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Abstract
Sign language is the first language for those who were born deaf or lost their hearing in early childhood, so such individuals require
services provided with sign language. To achieve flexible open-domain services with sign language, machine translations into sign
language are needed. Machine translations generally require large-scale training corpora, but there are only small corpora for sign
language. To overcome this data-shortage scenario, we developed a method that involves using a pre-trained language model of spoken
language as the initial model of the encoder of the machine translation model. We evaluated our method by comparing it to baseline
methods, including phrase-based machine translation, using only 130,000 phrase pairs of training data. Our method outperformed the
baseline method, and we found that one of the reasons of translation error is from Pointing, which is a special feature used in sign
language. We also conducted trials to improve the translation quality for Pointing. The results are somewhat disappointing, so we believe
that there is still room for improving translation quality, especially for Pointing.
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1. Introduction

Sign language is the first language for those who were born
deaf or lost their hearing in early childhood. Such individ-
uals understand sign language better than transcribed spo-
ken language because sign languages differ from spoken
languages in not only the modals to express meanings but
also in grammar and vocabulary. Therefore, they require
services provided with sign language, but there are only a
few services provided. For example, less than 0.5% of air-
time of TV programs have sign language services in Japan
(Ministry of Internal Affairs and Communications, 2019).
There are many efforts to develop systems to provide more
services in sign language through computer graphics (CG)-
based animation (Kipp et al., 2011; Romeo et al., 2014;
Uchida et al., 2018; Azuma et al., 2018). These systems
are designed for practical domain-specific services. There-
fore, they apply rule-based translation methods. Typical
rule-based translation methods can translate with high qual-
ity for the target domain, but the coverage for the input
tends to be narrow.
To provide sign language services that can be used
for flexible, open-domain target contents, non-rule-
based machine translation is necessary. Machine trans-
lations generally require large-scale training corpora
(Koehn and Knowles, 2017; Lample et al., 2018). How-
ever, there are only small corpora for sign languages; one
reason is that sign languages do not have writing systems.
To overcome this data-shortage scenario, we use a pre-
trained language model of spoken language for the ma-
chine translation model. Our method is based on
Transformer (Vaswani et al., 2017), and we use BERT
(Devlin et al., 2019) as the initial model of the encoder.
The encoder embeds the input transcribed spoken language,
then the embedded vectors are fed to the decoder, which
is also based on Transformer, then the input sentences
are translated into sign language glosses. Evaluation re-
sults indicate that our method outperformed baseline meth-

ods, including phrase-based statistical machine translation
(PBSMT)-based method, using only 130,000 sentence pairs
of training data.
We also show that one of the reasons of translation er-
ror is from Pointing, which is typically used as pronoun
(Cormier et al., 2013). Thus, we also conducted trials of
accurately translating Pointing.
Our contributions are as follows: (1) We apply
Transformer-based neural machine translation (NMT) from
spoken language to sign language by using a pre-trained
language model as the initial model of the encoder of the
translation model,, (2) This method outperformed baseline
methods, including PBSMT with training data of 130,000
sentence pairs, which is a small amount of training data
for NMT, (3) We share our experiences of a trial to im-
prove translation quality for Pointing, the results of which
are somewhat disappointing, but include important sugges-
tions.

