
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 91–96
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

91

Combining Character and Word Embeddings for the Detection of Offensive
Language in Arabic

Abdullah I. Alharbi1,2, Mark Lee1
1School of Computer Science, University of Birmingham, Birmingham, UK

2Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, KSA
{aia784, m.g.lee}@cs.bham.ac.uk

aamalharbe@kau.edu.sa

Abstract
Twitter and other social media platforms offer users the chance to share their ideas via short posts. While the easy exchange of ideas has
value, these microblogs can be leveraged by people who want to share hatred. and such individuals can share negative views about an
individual, race, or group with millions of people at the click of a button. There is thus an urgent need to establish a method that can
automatically identify hate speech and offensive language. To contribute to this development, during the OSACT4 workshop, a shared
task was undertaken to detect offensive language in Arabic. A key challenge was the uniqueness of the language used on social media,
prompting the out-of-vocabulary (OOV) problem. In addition, the use of different dialects in Arabic exacerbates this problem. To deal
with the issues associated with OOV, we generated a character-level embeddings model, which was trained on a massive data collected
carefully. This level of embeddings can work effectively in resolving the problem of OOV words through its ability to learn the vectors
of character n-grams or parts of words. The proposed systems were ranked 7th and 8th for Subtasks A and B, respectively.

Keywords: character-level embeddings, word-level embeddings, Arabic offensive language detection

1. Introduction
Microblogging platforms, such as Twitter, offer users a
channel through which they can share ideas and opinions
via short messages. In the case of Twitter, these are known
as tweets. While social media channels can be used for
constructive purposes, they can also be exploited by peo-
ple who wish to share their hatred. These people can share
their negative views about an individual, a race or a group
with millions of people at the click of a button. To coun-
teract this, there is a significant need to develop an effec-
tive method that will automatically identify messages con-
taining offensive language or hate speech. Much research
has been undertaken on detecting offensive language in En-
glish, but as yet, little research has focused on the detection
of offensive language in Arabic (Mubarak and Darwish,
2019).
To contribute to the development of this area, a shared task
on ‘Arabic offensive language detection’ was conducted
at the OSACT4 workshop (Mubarak et al., 2020). This
shared task included two subtasks: Subtask A was to de-
tect offensive language, and Subtask B was to detect hate
speech. These subtasks shared a dataset of 10,000 tweets
that comprised an Arabic offensive language dataset. The
challenges of this shared task included the following:

(i) The distribution of the targeted classes was imbal-
anced in both subtasks. However, Subtask B is more
challenging than Subtask A as only 5% of the tweets
were labelled as hate speech and fell under Subtask
B, 19% of the tweets are labelled as offensive and in-
cluded in Subtask A.

(ii) The language used on social media has unique char-
acteristics, such as sentences that are grammatically
incorrect, and the use of symbols and emojis resulting
in an out-of-vocabulary (OOV) problem.

(iii) This problem becomes even more challenging when
considering that Arabic social media users employ
various dialects and sub-dialects in their communica-
tion. In contrast to Modern Standard Arabic (MSA),
the forms of dialectical Arabic vary widely, and there
is a general lack of rules and standards (Salameh et al.,
2018).

To deal with the issues associated with OOV, we generated
a character-level (char-level) embeddings model, which
was trained on a massive carefully collected dataset. This
level of embeddings can work effectively in resolving the
problem of OOV words through its ability to identify the
vectors of character n-grams or parts of words. Our pro-
posed systems were ranked 7th and 8th for Subtasks A and
B, respectively.
The rest of this paper is organized in the following man-
ner. Section two provides a brief overview of current litera-
ture on hate-speech and offensive speech detection. Section
three includes an overview of the methodology, including
the experimental setup for our proposed systems. Section
four provides an evaluation and analysis of results and some
discussion. Finally, section five concludes the paper with
suggestions for future work.

2. Related Work
The use of offensive language and hate speech in the En-
glish language has been investigated widely, and various
categories of hate speech have been identified, includ-
ing sexism, religious hate speech and racial hate speech
(Davidson et al., 2017; Malmasi and Zampieri, 2017; Ku-
mar et al., 2018; Waseem et al., 2017; Zampieri et al.,
2019). In contrast, limited studies have been done in this
area in the Arabic language (Al-Hassan and Al-Dossari,
2019).

