
Proceedings of the 9th Workshop on the Representation and Processing of Sign Languages, pages 209–216
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

209

Video-to-HamNoSys Automated Annotation System

Victor Skobov, Yves Lepage
Graduate School of Information, Production and Systems

Waseda University
v.skobov@fuji.waseda.jp, yves.lepage@waseda.jp

Abstract
The Hamburg Notation System (HamNoSys) was developed for movement annotation of any sign language (SL) and can be used to
produce signing animations for a virtual avatar with the JASigning platform. This provides the potential to use HamNoSys, i.e., strings
of characters, as a representation of an SL corpus instead of video material. Processing strings of characters instead of images can
significantly contribute to sign language research. However, the complexity of HamNoSys makes it difficult to annotate without a lot
of time and effort. Therefore annotation has to be automatized. This work proposes a conceptually new approach to this problem. It
includes a new tree representation of the HamNoSys grammar that serves as a basis for the generation of grammatical training data and
classification of complex movements using machine learning. Our automatic annotation system relies on HamNoSys grammar structure
and can potentially be used on already existing SL corpora. It is retrainable for specific settings such as camera angles, speed, and ges-
tures. Our approach is conceptually different from other SL recognition solutions and offers a developed methodology for future research.

Keywords: sign language, machine learning, HamNoSys, corpus annotation

1. Introduction
The Hamburg Notation System 2.0 (HamNoSys) was pre-
sented by Prillwitz et al. (1989). An updated version 4.0
is described in (Hanke, 2004). It is meant to annotate
movements, using a set of approximately 200 symbols and
a standardized structure. This notation system is capable
of transcribing any sign in any sign language (SL), which
makes it a significant contribution to the current state of
sign language research, not only because of its utility in
corpus annotation but also because of its ease of processing.
HamNoSys has a Unicode-based implementation1 and has
a fully developed markup language implementation Sign
Gestural Markup Language (SiGML).
In this paper, by HamNoSys, we will be referring to its
manual markup language representation - SiGML, as de-
scribed by Elliott et al. (2004). In particular, SiGMLs man-
ual features descriptions, the part that implements Ham-
NoSys symbols as inner elements. SiGML can also include
non-manual features of sign: pose, eye gaze, mouth, and
facial expressions. The production of virtual avatar anima-
tions from SiGML was first presented by Kennaway (2002)
and is used in the JASigning2 platform.
The vast majority of sign language data is presented in a
video-based corpus format and includes signs labeled along
the timeline. Some data already include HamNoSys an-
notations (Hanke, 2006). However, not all available SL
corpora are annotated with HamNoSys because such an-
notation is time-consuming. In particular, it requires a
good understanding of the HamNoSys grammar. Having
SL corpora annotated in HamNoSys would simplify and
ease the cross-language research and SL data processing.
The Dicta-Sign Project (Matthes et al., 2012) aimed at this
by creating a parallel multilingual corpus. Their work pro-
vided a set of tools for direct HamNoSys annotation and
allowed us to synchronize the generated animations with

1HamNoSysUnicode: http://vhg.cmp.uea.ac.uk/
tech/hamnosys/HamNoSysFonts.pdf

2JASigning: http://vh.cmp.uea.ac.uk/index.
php/JASigning/

video data. Efthimiou et al. (2012) showed how to use im-
age processing to find a matching sign from the vocabulary
automatically, which improved annotation speed. However,
video and image data require heavy processing. For exam-
ple, Östling et al. (2018) presented comprehensive research
on 31 sign languages and 120,000 sign videos. The loca-
tion and movement information was collected using video
processing. The collection alone took two months of com-
puting time on a single GPU. Another problem with video-
based corpora is an issue with signers’ privacy. Most of
the SL corpora that available today for researchers include
a signing person. Which often leads to limited accessibility
of the corpora.

Dreuw et al. (2010) presented a sign language transla-
tion system as a part of The SignSpeak Project, which in-
cludes an automatic sign language recognition system that
is based on sign feature extraction from tracking the body
parts on video frames. Curiel Diaz and Collet (2013) pro-
posed another semi-automatic sign language recognition
system, which also relies on head and hands tracking on
video frames and uses a Propositional Dynamic Logic.