2. Related Work
2.1. Sign Language Translation
Statistical machine translation (SMT) methods are widely
used, so many studies on sign language translation are
based on such methods. Stein et al. (2010) applied many
SMT techniques and obtained high translation quality with
a small corpus. San-Segundo et al. (2012) reported on
combining three translation methods — example-based,
rule-based, and SMT — to translate from spoken Spanish
to sign language.
There are several methods that adopt special features of
sign language such as mouthing, facial expression, and ex-
pression speed. Massó and Badia (2010) used these spe-
cial features for training data and obtain good results.
Morrissey (2011) used HamNoSys (Hanke, 2004) as a sign
language translation method, which can be expanded by
taking into account not only the word meanings but also
facial and other expressions.
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NMT is currently the mainstream in machine trans-
lation research. However, not many studies apply
NMT for sign language translation because NMT meth-
ods require much more training data than SMT meth-
ods. Mocialov et al. (2018) showed that transfer learn-
ing is effective in improving the perplexity of long
short-term memory (LSTM)-based language models for
sign language. Stoll et al. (2018) used an encoder-
decoder-based NMT method in their end-to-end spo-
ken language to sign language video translation system.
Cihan Camgoz et al. (2018) proposed an attention-based
encoder-decoder translation method from sign video to spo-
ken language by comparing various methods of embedding,
tokenizing etc. Most NMT-based sign language translation
methods use domain-specific data. Therefore, the transla-
tion quality for the domain is high, but the coverage for the
input is narrow because the vocabulary size for sign lan-
guage is small (around 1,000). Our model has a vocabulary
size of 6,000, which differs from those used in prior studies.

2.2. Low-resource Languages Translations
There have been many studies on translating from/into low-
resource languages, which are also very informative for im-
proving machine translation of sign language because sign
languages are also low-resource languages.
Dabre et al. (2019) proposed a technique of transfer learn-
ing based on multistage fine-tuning between small multi-
parallel corpora to train a one-to-many NMT model.
Skorokhodov et al. (2018) proposed an approach of initial-
izing a translation model with language models. These two
studies are based on transfer learning, which require more
than two parallel corpora or large-scale monolingual cor-
pora for both languages. Therefore, it is difficult to adopt
sign language translation because even monolingual cor-
pora for sign language are difficult to create. Our method is
also based on transfer learning but requires only one paral-
lel corpus and one large-scale monolingual corpus, so it is
rather easy to be created.
Edunov et al. (2018) showed the effectiveness of
back-translation to data augmentation for NMT, and
Xia et al. (2019) used back-translation-based pivoting for
data augmentation. Data augmentation is a mainstream
technique for low-resource language translation, but we
did not use it in this study because we wanted to confirm
the effectiveness of a pre-trained model for translation.
Imamura and Sumita (2019) used a pre-trained
model as the encoder of Transformer-based NMT.
Sennrich and Zhang (2019) showed that NMT can out-
perform SMT for a small amount of training data using
several recent techniques that have shown to be helpful in
low-resource settings.

3. Our Corpus
3.1. Corpus Overview
We have been building a Japanese-Japanese Sign Language
(JSL) news corpus to study Japanese to JSL machine trans-
lation. The corpus was created from daily NHK sign lan-
guage news programs, which are broadcast on NHK TV
with Japanese narration and JSL signing.

Feature Description Freq.

Nodding
Used as punctuations, topicalization,
and conjunctions.

4.91

Pointing

Typically used as pronouns, but
also used as emphasizing the
meanings and indicating the former
word as subject of the sentence.

1.75

Classifier
Morphological system that
can express events and
states using many morpheme.

0.26

Table 1: Special features of JSL transcribed in the corpus.
Freq. represents frequency in the corpus (number of fea-
tures per sentence).

JP
東京は夜から雪や雨の降る所がある見込み
です。

EN
Tokyo will have places where snow and rain
will fall from tonight.

SL
Nodding, TOKYO, R: TOKYO + L:Pointing,
Nodding, DARK, FROM, Nodding, SNOW, Nodding,
RAIN, Nodding, REGION, EXIST, DREAM, Nodding

JP
サッカー日本代表の新しい監督が決まりまし
た。

EN
The new coach of the Japanese national football
team has been decided.

SL
Nodding, SOCCER, JAPAN, REPRESENTING,
NEW, GUIDANCE, WHO, DECIDE, FINISH,
Nodding

Table 2: Examples from our corpus. JP means Japanese
transcription, EN means translation of JP into English, and
SL means sign language word sequences, with word seg-
mentation of “,”.

