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Abstract
In this paper, we compare four state-of-the-art neural network dependency parsers for the Semitic language Amharic. As Amharic is a
morphologically-rich and less-resourced language, the out-of-vocabulary (OOV) problem will be higher when we develop data-driven
models. This fact limits researchers to develop neural network parsers because the neural network requires large quantities of data
to train a model. We empirically evaluate neural network parsers when a small Amharic treebank is used for training. Based on our
experiment, we obtain an 83.79 LAS score using the UDPipe system. Better accuracy is achieved when the neural parsing system uses
external resources like word embedding. Using such resources, the LAS score for UDPipe improves to 85.26. Our experiment shows
that the neural networks can learn dependency relations better from limited data while segmentation and POS tagging require much data.
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1. Introduction

Dependency parsing is the task of analyzing the depen-
dency structure of a given input sentence automatically
(Kübler et al., 2009). It requires a series of decisions to
form the syntactic structure in the light of dependency rela-
tions. Nowadays, dependency grammar is gaining popular-
ity because of its capability to handle predicate-argument
structures that are needed in other NLP applications (Mc-
donald et al., 2005). In addition, dependency grammar
is recommended for languages that have free word order
(Kübler et al., 2009; Tsarfaty et al., 2010). However, while
dependency parsing is adaptable to many languages, it per-
forms less well with morphologically rich languages like
Arabic, Basque, and Greek (Dehdari et al., 2011). It is
confirmed in (Habash, 2010), that languages like Arabic,
Hebrew, and Amharic present a special challenges for the
design of a dependency grammar due to their complex mor-
phology and agreement.
Starting from the mid 20th century, research in NLP has
shifted to neural networks. In this line of research, lan-
guage is represented in the form of non-linear features. The
approach is inspired by the the way computation works in
the brain (Goldberg, 2017). It is applied in areas such as
machine translation, computer vision, and speech recogni-
tion. With regards to parsing, the wave of neural network
parsers was started in 2014 by Chen and Manning (Chen
and Manning, 2014), who presented a fast and accurate
transition-based parser using neural networks. Since then
other parsing models have employed various techniques
such as stack LSTM (Dyer et al., 2015; Kiperwasser and
Goldberg, 2016), global normalization (Andor et al., 2016),
biaffine attention (Dozat and Manning, 2017) or recurrent
neural network grammars (Dyer et al., 2016; Kuncoro et
al., 2017). Due to the existence of a treebank for different
languages and the shared task of CoNLL 2017 (Zeman et
al., 2017) and 2018 (Zeman et al., 2018), large improve-
ments in dependency parsing using neural networks have
been reported. For instance, the neural graph-based parser

of Dozat et al. (Dozat et al., 2017) won the CoNLL2017
UD Shared Task. In the CoNLL2018 UD Shared Task, the
winning system was that of Che et al. (Che et al., 2018).
These systems have improved the neural network approach
to parsing through the application of optimization functions
and external resources such as word embedding. Nowa-
days, the state-of-the-art in parsing is neural networks in-
corporating word embedding.
In this paper, we present our experiment on developing a
dependency parser for Amharic using the state-of-the-art
method. The remaining sections are structured as follows.
Section 2 gives a brief background about the process of de-
veloping the Amharic treebank and describes the treebank
we used for training the neural network models. Section 3
describes the neural parsing systems we use to developed
the parser. Section 4 presents our comparison and the re-
sults we obtained. The final section, Section 5, summarizes
and points out the future directions of the research.

2. Background
A parsing system may use a model which is learned from a
treebank to predict the grammatical structure for new sen-
tences. This method of parser development is called data-
driven parsing. The goal of data-driven dependency parsing
is to learn to accurately predict dependency graphs from the
treebank. Following the universal dependency (UD) guide-
lines, Binyam et al. (Seyoum et al., 2018) developed a
treebank for Amharic. In building this resource, they fol-
lowed a pipeline process. Clitics like prepositions, articles,
negation operators, etc. were segmented manually from
their host. Then the segmented data were annotated for
POS, morphological information and syntactic dependen-
cies based on the UD annotation schema.
The Amharic treebank (ATT) version 1 contains 1,074
manually-annotated sentences (5,245 tokens or 10,010
words). The sentences were collected from grammar
books, biographies, news, and fictional and religious texts.
The researchers made an effort to include different types of
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sentences. The data is included in the UD website1.