92

One of the earliest works on the detection of offensive lan-
guage in Arabic was by Mubarak et al. (2017). They argued
that some users have a higher likelihood of using offensive
language than others. They used this insight to construct a
list of Arabic words that are offensive. They subsequently
developed an extensive corpus of Arabic tweets that were
annotated manually into three categories: clean, obscene
and offensive. Another contribution was made by Alakrot
et al. (2018) who developed a corpus of offensive Arabic
comments that had been shared on YouTube. This created a
dataset that includes 16K Egyptian, Libyan and Iraqi com-
ments, categorised into one of three classes: offensive, inof-
fensive and neutral. They trained a Support Vector Machine
(SVM) classifier to detect the offensive comments. Based
on their experiments, they concluded that using the N-gram
feature improved the classifier’s accuracy, while a combi-
nation of N-gram and stemming reduced the performance
of the system. Albadi et al. (2018) focused on the detection
of religious hate speech in Arabic but did not consider any
other forms of hate speech. They constructed and scored
a lexicon of the most frequently used religious hate terms
and tested a variety of classifiers for their study.
More recently, Mubarak and Darwish (2019) extended the
list of offensive words and used it to build a massive train-
ing corpus for automatic offensive tweet detection. They
employed a character-level deep learning algorithm to clas-
sify each tweet as to whether or not it was offensive. In
our work, we combined different levels of word embedding
(character and word levels) and incorporated these into a
supervised learning framework for the task of detecting of-
fensive and hate speech tweets.

3. Data and Methodology
3.1. Data Description
The data released by the organisers included two sub-tasks:
Subtask A (detecting offensive language) and Subtask B
(detecting hate speech). The subtasks shared a common
dataset of 10,000 tweets containing offensive language in
Arabic. For Subtask A, the tweets were manually annotated
using the term ’OFF’ for offensive tweets and ’NOT OFF’
for tweets that were not offensive. In Subtask B, tweets
were identified by ’HS’ for hate speech and ’NOT HS’ for
all other cases. An overview of the dataset is provided in
Tables 1 and 2.

Dataset/Class OFF NOT OFF Total
Training 1410 5590 7000

Dev 179 821 1000
Test 402 1598 2000

Table 1: Distribution of classes in Subtask A

3.2. Preprocessing
We followed the procedure described by a number of re-
searchers (Abu Farha and Magdy, 2019; Duwairi and El-
Orfali, 2014), which involves the following steps:

• Cleaning: All unknown symbols and other characters
are eliminated. For example, other language letters,

Dataset/Class HS NOT HS Total
Training 361 6639 7000

Dev 44 956 1000
Test 101 1899 2000

Table 2: Distribution of classes in Subtask B

diacritics, punctuation, etc. However, emojis are not
removed and each emoji is represented by a vector as
same as words.

• Normalisation of letters:Letters which appeared in
different forms in the original tweets were rendered
into a single form. For example, the “hamza” on char-
acters {

@,

@} was replaced with { @}, and the ‘t marbouta’

{ �
è} was replaced with { è}.

• Segmenting { AK
} phrases: One of the most com-
mon phrases used in Arabic offensive language is the
phrase that begins with (ya), followed by an offen-
sive word. A large number of writers on social me-
dia do not use a space between these two words, so
they will be recognized as one word. This issue can-
not be handled even by state-of-the-art tools such as
MADAMIRA (Pasha et al., 2014) and Farasa (Abde-
lali et al., 2016). We therefore treated this situation
by using RegEx to segment any strings starting with
(ya) into two words. However, this approach needs to
improved in our future works to treat words such as
Yasser or Yassin.

3.3. Embedding Models
Word embedding is one of the most important methods that
have been applied recently to many natural language pro-
cessing tasks (Devlin et al., 2014; Zhang et al., 2014; Lin
et al., 2015; Bordes et al., 2014). Word embeddings are
learned representations of text, with words of similar mean-
ings represented in similar ways. An essential element of
this methodology is the concept of employing densely dis-
tributed representations for every word. Every word is en-
coded to a real-valued vector with a few hundred dimen-
sions. We employed different levels of word embedding
models, which are detailed in the following subsections.
Table 3 presents a summary of important information about
each of these models including their sizes and pre-trained
corpus.

Model Corpus Size
Ara2Vec General - Twitter 77M tweets
Mazajak Sentiment - Twitter 250M tweets

Our Model Emotion - Twitter 10M tweets

Table 3: Different pre-trained Arabic word embeddings
used for our systems

3.3.1. Word-level Embeddings
We used two Arabic pre-trained word embeddings:
Ara2Vec (Soliman et al., 2017) as well as Mazajak

93

(Abu Farha and Magdy, 2019). One of the largest open-
source word embeddings is Ara2Vec, consisting of six dif-
ferent word embedding models for the Arabic language.
The researchers derived the training data from three sepa-
rate sources: the Wikipedia, Twitter and Common Crawl
web-pages crawl data. They employed two word-level
models to learn word representations for general NLP tasks.
In addition, we used Mazajak, which is considered the
largest word-level embeddings. They used 250M Arabic
tweets to generate a language model. Although these mod-
els are trained on a large number of words, they cannot cap-
ture all words that can be encountered in the real world.
Due to OOV, the inability to identify words is one of the
main limitations of this word-level model.