The corpus consists of Japanese transcriptions, JSL videos,
and JSL transcriptions. Japanese transcriptions were tran-
scribed by revising the speech recognition results of news
programs. JSL transcriptions are carried out by changing
the sign motions of the newscasters into sign word glosses.
The JSL videos were manually extracted from the programs
by referring to the time intervals of the transcribed JSL tran-
scriptions. The corpus currently includes about 130,000
sentence pairs taken from broadcasts running from April
2009. In this corpus, sign languages are presented by 18
casters (11 deaf casters and 7 hearing-able interpreters).
Note that, Japanese and JSL phrase pairs are not literal
translations, so there are many subject complements, omis-
sions, and so on.

3.2. Sign Words Transcription Rules
JSL transcriptions of the corpus were manually transcribed
by native JSL speakers. The words in the transcriptions are
represented using the Japanese words that have the most
similar meanings. We also transcribed the special features
listed in Table 1, which are frequently used in JSL.
This notation method is called “glosses” in sign language
research. Examples from our corpus are shown in Table 2.
Note that, our transcription also includes multi-linear ex-
pressions, such as place name using the right hand and
pointing with the left hand at the same time. For exam-
ple in Table 1, “R:TOKYO + L:Pointing” means the place
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name “Tokyo” is expressed with the right hand, and Point-
ing with left hand at the same time. We use only sign word
sequences expressed using the right hand in this paper.

4. Translation with Pre-trained Model
As we mentioned in Section 3.1., we have only 130,000
sentence pairs in our corpus. This is far smaller than open
corpora used in machine translation such as the WMT 2014
English–German dataset, which contains around 4.5M sen-
tence pairs. Generally, sign languages do not have writing
systems, so transcriptions of sign language are difficult to
gather.
To overcome the shortage of training data, we use a pre-
trained model as the initial model of the encoder of the
translation model. An overview of our method is illus-
trated in Figure 1. Our method is based on Transformer
(Vaswani et al., 2017) and uses a pre-trained BERT model
(Devlin et al., 2019) as the initial model of the encoder. In-
put sentences written in spoken language are embedded us-
ing the encoder, then the embedded vectors are fed into
the decoder and translated into sign language glosses. The
learning process involves fine-tuning the pre-trained model
and learning the decoder in parallel.
The pre-trained model can embed input Japanese sentences
more relevantly than that learned from a parallel corpus,
so it can help improve overall translation quality. More-
over, most of the “loss” calculated in the training process
can be used to optimize the decoder due to the difference in
the training rate between the encoder and decoder, so train-
ing the decoder can progress rapidly. We call our method
“NMT-BERT.” Our translation model is almost the same as
that Imamura and Sumita (2019) used. Our study differs in
that we applied the model to sign language.
There are many techniques to improve translation models
such as tied embedding, label smoothing, and data augmen-
tation. However, we did not use them because we wanted to
confirm the effectiveness of the pre-trained model in trans-
lation.

5. Experiment
5.1. Experimental Settings
Our experiments were based on our corpus mentioned in
Section 3. We randomly divided the corpus into 130,215
sentence pairs for training, 1,000 pairs for development,
and 2,000 pairs for testing. We also prepared reduced train-
ing datasets containing 50,000, 10,000, and 1,000 sentence
pairs for comparing performance in low-data settings. We
denote the 130,215 sentence pairs of training data as 130K,
that of 50,000 as 50K, 10,000 as 10K, and 1,000 as 1K.
For the encoder of our method, we used our in-house
Japanese BERT model learned from about 7.1 GB of
Japanese Wikipedia, Twitter, News articles, and other cor-
pora. Hyperparameters were the same as BERT-base1,
which has a 12-layer, 768 hidden states Transformer
model with 12-head attention. We used SentencePiece
(Kudo and Richardson, 2018) as the tokenizer for Japanese
with a vocabulary size of 32,000.

1https://github.com/google-research/bert
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Figure 1: Overview of our method. Our method is based on
Transformer and uses pre-trained model as initial model of
encoder.