3. Neural Network Parsers
In recent years, many fast and accurate dependency parsers
have been made available publicly. Due to the shared task
on dependency parsing and the presence of treebanks for
different languages, every year new parsing methods have
been introduced (Lavelli, 2016; Zeman et al., 2017). Some
of the systems require a lot of resources and large treebanks
while others are easy to adapt to new languages that have
few resources. With this background, we have selected four
off-the-shelf parsing systems to test for Amharic. The sys-
tems are: UDPipe2, JPTDP3, UUParser4 and Turku5.

3.1. UDPipe
UDPipe is an open-source and a trainable pipeline pars-
ing system. It performs sentence segmentation, tokeniza-
tion, part-of-speech tagging, lemmatization, morphological
analysis, and dependency parsing (Straka et al., 2016). Af-
ter a model is trained on the CoNLL-U format, it performs
both sentence segmentation and tokenization jointly using
a single-layer bidirectional Gated recurrent unit (GRU) net-
work (Straka et al., 2017). The tasks of POS tagging,
lemmatization, and morphological analysis, are performed
using the MorphoDiTa of (Straková et al., 2014).
The parsing system of UDPipe is based on Parsito,
(Straková et al., 2014) a transition-based system which is
able to parse both non-projective and projective sentences.
For non-projective sentences, it employs the arc-standard
system of Nivre (Nivre, 2014). To handle non-projective
sentences, it has an extra transition called “swap” that re-
orders two words. It uses neural network classifiers to pre-
dict correct transitions. For the purpose of improving pars-
ing accuracy, it adds search-based oracles. It also includes
optional beam search decoding, similar to that of Zhang and
Nivre (Zhang and Nivre, 2011).

3.2. jPTDP
jPTDP is a joint model for part-of-speech (POS) tagging
and dependency parsing (Nguyen and Verspoor, 2018). It
was released in two versions; for our experiment, we used
the latest version, jPTDP v2.0. This model is based on the
BIST graph-based dependency parser of Kiperwasser and
Goldberg (Kiperwasser and Goldberg, 2016). Given word
tokens in an input sentence, the tagging component uses a
BiLSTM to learn latent feature vectors representing the to-
kens. Then the tagging component feeds these feature vec-
tors into a multi-layer perceptron (MLP) with one hidden
layer to predict POS tags.
The parsing component uses another BiLSTM to learn a set
of latent feature representations which are based on both the
input tokens and the predicted POS tags. These represen-
tations are fed to one MLP to decode dependency arcs and
another MLP to label the predicted dependency arcs.

1https://universaldependencies.org/
2https://ufal.mff.cuni.cz/udpipe
3https://github.com/datquocnguyen/jPTDP
4https://github.com/UppsalaNLP/uuparser
5https://turkunlp.org/Turku-neural-parser-pipeline

3.3. UUParser
UUParser (version 2.3) is a pipeline system for dependency
parsing that consists of three components (de Lhoneux et
al., 2017). The first component performs joint word and
sentence segmentation, the second predicts POS tags and
morphological features, and the third predicts dependency
relation from the words and the POS tags (Nivre, 2008).
The word and sentence segmentation is jointly modeled as
character-level sequence labeling, employing bidirectional
recurrent neural networks (BiRNN) together with CRF (de
Lhoneux et al., 2017).
The predictions of POS tags and morphological features are
accomplished using a Meta-BiLSTM model with context-
sensitive token encoding. This method is adopted from the
work of Bohnet et al. (Bohnet et al., 2018). The method ap-
plies BiLSTM to modeling both words and characters at the
sentence level, giving the model access to the sentence con-
text. The character and word models are combined in the
Meta-BiLSTMs. In the Meta-BiLSTM, they concatenate
the output, for each word, (of its context sensitive character
and word-based embedding) and pass to another BiLSTM
to create an additional combined context sensitive encod-
ing. This is followed by a final MLP, whose output is passed
onto a linear layer for POS tag prediction.
The third component is dependency parsing, in which a
greedy transition-based parser (Nivre, 2008) is applied,
following the framework of Kiperwasser and Goldberg
(Kiperwasser and Goldberg, 2016). The framework learns
representations of tokens in context using BiLSTM. Both
the token context and the transition (arc labels) are trained
together with a multi-layer perceptron. This enables the
model to predict transition and arc labels based on a few
BiLSTM vectors. The authors also introduce a static-
dynamic oracle, which allows the parser to learn from non-
optimal configurations at training time.