Still, many SL corpora do not include HamNoSys annota-
tions. Hrúz et al. (2011) used an existing dictionary with
annotated video data and custom classes for the catego-
rization of signs in sign language corpora, making substan-
tial progress towards annotating new data. However, such
methods rely on an existing vocabulary, which is not al-
ways available. Ong and Ranganath (2005) discussed how
a large-vocabulary recognition system still has to deal with
sign translation and cannot fully grasp the actual meaning
behind the signs and their different lexical forms. Addi-
tionally, the authors investigate how the annotation of signs
allows us only to a certain degree to have an understand-
ing of their meaning. Ebling et al. (2012) mentioned the
problem of expressing the vocabulary of sign language us-
ing a spoken language. In order to have a raw sign lan-
guage without interpretation and have full use of character-
based natural language processing methods, an automated
sign movement annotation system is required.

http://vhg.cmp.uea.ac.uk/tech/hamnosys/HamNoSysFonts.pdf
http://vhg.cmp.uea.ac.uk/tech/hamnosys/HamNoSysFonts.pdf
http://vh.cmp.uea.ac.uk/index.php/JASigning
http://vh.cmp.uea.ac.uk/index.php/JASigning


210

2. Methodology
The main goal of our research is to develop a Video-
to-HamNoSys decoder, having a HamNoSys-to-Video en-
coder. Thus, we propose our system in the form of the
Encoder-Decoder model demonstrated in Figure 1.
For the training of the automatic annotation system, we re-
quire an extensive data set of sign videos, correctly tran-
scribed in HamNoSys. The system should be able to tran-
scribe any sign movement. Consequently, the training
dataset has to be diverse and language-agnostic. To this
end, we need a generation method of random HamNoSys
annotations that incorporates all rules of the annotation sys-
tem. Each generated sign annotation has to be accepted
by the JASigning virtual avatar animation tool to produce
signing animations. We use virtual avatar animations of the
JASigning platform to synthesize movements from gener-
ated annotations. To cover all possible HamNoSys move-
ments for any sign language, we need to generate signs ran-
domly, representing random and chaotical movement. The
encoding process will be handled mostly by JASigning soft-
ware, and It will be detailed in Section 3..
The preprocessing steps, described in Section 4.1., will al-
low us to generate the necessary training data to train the
decoder. The decoding process will be taken care of by
our proposed tree-based machine learning model, detailed
in Section 4..

3. Encoder
In this section, we first introduce a new generation method
with a grammar tree that plays an essential role in the whole
system. We describe the building process and the proper-
ties of the generation tree in the next Subsection, 3.1.Gen-
eration grammar tree. We then introduce the generation
method with the generated data set that will be analyzed
and compared to existing HamNoSys data. The overview
of the encoder is shown in the upper part of Figure 1.

3.1. Generation Grammar Tree
To build the generation grammar tree, we start with the ba-
sic HamNoSys structure presented in the upper part3 of Fig-
ure 2, and worked through each of the single rule blocks:
Handshape, Hand position, Location, and Action. The no-
tation for two hands was added afterwards. The verification
was done by running the JASigning avatar animation (Ken-
naway, 2002). The process of adapting the rules was as
follows: first, add the simplest ones; then add the specific
rule cases. The presented work by Hanke (2004) was used
as a description and guide of the HamNoSys. For the gram-
mar source, we utilized the SiGML Data Type Definition
(DTD) hamnosysml11.dtd4 files with regular expressions.
In particular, the hamnosysml11.dtd file provides a good
overview and a basic understanding of HamNoSys gram-
mar.
The upper part of Figure 2 displays the basic HamNoSys
structure for one hand annotation. The lower part of Figure

3Available at https://robertsmithresearch.
files.wordpress.com/2012/10/
hamnosys-user-guide-rs-draft-v3-0.pdf

4Available at http://www.visicast.cmp.uea.ac.
uk/sigml/

Figure 1: Representation of a tree-based learning system:
the upper part shows the encoder, the middle and the lower
parts show the decoder of the system

2 is a representation of the same rule in the form of a tree.
The root node is a non-terminal grammar symbol. Leaf
nodes are representing the rule members and their order.
Between the root and the leaves, there are production nodes,
which are named ”# OPT” for optional (”#” stands for
the number of the option) or ”NON OPT” for non-optional,
i.e., obligatory nodes. The optional and non-optional nodes
are necessary for the generation algorithm, which will be
described in Subsection 3.2.. The lower part of Figure 2
shows the tree leaves which bear empty, representing an
empty string or symbol in the grammar.