For the decoder, we used Transformer, which has 768 hid-
den states, with 8-head attention with layer normalization
for each layer, and the number of layers are four for all
training data, which are tuned based on the BLEU score
(Papineni et al., 2002) on the development data. We used
beam search in translating with a beam size of 10. We
used each JSL word as a token, and words used less than
5 times in the corpus were regarded as out-of-vocabulary
words (OOVs). As a result, the decoder has a vocabulary
size of 5,984.
The models were implemented using pytorch2 with
Transformers3 and learned with the Adam optimizer
(Kingma and Ba, 2015) on the basis of cross-entropy loss.
We used the stochastic gradient descent with warm restarts
(SGDR) scheduler (Loshchilov and Hutter, 2017) without
restart to adjust the learning rate with 5 epochs for warmup.
The learning rates were 1.0×10−3 for training the decoder
and 2.0× 10−5 for fine-tuning the pre-trained model.
Other hyperparameters used were: a minibatch size of 50,
dropout rate of 0.1, and 50 training iterations with early
stopping on the basis of the BLEU score for the develop-
ment data.

5.2. Baseline Methods
5.2.1. PBSMT Baseline
We prepared the phrase-based statistic machine transla-
tion (PBSMT) baseline method. We used Moses v4
(Koehn et al., 2007) to train for this baseline. We used
MGIZA (Gao and Vogel, 2008) for word alignment and
lmplz of KenLM (Heafield et al., 2013) for 5-gram lan-
guage model training. We also used batch MIRA
(Cherry and Foster, 2012) to optimize feature weights on
the development data with the target metric of the BLEU
score. We denote this method as ”PBSMT.”.

2https://pytorch.org/
3https://github.com/huggingface/transformers
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BLEU
Method 130K 50K 10K 1K
PBSMT 23.96 22.57 19.28 12.43
NMT-Base 23.10 19.91 7.74 2.00
NMT-BERT 24.24 22.37 15.83 5.55

Table 3: Experimental results.
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Figure 2: BLEU score for each epoch.

5.2.2. Transformer without Pre-trained Model
We used Transformer without a pre-trained model as an-
other baseline. With this method, all parameters are trained
from training data. The number of layers for the encoder
and decoder were two for all training data, and other hyper-
parameters were the same as NMT-BERT, which were the
best settings on the development data. We also used Sen-
tencePiece as a tokenizer with the model learned from the
training corpus with a vocabulary size of 8,000. We denote
this method as “NMT-Base.”

5.3. Results
Table 3 presents the experimental results. NMT-BERT
outperformed the baseline methods for 130K and outper-
formed NMT-Base for all datasets. Therefore, we con-
firmed that using a pre-trained model for NMT is effective
especially in small-training-data situations. However, PB-
SMT is still the best for smaller datasets. NMT-BERT
outperformed NMT-Base, especially for low-training-data
situations. Generally, learning an NMT models requires
large-scale parallel corpora. However, NMT-BERT re-
quires only a small parallel corpus and large-scale mono-
lingual corpus of spoken language, which are rather easy
to create. This is very advantageous, especially for sign
language translation, because corpora of sign language are
difficult to create.
Figure 2 shows the BLEU scores for the development data
for each epoch. We show two cases for the training datasets,
130K and 10K. NMT-BERT was far better in early learning
processes (around epochs 1–10). The encoder learned only
from the training data outputting almost random vectors
in the early epochs, but the pre-trained model could out-
put relevant vectors for the input sentence. The decoder of
NMT-BERT can use these relevant vectors, so optimizing
the decoder can be easier than that of NMT-Base. More-

Excluded word BLEU
None 24.24
Nodding 22.45
Pointing 25.19

Table 4: Results of word exclusion test.