3.3.2. Char-level Embeddings
As mentioned in the introduction, the form of dialecti-
cal Arabic words used varies widely, which leads to the
OOV problem. Therefore, effective resources and tools
are needed to better understand and treat these various lin-
guistic forms when targeting offensive language in Arabic
tweets. Our main intuition is that while word-Level em-
beddings seems to give more importance to the semantic
similarity, char-level embeddings are more likely to encode
all variants of a word’s morphology closer in the embedded
space. Table 4 shows an example of offensive Arabic word,
where the similarity of these words is mostly based on mor-
phology for the char-level and semantics for the word-level.
Therefore, combining these two different levels of embed-
dings into a supervised learning framework for the task of
detecting offensive tweets can improve the results.
To learn the morphological features found within each
word, we utilised FastText, a character n-grams model (Bo-
janowski et al., 2017). FastText can learn the vectors of
character n-grams or word parts. Therefore, this feature en-
ables the model to capture words that have similar mean-
ings but have different morphological word formations.
To train this model, we used an in-house unlabelled Ara-
bic dataset (consisting of 10 million tweets) 1. This large
dataset contains varied sentiment and emotional words ex-
pressed in different Arabic dialects. We used these data not
only because of their variety of Arabic dialects but also be-
cause we believe a correlation exists between negative emo-
tions and offensive language words. We used the Gensim
library 2 to implement the FastText method. Gensim is an
open source Python library for natural language processing,
which supports an implementation of different word em-
beddings, including FastText. The input for this char-level
model was a composed of n-grams for each word in a given
tweet. For example: the word (mnHTyn) will be treated as
composed of 3-grams: ’<mn’,’mnh’,...,’yn>’. The ’<’ and
’>’ are special symbols which are appended to indicate the
token start and end. We used the following parameters: 300
for size, five for the windows context and three to ignore
words that had a total frequency of less than three. In ad-
dition, to control the length of character n-grams, we used
three and six. We released our generated char-level model
to be used as a pre-trained language model for applications

1https://github.com/aialharbi/ACWE
2https://radimrehurek.com/gensim/models/fasttext.html

and research relying on Arabic NLP.

Example of an offensive query term:
(mnHT)¡j

	
JÓ

Mazajak Our char-level model
(wmnHT) ¡j

	
JÓð (wmnHT) ¡j

	
JÓð

(q*r) P
	
Y

�
¯ (mnHTh) é¢j

	
JÓ

(wq*r) P
	

Y
�
¯ð (wmnHTh) é¢j

	
JÓð

(mtxlf) 	
Ê

	
j

�
JÓ (AlmnHT) ¡j

	
JÖÏ @

(wwqH) l
�
¯ðð (mnHTyn) 	á�
¢j

	
JÓ

Table 4: The top five most similar words to a given query
term using char and word level embeddings.

3.4. Classification Models
3.4.1. Logistic Regression
We selected logistic regression (LR) as our baseline model
in order to investigate the lower bound performance that we
should compare. We performed a number of experiments to
compare the impact of the preprocessing techniques men-
tioned in section 3.2. We also used LR to compare the im-
pact of using different features such as emojis, URL and
user tags, and the combination of these features. We then
reported the results with the highest scores to consider us-
ing them with other training models.

3.4.2. XGBoost Classifier
The XGBoost learning model (Chen and Guestrin, 2016) is
frequently employed in different situations because it per-
forms extremely well despite substantial challenges. This
is an algorithm of decision trees in which new trees correct
errors of those trees which are already part of the model.
Trees are added to the model until no further changes can
be made. We inputted tweet vector representations obtained
from an average of real-value word vectors for every word
with matching vector representations derived from the pre-
trained embeddings.

3.4.3. Deep Learning Model
For the deep learning model, we utilized the Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) which is an enhanced form of the recurrent neural
network. It is able to tackle various problems and pro-
vide robust solutions, for example, to the vanishing gradi-
ent problem. The internal structure of the LSTM consists of
four layers that interact with each other. These four layers
can be described as Forget Gate, Input Gate, Modulation
Gate and Output Gate. In order to achieve superior perfor-
mance, we combined all word embedding models (see sec-
tion 3.3), and these were then used to initialize the weights
of the embedding layer. The weights of the embedding
layer were then updated during training to be fine-tuned to
each subtask. This was then connected to the rest of the
layers in the networks. This embedding layer was followed
by two layers each of 1-D convolutions with kernel size
3 and 128 filters. This was followed by two layers of the
LSTM network, with 256 and 128 filters, respectively. In

94

the LSTM layers, 0.2 dropouts were induced, and 0.2 recur-
rent dropouts were employed. Finally, a dense layer with
one output was introduced by exploiting sigmoid as an ac-
tivation function. For all other layers of the network, the
ReLU activation function was utilized. We used the Adam
optimizer as an optimization function for the network.