3.1.1. Regular Expressions
Figure 3 shows the examples of regular expressions imple-
mented in a tree form. To describe a boolean or in the
grammar, the ”NON OPT” node was used with ”# OPT”
children for each or case. For zero or one, we used two
”# OPT” nodes, one of them having an ”empty” node as a

https://robertsmithresearch.files.wordpress.com/2012/10/hamnosys-user-guide-rs-draft-v3-0.pdf
https://robertsmithresearch.files.wordpress.com/2012/10/hamnosys-user-guide-rs-draft-v3-0.pdf
https://robertsmithresearch.files.wordpress.com/2012/10/hamnosys-user-guide-rs-draft-v3-0.pdf
http://www.visicast.cmp.uea.ac.uk/sigml/
http://www.visicast.cmp.uea.ac.uk/sigml/


211

Figure 2: Implementation of the HamNoSys general struc-
ture (Up) in tree form (Down).

child. For zero or more and one or more we used optional
”# OPT” nodes. Any loop or recursive listing is limited
only by two mentions. For example, the notation of differ-
ent actions one after another could be infinite, but in order
to introduce such rule of repeated notations of actions, and
avoid infinite loops, the amount for actions was limited to a
maximum of two actions.

3.1.2. Symbol Order
The HamNoSys system is order specific. Tree represen-
tation of a rule has to respect the order of symbols in the
grammar. Keeping the order of leaves in the tree, according
to the HamNoSys grammar, is crucial. In the next Subsec-
tion 3.2., the generation algorithm returns leaves in a post-
order traversal of the leaves, allowing the algorithm to keep
the grammatical order of the returned terminals.

3.1.3. Individual HamNoSys Sign Parts
The tree building process continues from root to the termi-
nals. It is possible to build a generation tree for a single
HamNoSys non-terminal element for elements like hand-
shape, location, movement, etc. This might be useful if a
change in a part of sign notation is needed. The generation
of single sign parts was used for validation and modifica-
tion of a single rule, during the conversion process.

3.1.4. Tree Limitations
During the process of building a sign generation tree, we
had to remove a number of HamNoSys symbols, listed in
Table 1. Most of them were excluded because they repre-
sent sign sentence and text markers: punctuation and lo-
cation pointers. One symbol hamupperarm was removed

hamexclaim hamcomma hamspace
hamfullstop hamquery return
hammetaalt hamaltend hamnbs
hamcorefref hamupperarm hametc
hamaltbegin hammime tab
hamcoreftag pagebreak linefeed
hamnomotion hamversion40

Table 1: 20 HamNoSys symbols removed from the genera-
tion tree

from the hand location1 rule, because the parser did not ac-
cept it. It is also worth mentioning that the replacement rule
produces a visualization error during the animation, but it
was kept regardless. By expanding the HamNoSys gram-
mar, the generation tree can be recreated and updated.

3.1.5. Tree Format
For each of the 83 extracted rules, a tree representation was
created with a non-terminal element as its root. These rep-
resentations were combined into one large complete gener-
ation tree, with HamNoSys terminal symbols or empty sym-
bols as leaves. The generation tree contains 302,380 leaves
and stored in Newick format, (.nk or .nwk file). This format
can store internal node names, branch distances, and ad-
ditional information about each node encoded as features.
For tree processing, we used the ETE Toolkit5 package for
Python 3.6. The resulting tree can produce any valid sign
in any sign language, with only the limitations mentioned
above. The 83 extracted rules and the generation tree will
be released publicly with this paper, and open for future
improvement.