3.4. Turku Parser
Turku is a neural parsing pipeline for segmentation, mor-
phological tagging, dependency parsing and lemmatization
(Kanerva et al., 2018). For sentence segmentation and tok-
enization, the system relies on the output of UDPipe. The
pipeline allows pre-trained embeddings to be included in
the training.
The tagging is done using the system of Dozat et al. (Dozat
et al., 2017) which applies a time-distributed affine classi-
fier to the tokens within a sentence. Tokens are first embed-
ded with a word encoder. The encoder sums up a learned
token embedding, a pre-trained token embedding, and a to-
ken embedding encoded from the sequence of its characters
using a unidirectional LSTM. Next, a bidirectional LSTM
reads the sequence of embedded tokens in a sentence to
create a context-sensitive token representations. These rep-
resentations are then transformed with ReLU layers sepa-
rately for each affine tag classification layer (namely UPOS
and XPOS). These two classification layers are trained
jointly by summing their cross-entropy losses.
Lemmatization is another pipeline in the Turku parser in
which the researchers develop their own lemmatization
component. The system considers lemmatization as a
sequence-to-sequence translation problem. They consider

https://universaldependencies.org/
https://ufal.mff.cuni.cz/udpipe
https://github.com/datquocnguyen/jPTDP
https://github.com/UppsalaNLP/uuparser
https://turkunlp.org/Turku-neural-parser-pipeline
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a word as an input, a sequence of characters which are con-
catenated with a sequence of its part-of-speech and mor-
phological tags. The output is based on the corresponding
lemma represented as a sequence of characters. The re-
searchers essentially train their system to translate the word
form characters and morphological tags into lemma char-
acters. They use a deep attention encoder-decoder network
with a two-layered bidirectional LSTM encoder for reading
the sequence of input characters and morphological tags.
As a result, they obtained vectors for the sequence encoder.
During the decoding phase, they applied beam search with
a size five.
The task of syntactic labeling in the Turku parser is based
on the system developed by Dozat et al. (Dozat et al.,
2017). The researchers follow methods similar to those
that they implemented for the POS tagging module, where
tokens were embedded with a word encoder. The word
encoder, then, sums up the learned token embedding, a
pre-trained token embedding, and a token embedding en-
coded from the sequence of its characters using unidirec-
tional LSTM. The embedded tokens are then concatenated
together with respective POS embeddings. BiLSTM then
reads the sequence of embedded tokens in a sentence so that
the system has context-aware token representations. The to-
ken representations are then transformed using four differ-
ent ReLU layers separately for two different biaffine clas-
sifiers. The classifier scores possible relations (HEAD) and
their dependency types (DEPREL), and best predictions are
later decoded to form a tree. These relations and type clas-
sifiers are again trained jointly by summing up their cross
entropy losses. Refer to (Dozat and Manning, 2017) and
(Dozat et al., 2017) for the detailed process.

4. Comparing the Neural Network Parsers
Before we discuss the comparison, we describe the ex-
perimental set up we followed. The standard practice
of preparing data is to divide the data into training, de-
velopment and test set, usually 80 percent for training,
and 10 percent each for development and testing. How-
ever, the data set we have is too small to be divided
into such proportions. Instead, we carry out ten-fold
cross-validation (Zeman et al., 2017), randomly selecting
and grouping an equal number of sentences into ten sets.
The data we used for this paper are freely available at
http://github.com/Binyamephrem/Amharic-treebank. Dur-
ing the training phase, the data in the nine sets are used as a
training set and tested against the sentences in the remain-
ing set.

