects of different components in
the performance of keyword search for sign language, we
trained 3 gloss search and 3 cross-lingual keyword search
models with the features in Figure 3.

From the results summarized in Table 1 and the precision-
recall curve in Figure 4, we see that the upper body alone
contains much of the information by itself. Introducing the
dominant hand also significantly improves the results for
both gloss and cross-lingual search models. However, we

Figure 3: From left to right, the three graph layout options
used in the experiments are upper body (13 joints), upper
body with the dominant hand (34 joints), and upper body
with both hands (55 joints), respectively.

Gloss Cross-Lingual
mAP (%) maxF1 mAP(%) maxF1

Upper Body (UB) 24.29 26.40 12.49 15.18
UB + Dom. Hand 29.91 33.53 13.18 15.62
UB + Both Hands 29.22 32.80 14.56 16.15

Table 1: Gloss and cross-lingual KWS results using two
metrics (the higher the better, best scores for each task are
in bold). Cross-lingual results are reported after MLP con-
text model applied.

see that there is not much gain with the introduction of pas-
sive hand. Although the layout including the passive hand
performs the best in cross-lingual search, it reduces both
the mAP and maxF1 scores in the gloss search compared to
the dominant hand + upper body layout option.
Since the OpenPose hand model has 21 joints, including
the passive hand in the graph layout increases the number
of graph nodes from 34 to 55 and demands more compu-
tational resources for graph convolution operations. Thus,
we conclude that the costs of including the passive hand in
the graph layout may outweigh the benefits.

5.2. Effect of Different Context Modeling
Strategies

Results obtained with different context modeling strategies
are summarized in Table 2. Firstly, we can say that sta-
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Figure 4: Precision-recall curves for the gloss search mod-
els with different layout options. The cross-language search
results are shown in transparent for comparison.

tistical context modeling improves both metrics for all the
layout options, and the gains are significant for the Upper
Body + Both Hands layout. Secondly, we see that the MLP
based context modeling did not improve the results for UB
+ Dominant Hand layout. Since we stopped the training of
the MLP based context model when the development loss
is not reducing any further, the results in the test dataset are
not necessarily better. However,we obtained our best over-
all mAP score with an MLP based context model (with a
significant increase from 13.01% to 14.56%).

5.3. Comparison to KWS from Neural Machine
Translation Outputs

In spoken keyword search, a well-known strategy is to
use the transcriptions obtained through automatic speech
recognition (ASR). In a similar approach, we used trans-
lations obtained from Neural Sign Language Translation
(Camgoz et al., 2018) model as our baseline. From the
translations we get by using the same hyper-parameters in
their paper, we obtain the single operation point denoted as
NSLT in Figure 5.
In spoken keyword search, another strategy is to search for
the keyword in lattices generated from ASR outputs (Sar-
aclar and Sproat, 2004). Similarly, we plot precision-recall
curve related to this NSLT model by applying beam search
with beam size of 500 and finding the expected counts for
each word along the beams. With the two as our baselines
in Figure 5, we conclude that our cross-lingual KWS model
is better than searching for keywords in translation outputs.

5.4. Temporal Localization as a By-Product of
Weakly Supervised Training

When we have sequence-level, ordered gloss transcriptions
of sign language data, HMM-based models can iteratively

Figure 5: Our best cross-lingual KWS model (trained with
UB + Both Hands layout option and MLP context model)
compared to searching from Neural Machine Translation
outputs (the higher the better).

Figure 6: Temporal localizations for the sequence with
gloss annotation “nordost bleiben trocken” and translation
“im nordosten bleibt es meist trocken”. The prediction con-
fidences are denoted in parentheses.

align each frame to a gloss hidden state and thus do the tem-
poral segmentation as exemplified in (Koller et al., 2017).
However, since these HMM models rely on the strictness
of the order of a gloss sequence, this alignment procedure
cannot work with the noisy and weak supervision of trans-
lations. In this section, we show that our model’s attention
based selection mechanism can loosely localize some key-
words independent of label type. For sign language sen-
tences of varying length, we show the temporal keyword
localization capabilities of our models that are trained with
either gloss-sequences or translations as the labels.

In Figures 6, 7, and 8, we see model predictions (shown
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Without Context Model Statistical C.M. MLP-based C. M.
mAP (%) maxF1 mAP (%) maxF1 mAP (%) maxF1

Upper Body (UB) 11.62 14.66 11.94 14.90 12.49 15.18
UB + Dom. Hand 13.66 16.10 13.78 16.28 13.18 15.62
UB + Both Hands 13.01 16.40 13.80 16.69 14.56 16.15

Table 2: Effect of context model on cross-lingual KWS. Best mAP and maxF1 scores for each layout are in bold, and
overall best scores are underlined.

Figure 7: Temporal localizations for the sequence
with gloss annotation “und mehr warm sonntag bis
fuenf zwanzig grad” and translation “am sonntag bis
fünfundzwanzig grad”. The prediction confidences are de-
noted in parentheses.

with percentages next to the labels) and related temporal
localizations (denoted by the most peaky regions) for both
gloss and cross-lingual search. For the most of our data, we
see that gloss search models are better in localization capac-
ity and the order of peaky regions usually follows the gloss
order correctly. We also see that peaky regions are more
visible when the prediction confidences are higher. For the
the cross-lingual search, we see that localization is possi-
ble for some words that are matching one-to-one with gloss
transcriptions (such as “grad” in Figures 7 and 8, “sonntag”
and “fünfundzwanzig” (with two peaks at both “fuenf” and
“zwanzig”) in Figure 7, “nacht” in Figure 8 etc.), but not so
much for the conjugated verbs like “bleibt” in Figure 6, or
words without a unique gloss such as “alpenrand” and “ost-
seeküste” in Figure 8. We believe that cross-lingual KWS
is at least beneficial for finding the most salient temporal
regions that might be related to any gloss.

6. Conclusion
In this paper, we employed a weakly-supervised, end-to-
end training strategy for cross-lingual keyword search for
sign language and showed that cross-lingual training is a
viable option when we do not have the gloss labels. We
introduced two context modeling strategies and further im-
proved the cross-lingual keyword prediction results. We

Figure 8: Temporal localizations for the sequence with
gloss annotation “nord heute nacht minus zwei berg bis mi-
nus fuenfzehn grad” and translation ”“an der ostseeküste
heute nacht minus zwei am alpenrand bis minus fünfzehn
grad”. The prediction confidences are in parentheses.

compared the retrieval performance and temporal localiza-
tion capabilities of gloss and cross-lingual search under
three different layout options. The most important contri-
bution of this paper is the introduction of a cross-lingual
KWS method that can theoretically utilize the widely avail-
able sign language interpretations in public media. In the
future, we aim to apply the same strategy to bigger datasets.
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