3.2. Sign Generation Process
Having a grammar tree structure with all terminal elements
as leaves and all non-terminals and internal nodes allows
us to retrieve HamNoSys symbols as leaves. This can be
achieved by traversing the tree and returning only the re-
quired symbols. We first mark the needed symbols. Mark-
ing is provided according to the grammar, i.e., the tree
structure itself. We developed Algorithm 1 for this process.
By using a top-down traversal, from the root to the leaves,
the algorithm uses the optional ”# OPT” nodes to select a
path to the leaves, which allows us to retrieve and mark the
required terminal symbols.
The ”# OPT” optional nodes are used to introduce ran-
domness into the generation process. In Algorithm 1, the
goal is to generate a random sign, which represents a ran-
dom movement. We create a data set of signs distributed
over the whole HamNoSys grammar. We can modify the
generation process by assigning weights to optional nodes.
We can encode multiple signs on the generation tree with
probability values between 0 and 1.
The HamNoSys notation allows a precise description of
movements: specific annotation for each finger, complex
location and position annotation of hand, repetitions, and
symmetry of hand movements. The more precise the de-
scription, the more complicated the rule to be applied, and

5Available at http://etetoolkit.org/

http://etetoolkit.org/


212

Figure 3: Implementation of regular expressions in tree form

Algorithm 1 Recursive tree walker for weighted generation

1: function SIGNGENERATION(treenode)
2: if tree node is leaf then . Check whether the node is a leaf
3: return tree node . Terminal retrieved
4: else
5: Initialize C ← ∅
6: for all child ∈ tree node.children do
7: if child.name =’OPT’ and 6= ’NON OPT’ then
8: C,pc ← child ∪ C . Getting set of optional children nodes and their probabilities
9: if C 6= ∅ then . Pick one child from the set according to their probabilities

10: Initialize randomChild←WeightedRandomFromSet(C,pc)
11: for all child ∈ tree node.children do
12: if child.name =’NON OPT’ or child = randomChild then
13: SignGeneration(child) . All non optional and one picked optional child
14: else
15: for all child ∈ tree node.children do
16: SignGeneration(child) . If option Set is empty, go further to each child

the more complicated the rule, the longer the tree branch.
Due to the differences in the topology distances between
the root node and leaves, a random selection of optional
nodes will produce an unequally distributed set of terminal
symbols. As a result, the leaves with longer branches will
occur less frequently in the generated sign. The use of such
a data set may lead to over- or under-classification prob-
lems. Our goal is to provide a source of HamNoSys data,
which will be used to train a machine learning system. In
the ideal case, all leaves must have equal probabilities of
being included in the generated sign, in a balanced data set.
Consequently, equalization through the weighted selection
process of optional nodes is required.

To accomplish this, in Algorithm 1: before selecting a
random child on line 10, we compute the weights of all
”# OPT” optional nodes, according to their probabilities
given by Formula 1. For a ”# OPT” child node, we take
into account the sum of all leaves under all optional sister
nodes and calculate the rate of leaves under each optional
node. The probability value stored as a branch distance to
the parent node due to its accessibility in the Newick for-
mat. With all rates computed, we perform a weighted ran-
dom selection (WRS), which is provided as function ran-
dom.choices(weights) in the package random6 of Python3.6
programming language to perform this.

6Description at: https://docs.python.org/3.6/
library/random.html#random.choices

popt =
opt.leavesnumber∑

opt∈C
opt.leavesnumber

(1)

We discuss the result of leaf probability equalization and its
effect on the generated data set in the next section.

3.3. Generated Data
Using the proposed tree structure, we were able to gener-
ate data set with 10,000 signs with the weighted random
selection (WRS) approach. The generation of 1 sign takes
approximately 3.6 sec7. Figure 4 shows the distribution of
generation tree leaf appearances in the generated sets. Due
to the large size of the generation tree, it is hard to show
a leaf with zero occurrence in the figure. Table 2 ”Per-
centage of unused leaves” column gives the percentage of
leaves with zero occurrences in the set. The desired data set
should include all leaves to represent all grammar features
of HamNoSys.

3.3.1. Weighted Random Selection (WRS) Data Set
Table 2 indicates that 13 % of the leaves did not appear
in any sign of the WRS data set. The average single sign
length is 357.98 symbols, and the longest sign consists of
508 symbols, which demonstrates the complexity of Ham-
NoSys and its capability for describing complex move-
ments.