4.1. Experimental Results
In Table 1, we present the results of evaluating the parsing
systems we trained. In order to make the evaluation fair, the
first experiment is conducted by excluding other external
resources. Since the Turku parser requires a pre-trained
word embedding, we exclude it from this comparison. For
evaluation purposes, we use the conllu18 evaluation script
6, which requires the data to be in the CoNLL-U format
and gives us evaluation results for ULA, LAS, MLAS, and

6http://universaldependencies.org/conll18/conll18 ud eval.py

BLEX by comparing the system output with the gold data.

Parser UAS LAS MLAS BLEX
UDPipe 95.16 83.79 76.33 79.00
jPTDP 92.42 79.68 69.83 73.83
UUParser 92.00 79.47 70.30 73.66

Table 1: Comparison of the parsing systems

In all measures, UDPipe outperforms both jPTDP and UU-
Parser. LAS computes the percentage of words that are as-
signed as both the correct syntactic head and the correct
dependency label. A system with a higher LAS result will
also have a higher result in other measures as well. How-
ever, a significant difference is observed in MLAS score
(6.03-6.50). MLAS specifically focuses on the combined
evaluation of both UPOS and morphological features. Both
UDPipe and UUParser are pipeline systems whereas jPTDP
is a joint model. The score of jPTDP on MLAS is worse,
probably because the model focuses on POS tagging and
dependency labeling only. Thus, it may be unjustifiable to
compare them on this score as jPTDP does not consider
morphological tags in the model. The same logic is ap-
plicable regarding the BLEX score. BLEX focuses on the
relations between content words by considering lemmas,
which are not modeled in jPTDP. The score we obtained for
jPTDP probably results from the system seeing gold lem-
mas or the input data.

4.2. Parsing Model Enhanced with External
Resources

We carried out another experiment in which models can be
enhanced by external resources. One way of enhancing a
model is to use a pre-trained word embedding. For this
purpose, we used the trained model for Amharic using fast-
text7. The data for training the model is from Wikipedia
and Common Crawl8. The models were trained using con-
tinuous bag of words (CBOW) with position-weights, in di-
mension 300 and considered character of n-grams of length
5 with a window of size 5 and 10 negatives (Grave et al.,
2018).
In this comparison, we have included the Turku parser as
it requires a pre-trained word embedding. Table 2 presents
the results when each model is enhanced with word embed-
ding.

Parser UAS LAS MLAS BLEX
UDPipe 96.00 85.26 77.90 80.73
jPTDP 93.79 82.00 71.42 76.61
UUParser 93.26 79.89 70.65 74.18
Turku 93.26 81.79 68.67 77.36

Table 2: Model enhanced with pre-trained word embedding

We may observe that a pre-trained word embedding in-
creases the performance of the model in each system.
The percentage of improvement varies depending the sys-
tem. jPTPD scores better in all measures, which indi-
cates that the system benefits from the pre-trained model.

7https://fasttext.cc/docs/en/crawl-vectors.html
8http://commoncrawl.org

http://github.com/Binyamephrem/Amharic-treebank
http://universaldependencies.org/conll18/conll18_ud_eval.py
https://fasttext.cc/docs/en/crawl-vectors.html
http://commoncrawl.org
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For instance, there is a 2.32% improvement over the LAS
measure, which could be attributed to the small treebank
used in the experiment. Another reason for the greater
improvement of the jPTPD model might be related to
”unknown” word representation, which are common in
morphologically-rich languages. jPTPD uses character-
based representations based on LSTM, which produces em-
beddings from a sequence of characters. This confirms that
a character model is better for morphologically-rich lan-
guages with high type-token ratios (Smith et al., 2018).
Since the UDPipe achieves better results in the first place,
the increase due to word embeddings is naturally lower.
Such improvements are sometimes evaluated using relative
error reduction. For UDPipe, the relative error reduction is
9 approximately ∼ 9%. This means that 9% of the errors
of the system without word embeddings are reduced using
word embedding. Similarly, the relative error reduction for
jPTDP is 10 ∼ 11.4% . Even by this measure, UDPipe did
not benefit as much as jPTDP.