over, the output vector of the pre-trained model represents
word-to-word relations such as synonym and paraphrases,
so NMT-BERT can translate OOVs or less frequent words
in the training corpus using these relations. This is why
NMT-BERT outperformed NMT-Base.
On the other hand, PBSMT was best for 10K and 1K.
The pre-trained model is useful for improving translation
quality, but there is a limit. For these very small train-
ing data situations, other techniques such as that used by
Sennrich and Zhang (2019) should be used.
Sign languages have special features such as Nodding and
Pointing. We analyzed our translation results to investi-
gate the effect of these special features. Table 4 shows the
BLEU score of excluding Nodding or Pointing from both
translation results and reference data for NMT-BERT4. The
fact that excluding Pointing increases the BLEU score by
around 1.0 suggests that translating Pointing is difficult.
Pointing is typically used as pronouns but sometimes used
to emphasize the meanings of nouns or indicate the word as
the subject of the sentence, so spoken languages do not have
the same word/function. This is why Pointing is difficult to
translate. On the other hand, excluding Nodding lowers the
BLEU score. Nodding is mostly used as punctuations, topi-
calization, and conjunctions. These functions are also used
in spoken language, so Nodding can be translated easily.

5.4. Toward Improving Pointing Translation
To improve Pointing translation, we evaluated three trans-
lation methods. One involves translating Pointing as a sign
word, i.e., the same as with NMT-BERT, and is denoted
as Translating (Figure 3-(a)). The second method com-
bines Pointing and the former word into one token and is
denoted as Jointed-Pointing (Figure 3-(b)). If the mean-
ings of Pointing are decided only by the former word, com-
bining Pointing and the former word can clarify their mean-
ings, so it may help improve translation quality. The third
method involves using sequential labeling for Pointing and
is denoted as Sequential labeling (Figure 3-(c)). Sequen-
tial labeling is typically used for finding specific parts from
a sequence such as named entity recognition or part-of-
speech tagging by taking into account context and gram-
matical rules (Ma and Hovy, 2016). We used this method
to find the specific part —to use Pointing— from the sen-
tence. If the decision to use Pointing is made by context and
grammatical rules rather than the former word, Sequential
labeling will work well. With Sequential labeling, we
use multi-task learning for two tasks —translating into sign
language and judging whether pointing is needed for the
translated word—.

4We did not analyze for Classifier, which is a special features
of sign language. This is because Classifier plays an important
role for the meanings of a sentence, so excluding classifier make
a sentence meaningless, so the evaluation would not make sense.
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(a) Translating

Translation model

Nod, Hokkaido, Pointing, Nod, dark … 

(b) Jointed-pointing

Nod, Hokkaido+Pointing, Nod, dark … 

Considered as one token

(c) Sequential labeling

Nod,    Hokkaido,   Nod,   dark, … 

N Y N   NNeed Pointing?: 

Word Sequence:

Nods, Hokkaido, Pointing, Nod, dark … 

Translation model

Translation model

Post-process

Figure 3: Three translation methods specially designed for
translating Pointing.

Method BLEU
Translating 24.24
Jointed-pointing 23.39
Sequential labeling 22.12

Table 5: Results of translation methods specially designed
for Pointing translation.

We used our corpus (130K) to evaluate these methods, and
the results are listed in Table 5. The BLEU score was the
best for Translating. This suggest that the decision to use
Pointing is made by neither only the former word, only the
context nor only grammatical rules. We believe it is de-
cided from the context of sign word sequences, so trans-
lating Pointing should be done by considering the context
of sign word sequence, as language models do. However,
there is still room for improving the translation accuracy for
Pointing. This is left as our future work.

6. Conclusion and Future Work
In this paper, we presented a neural machine translation
method from Japanese to Japanese Sign Language glosses
using a pre-trained model as the initial model of the en-
coder, and confirmed that the method works well, espe-
cially in small-training-data situations. The BLEU scores
for the method was 24.24 using training data of about
130,000 sentence pairs, which outperformed the baseline
methods including phrase based statistical machine transla-
tion, which had a BLEU score of 23.96. Using a pre-trained
model is better than learning models only from training
data, especially in small-training-data situations.
We also conducted trials to improve the translation qual-
ity for Pointing. The results indicate that Pointing, which
is a special feature of sign language, should be translated
considering long-term dependencies.

We showed that Transformer with a pre-trained model can
be used with a small amount of training data, so we can
apply many techniques designed for use with Transformer
such as tied embedding, label smoothing, and data augmen-
tation. Using these techniques is for our future work. To
improve the translation quality of special features of sign
language such as Pointing is also for future work.
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