7on a single machine with Intel i7 processor 16 GB of RAM
using CPU only

https://docs.python.org/3.6/library/random.html#random.choices
https://docs.python.org/3.6/library/random.html#random.choices


213

Single Sign Length Stats Percentage
Source Unique Signs Minimal Average Maximal of unused leaves
Open DGS-Corpus 5,475 1 13.02 75 -
Generation with WRS 10,000 113 357.98 508 12.73%

Table 2: Comparison of signing data sets and their features

To compare the generated signs with existing natural lan-
guage signs, we use the Open German Sign Language Cor-
pus (DGS-Corpus)8 presented by Prillwitz et al. (2008).
Figure 4 shows that the average sign length for the DGS set
is 13.02, which is significantly lower than in WRS gener-
ated set. It means that the DGS rule complexity is ”cov-
ered” by the generated data.
The generation program written in Python3.6 for generat-
ing the data will be released publicly with this paper. The
WRS generation can be used as an example of encoding the
tree weights and generation of signs with specific features.

Figure 4: Impact on the distribution of 302,380 tree leaves
occurrences in the generated sign set. 10,000 signs using a
weighted random selection (WRS) algorithm between op-
tional nodes.

3.4. Animation and Video Frames
The future system must be able to transcribe video mate-
rials, so it will receive video frames as an input and Ham-
NoSys annotation as a SiGML file (.sigml) as an output.
For that reason, the video of the generated SiGML signs
has to be created. With the help of the JASigning tool, it is
possible to produce animations virtual avatar from SiGML
notation and send video frames of the animation on the net-
work port. An example of the animation frame is demon-
strated in Figure 5 (Left).

4. Decoder
In this section, we propose the Video-to-HamNoSys de-
coder as a part of our automatic video annotation system.
The overview of the decoder is shown in the lower part

8HamNoSys was extracted from i-Lex files Available
at https://www.sign-lang.uni-hamburg.de/
dgs-korpus/index.php/welcome.html

of Figure 1. There are differences in camera settings, an-
gles, and positions relative to the signer across different
sign language video corpora. In Section 3.4., we showed
how to produce animation frames with the JASigning soft-
ware and store them as images. During this process, we
define the camera angle and position in the virtual space.
This step can be adjusted to match the camera setting of
existing video corpora.

4.1. Data Preparation
Video frames are needed as training data for our machine
learning model. To output a movement transcription as a
string of characters from a given video, we do not need to
input all the content of video frames, but only that informa-
tion, which is required for the transcription. For that, we
preprocess the video frames and extract the necessary sig-
nificant movement features. The data preparation process
consists of the following steps: animation, keypoints ex-
traction, normalization, augmentation. Each of these steps
is detailed below.

4.1.1. Body Keypoints Extraction
After getting the animation frames for each generated sign,
we use the OpenPose Software (Cao et al., 2018) to extract
the body keypoints. OpenPose can detect 18 points on the
body, 25 points on each hand, and 60 points on the face
(Simon et al., 2017). Instead of using convolutional layers,
we use a pre-trained OpenPose model to extract significant
features from the frames. This approach reduces the size of
training data and ensures that our decoder model receives
only the necessary information about the body movement.
The right part of Figure 5 shows the keypoints detected by
OpenPose in the frame shown on the left part of Figure 5.

4.1.2. Normalization and Augmentation
OpenPose extracts the coordinates of the body keypoints
from frames. The real camera settings in existing SL cor-
pora can be very different from the virtual camera settings
in the JASigning software. For instance, different resolu-
tion and aspect ratio may be used. Therefore, we added
a normalization step to the decoder that should detach the
body keypoints from the frame coordinates, and represent
them as an array of distances to each other. The unneces-
sary keypoints, like legs and hips, are removed because they
are not involved in the signing process. We calculate the eu-
clidian distances between the remaining keypoints and nor-
malize them against the base body distance. The distance
that is not significantly changing during the signing process
should be set as a base body distance. In our case, it is the
distance between two shoulder points. Its value is set to 1,
and the rest of the calculated distances are put into relation
to it. As a result of the normalization step for each frame, all
of the sign data is represented by one matrix, which stands

https://www.sign-lang.uni-hamburg.de/dgs-korpus/index.php/welcome.html
https://www.sign-lang.uni-hamburg.de/dgs-korpus/index.php/welcome.html


214

Figure 5: Example of body keypoints (on the right) ex-
tracted from a single animation frame (on the left)

for the sign movement. On some of the frames, when the
keypoint detection fails, we keep the default value without
any change.
As an example, in Figure 6, the movement of one hand get-
ting closer towards the head is represented by decreasing
curves, which stands for the distances between the hand
and the head keypoints. As the synthetic avatar movements
differ from real human movement, and so as to adapt our
model to real environment, with the aim to perform well in
annotating real human signs, we augment the avatar data
with noise.