Plain segmented
Metric UDPipe Turku UDPipe Turku
Token 100.00 99.70 100.00 100.00
Sentences 98.62 98.62 100.00 100.00
Words 80.23 80.07 100.00 100.00
UPOS 75.94 77.14 100.00 95.89
XPOS 75.38 76.91 100.00 94.95
UFeats 73.69 74.24 100.00 93.16
AllTags 72.23 74.66 100.00 90.84
Lemmas 80.23 80.07 100.00 100.00
UAS 62.08 61.60 95.16 93.26
LAS 55.32 55.63 83.79 81.79
CLAS 49.33 49.96 78.87 77.36
MLAS 42.74 46.06 76.21 68.67
BLEX 49.33 49.96 78.87 77.36

Table 3: Plain text and segmented text

4.3. Effect of the pipeline on the parsing system
Another experiment we conducted concerns the effect of
each pipeline on the performance of the parsers when the
input is plain text. For this purpose, we use both UDPipe
and the Turku Parser. The remaining parsers need a sepa-
rate segmentation model or input in CoNLL-U format. We
compare the segmentation, tagging and parsing scores of
both parsers. Table 3 presents the scores of each system
when the input is plain text and segmented text.
We notice that there is a large gap in LAS between the
gold and predicted segmentation. This may be caused by
poor word predictions, which in turn lowers the tagging
prediction. Token and sentence segmentation scores are
high for both parsers. However, word segmentation scores
for both parsers dropped significantly from 98% to 80%.
The tagging result for the Turku parser is better when us-
ing gold segmentation (93-95%), but a huge decrease is
observed (74-77%) when using predicted segmentation (or
plain text). As a result of this, dependency attachment
scores also significantly decrease(42â62%). This proves

9It is calculated as (85.26-83.79) / (100-83.79)
10It is calculated as (82.00-79.68) / (100-79.68)

that error propagating in each pipeline greatly affects the
attachment scores.
We may also notice from Table 3 that for UDPipe with the
segmented input, the system is apparently using the gold
POS and morphological features (scores are 100%). Thus,
these numbers cannot be compared to the Turku pipeline.
For the same reason, LAS scores for Turku with segmented
input and UDPipe with segmented input cannot be com-
pared. There is always an improvement when the parser
can access gold tags and morphological tags. If there is
a perfect tokenizer and tagger, better LAS scores can be
obtained. Even though the Turku parser uses the segmenta-
tion model from UDPipe, the tagging scores for Turku are
slightly better than for UDPipe when plain text is given to
both systems.

5. Summary and Future Directions
This paper has presented a comparison of neural network
parsers. Based on our comparison, we obtained an LAS
score of 83.79 using the UDPipe system. This can be en-
hanced to 85.26 with external resources, i.e., word embed-
ding. From the experiments we can recommend what will
work better for Amharic. A parser for Amharic requires
a segmentation of clitics before tagging. For this task, we
recommend UDPipe. However, the performance of the seg-
mentation need to be enhanced as it affects the tagging and
attachment accuracy greatly.
We have compared both pipeline and joint models for tag-
ging and syntactic parsing. From the pipeline systems, the
Turku parsing system achieves better results in the tagging
task. However, we have noted that parsing systems that
follow the pipeline approach need to have a more efficient
segmentation and tagging module. Since errors propagate
from one pipeline to another, the parsing or dependency at-
tachment is severely affected. If a joint model is preferred,
one needs to consider morphological tagging in addition to
POS tagging. Our experiment shows that the joint model is
a promising research area for further studies. The jPTDP
only focuses on POS and attachment information.
We intend to further our research in two ways. Since the
data that the segmentation model was trained on was very
limited, we plan to expand the data so that the model for
segmentation can be enhanced. We can use the current seg-
mentation prediction on a larger dataset and manually cor-
rect the predicted segmentation so as to have a better seg-
mentation model. In addition, we will investigate the effect
of learning a joint model of morphological tagging in addi-
tion to POS tagging and dependency attachment.
We conclude that, even though we have a small tree-
bank, we can still develop a reasonably efficient parser for
Amharic. That is, syntactic patterns can be learned from a
small treebank. However, the data in the treebank needs to
be carefully selected to include existing syntactic patterns
in the language. The challenging aspect in future research
will be learning the tags for new lexical items.
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