Figure 6: Plotted changes in body keypoint distances to the
head keypoint across five frames

4.2. Tree-based Machine Learning System
The resulting decoder has to approximate the whole Ham-
NoSys grammar, to generate grammatically correct output.
This can theoretically be achieved by training a deep neural
network, on a large number of data. We believe that such

an approach is possible today, although it is not transpar-
ent. There is a risk that the output will be ungrammatical.
This would also require high computational power and re-
sources.
We suggest an alternative way. Since we have all gram-
mar rules at our disposal in one united tree structure (that
we used for the generation of the training data), we can
exploit this structure to create a learning model based on
the large grammar tree, where each output sign will be
generated with regard to the extracted body keypoints of
the initial animation movement presented in Section 4.2.1.
and illustrated by Figure 7. Similar to the generation pro-
cess, by traversing the generation tree, we will initialize a
small learning submodel on the nodes that have optional
”# OPT” nodes as children. (Given in Section 3.2.) Al-
gorithm 1 is used in the training process, but instead of se-
lecting the optional ”# OPT” nodes randomly with WRS,
the leaning submodel learns the right selection of optional
”# OPT” nodes. The whole generation path is learned by
a chain of submodels based on the sign movement.
After the sign has been generated, it is represented by a
one-dimensional vector of the generation tree’s leaves. If
the leaf is included, it is labeled as 1, 0 if not. This allows
us to trace back each rule node in the generation tree, and
see the sign recognition task as a rule-classification prob-
lem. By visiting the same leaves as during the initial sign
generation, the Decoder has to repeat the initial generation
process done by the Encoder. Nodes and their associated
learning submodels that were not visited during the initial
sign generation will not be visited during training, and their
submodels will not be trained. In this way, it is guaranteed
that the resulting system will always output a grammati-
cally correct HamNoSys annotation.
Figure 7 shows the simplified underlying representation of
this idea. Submodels t′1 and t′2 are initialized based on the
main target vector t. All non-optional nodes are not learned
and are set to 1 automatically. As shown in Figure 7, the
node is not visited and its submodel t′3 is not trained, since
it is not involved in the generation process of the target sign
at hand. This prevents oversampling on negative examples.
However, the drawbacks are a reduction of training sam-
ples on the deeper levels of the generation tree and, conse-
quently, a degradation of the accuracy, described in Section
5..

4.2.1. Learning Submodels
Each submodel has a dropout layer with a probabil-
ity of 10 % (p=0.1), and a fully-connected layer with a
LeakyRelu and Softmax activation functions. As a loss
function, The Cross Entropy Loss was used, with the Adam
optimizer (Kingma and Ba, 2015). The size of the output
is different among all submodels, and it corresponds to the
number of optional ”# OPT” children nodes, also viewed
as subclasses of the tree-based machine learning system.
During the training of a submodel, a subtarget vector is
produced, based on the main target. It indicates whether
the leaf of the corresponding optional node is included in
the target sign. As shown in Figure 7, t′1 elements are com-
puted from t.
During tree traversal, we preprocess all the training data



215

Figure 7: Representation of a tree-based learning system

and extract the subtargets to create training data subsets for
each submodel. Table 3 show the number of samples that
is possible to retrieve for submodels on different tree lev-
els. We used this approach to analyze the accuracy of sub-
models on a different tree-levels; this is detailed further in
Section 5..

Tree Avg. Avg. Avg. Valid.
Level SM N per SC SC Accuracy
1 1 4561 2 93 %
2 2 1701 3 80 %
3 1 222 12 31 %
4 22 89 2 47 %
5 62 237 4 42 %
6 474 113 2 46 %
7 332 86 4 32 %
8 268 35 2 51 %
9 496 33 4 33 %
All Levels 1658 81 3 40 %

Table 3: SM - Number of Submodels; N - Number of train-
ing samples; SC - Number of Subclasses; Training effi-
ciency on diferent levels of learning tree

5. Experimental Results
For our experiments, we used a part of the grammar tree,
that stands for the description of handshapes. In the upper
part of Figure 2, the handshape description is marked with
a red color. We generated 60,000 handshape signs for one
hand and extracted the body keypoints from them with the
same camera position. That took us nearly ten days. The
generation of the training data could potentially be simpli-
fied if JASigning Software would allow extracting the body
keypoints directly from the animation.
Training of all 1,658 submodels with 800 epochs each took
around five days. After implementing multiprocessing and
utilizing 11 threads, we managed to reduce this time to 30
hours.
Training the tree-based machine learning system resulted in
22 % accuracy on a validation set of the 1,000 sign. In our

words, our system correctly predicted 5,728 sized vector
that represents a sign. The average accuracy among all sub-
models in the tree-based machine learning system is 40 %
with an average of three classes, and an average of 81 sam-
ples per class. It is important to notice that the validation set
was generated with a Weighted Random Selection (WRS)
Algorithm 1 like the training data.
Our proposal being conceptually new and fundamentally
different; it is not directly comparable to other approaches.
Table 4 is a comparison attempt, where we give the number
of subclasses in our model against the number of signs in
other approaches. Our accuracy of 54 % seems to be signif-
icantly lower than the results of other models, but the reader
should notice that the number of classes is much bigger.
Further investigation of our results led to an interesting
finding: the degradation of the accuracy on the deeper lev-
els of the learning tree. Table 3 gives a comparison of
the average accuracy of the submodels on the different tree
levels, and the amount of training samples with the aver-
age number of subclasses. Typically, for machine learn-
ing classification algorithms, the accuracy drops for a lower
number of training samples and a higher number of classes.
Consequently, our results might improve if we increase the
number of training samples.

Unique
Image Classifier Classes Accuracy
(Bheda and Radpour, 2017)
Deep CNN 32 82 %
(Bantupalli and Xie, 2018)
Deep CNN 100 93 %
Body Keypoints Classifier
Our Model 1 Frame
Average Submodel Accuracy 3 38 %
across all Subclasses 5,728 9 %
Our Model 5 Frames
Average Submodel Accuracy 3 40 %
across all Subclasses 5,728 22 %

Table 4: Comparison to other arproaches

6. Discussion and Future Work
We presented an automatic annotation system that relies on
HamNoSys grammar structure. Proposed approach can po-
tentially be used for annotation of any hand movement.
For future work, we suggest modifying the training data
generation process, by extracting the body keypoints from
the JASigning virtual avatar directly, skipping saving the
frames, and processing them with OpenPose Software.
That will allow the generation of the comprehensive train-
ing data set, with the whole HamNoSys grammar included,
and different camera angles. Potentially generation process
could be done during the training ”on the fly.”
Modifications to data normalization and augmentation can
be done, to achieve better performance on the real data.
The model should learn the differences between the move-
ments of an avatar and multiple human signers. Addition-
ally, the automatic annotation system for facial expressions



216

and other non-manual features by further use of SiGML at-
tributes will expand the system utilization.
By representing an entire corpus with HamNoSys strings
of characters and JASigning generated animations, the size
of the corpus could drastically decrease. In this way, pro-
cessing and sharing corpus data might become more ac-
cessible. Processing of SL corpora as strings of characters
allows the use of sophisticated NPL techniques for sign lan-
guage analysis and research. This opens new directions in
SL research.

7. Bibliographical References
Bantupalli, K. and Xie, Y. (2018). American sign language

recognition using deep learning and computer vision. In
Naoki Abe, et al., editors, IEEE International Confer-
ence on Big Data, Big Data 2018, Seattle, WA, USA, De-
cember 10-13, 2018, pages 4896–4899. IEEE.

Bheda, V. and Radpour, D. (2017). Using deep convolu-
tional networks for gesture recognition in american sign
language.

Cao, Z., Hidalgo, G., Simon, T., Wei, S., and Sheikh, Y.
(2018). Openpose: Realtime multi-person 2d pose esti-
mation using part affinity fields.

Curiel Diaz, A. T. and Collet, C. (2013). Sign language
lexical recognition with Propositional Dynamic Logic.
In 51st Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages pp. 328–333.

Dreuw, P., Ney, H., Martinez, G., Crasborn, O., Piater, J.,
Moya, J. M., and Wheatley, M. (2010). The signspeak
project - bridging the gap between signers and speakers.
In Nicoletta Calzolari (Conference Chair), et al., editors,
Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Association
(ELRA).

Ebling, S., Tissi, K., and Volk, M. (2012). Semi-automatic
annotation of semantic relations in a swiss german sign
language lexicon. In 5th Workshop on the Represen-
tation and Processing of Sign Languages: Interactions
between Corpus and Lexicon. Language Resources and
Evaluation Conference (LREC 2012), pages 31–36.

Efthimiou, E., Fotinea, S.-E., Hanke, T., Glauert, J., Bow-
den, R., Braffort, A., Collet, C., Maragos, P., and
Lefebvre-Albaret, F. (2012). Sign language technolo-
gies and resources of the dicta-sign project. In 5th
Workshop on the Representation and Processing of Sign
Languages: Interactions between Corpus and Lexicon.
Language Resources and Evaluation Conference (LREC
2012), pages 37–44.

Elliott, R., Glauert, J. R. W., Jennings, V., and Kenn-
away, J. R. (2004). An overview of the sigml nota-
tion and sigmlsigning software system. In Sign Lan-
guage Processing Satellite Workshop of the Fourth Inter-
national Conference on Language Resources and Evalu-
ation (LREC 2004), pages 98–104.

Hanke, T. (2004). Hamnosys-representing sign language
data in language resources and language processing con-
texts. In Sign Language Processing Satellite Workshop
of the Fourth International Conference on Language Re-
sources and Evaluation (LREC 2004), pages 1–6.

Hanke, T. (2006). Towards a corpus-based approach to
sign language dictionaries. In Proceedings of a Work-
shop on the representation and processing of sign lan-
guages: lexicographic matters and didactic scenarios
(LREC 2006), pages 70–73.

Hrúz, M., Krňoul, Z., Campr, P., and Müller, L. (2011). To-
wards automatic annotation of sign language dictionary
corpora. In Ivan Habernal et al., editors, Text, Speech and
Dialogue, pages 331–339, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Kennaway, R. (2002). Synthetic animation of deaf sign-
ing gestures. In Ipke Wachsmuth et al., editors, Ges-
ture and Sign Language in Human-Computer Interac-
tion, pages 146–157, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Yoshua Bengio et al., editors,
3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Matthes, S., Hanke, T., Regen, A., Storz, J., Worseck,
S., Efthimiou, E., Dimou, A.-L., Braffort, A., Glauert,
J., and Safar, E. (2012). Dicta-sign – building a mul-
tilingual sign language corpus. In Proceedings of 5th
Workshop on the Representation and Processing of Sign
Languages: Interactions between Corpus and Lexicon
(LREC 2012), pages 117–122.

Ong, S. C. W. and Ranganath, S. (2005). Automatic sign
language analysis: A survey and the future beyond lex-
ical meaning. IEEE Trans. Pattern Anal. Mach. Intell.,
pages 873–891.

Östling, R., Börstell, C., and Courtaux, S. (2018). Visual
iconicity across sign languages: Large-scale automated
video analysis of iconic articulators and locations. Fron-
tiers in psychology.

Prillwitz, S., Leven, R., Zienert, H., Hanke, T., and Hen-
ning, J. (1989). HamNoSys version 2.0. Hamburg nota-
tion system for sign languages—an introductory guide.
Signum-Verlag.

Prillwitz, S., Hanke, T., König, S., Konrad, R., Langer,
G., and Schwarz, A. (2008). DGS corpus project-
development of a corpus based electronic dictionary Ger-
man Sign Language / German. In 3rd Workshop on the
Representation and Processing of Sign Languages: Con-
struction and Exploitation of Sign Language Corpora
(LREC 2008), pages 159–164.

Simon, T., Joo, H., Matthews, I. A., and Sheikh, Y. (2017).
Hand keypoint detection in single images using multi-
view bootstrapping. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 4645–4653.
IEEE Computer Society.


	Introduction
	Methodology
	Encoder
	Generation Grammar Tree
	Regular Expressions
	Symbol Order
	Individual HamNoSys Sign Parts
	Tree Limitations
	Tree Format

	Sign Generation Process
	Generated Data
	Weighted Random Selection (WRS) Data Set

	Animation and Video Frames

	Decoder
	Data Preparation
	Body Keypoints Extraction
	Normalization and Augmentation

	Tree-based Machine Learning System
	Learning Submodels


	Experimental Results
	Discussion and Future Work
	Bibliographical References