4. Experiment Results
The evaluation metrics for this shared task is evaluated
by using Macro-F1. From our experiments on the Dev
dataset of Subtask A, we selected the deep learning model
as the first system and XGBoost algorithm as the second
system. However, in Subtask B, the deep learning model
performed poorly compared to XGBoost algorithm, there-
fore we swapped the proposed systems for this Subtask.One
possible reason for this low performance is due to the sig-
nificant imbalanced classes in Subtask B.
The results of subtask A are presented in Table 5. It can be
seen that our model 1 provided an F1-score of 0.89 for the
Dev dataset and 0.87 for the Test dataset with high precision
and recall rates of 0.90 and 0.87, and 0.90 and 0.85, respec-
tively. Similarly, model 2 produced an F1-score of 0.87
with 0.89 precision and 0.85 recall for the Dev dataset, and
an F1 score of 0.85, with a precision of 0.88, and a recall of
0.84 for the Test dataset.

System F1 Accuracy Precision Recall
Dev dataset

1 0.885 0.935 0.901 0.871
2 0.870 0.928 0.895 0.849

Test dataset
1 0.868 0.920 0.896 0.847
2 0.857 0.913 0.877 0.841

Table 5: Results for both systems with Dev and Test dataset
for the Subtask A

The results of Subtask B are presented in Table 5. It can be
seen that our model 1 provided an F1 score of 0.71 for the
Dev dataset and a 0.74 F1 score for Test dataset with high
precision and recall rates of 0.81 and 0.65, and 0.86 and
0.68, respectively. Similarly, model 2 produced an F1-score
of 0.49 which is a little less, with 0.48 for precision and 0.50
for recall for the Dev dataset, while with the Test dataset,
the F1 score was 0.49, with 0.47 precision, and 0.5 for re-
call. The confusion matrix of three sub-tasks are shown
in fig 1 and 2, which is another way to explain the results
discussed above.
Moreover, we evaluated the use of three pre-trained word
embeddings: two open-source word-level models and our
generated char-level model. We compared the performance
of these models individually and by combining all of them.
Our char-level model and Mazajak obtained an F1-score of
0.87, outperforming Ara2Vec (0.86). Although our gener-
ated model trained only on 10 million tweets, it achieved
the same result as Mazajak, which trained on 250 million
tweets. However, combining all these different levels of
models improved the results by about 2%. We believe that
with this combination, we take advantage of these large

System F1 Accuracy Precision Recall
Dev dataset

1 0.706 0.963 0.818 0.655
2 0.489 0.956 0.478 0.5

Test dataset
1 0.742 0.963 0.864 0.685
2 0.487 0.950 0.475 0.5

Table 6: Results for both systems with Dev and Test dataset
for the Subtask B

Figure 1: Confusion Matrix for system 1 for Sub-task A.

Figure 2: Confusion Matrix for system 1 for Sub-task B.

pre-trained word embeddings (Mazajak and Ara2Vec), and
we also overcome their limitation by incorporating our char
model to deal with the OOV problem. An example of OOV
taken from the dataset of this shared task, an offensive word
(éK. ñJ. Ê¾Ë@ - Alklbwbh), meaning the small female dog, could
not be realised by both aforementioned pre-trained word
embeddings. However, our char-level model was able to
capture its meaning by encoding this word close to other
related words that either have the same semantic meaning
or mostly a different form of this word.

5. Conclusion
In this work, we generated a character-level embeddings
model, which was trained on a massive carefully collected
dataset. We incorporated this model with other pretrained
word embeddings into a supervised learning framework
for the task of detecting offensive and hate speech tweets.

95

While the macro averaged F1 score for the majority base-
line was 0.444 (given by the organisers), we achieved al-
most double this score. In future works, we hope to im-
prove our results by applying more preprocessing tech-
niques and exploiting a list of offensive language words.
Additionally, we will investigate different methods to aug-
ment data into our training datasets to make them more ro-
bust.

6. Bibliographical References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.

(2016). Farasa: A fast and furious segmenter for Ara-
bic. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Demonstrations, pages 11–16, San Diego,
California, June. Association for Computational Linguis-
tics.

Abu Farha, I. and Magdy, W. (2019). Mazajak: An online
Arabic sentiment analyser. In Proceedings of the Fourth
Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Al-Hassan, A. and Al-Dossari, H. (2019). Detection of
hate speech in social networks: a survey on multilin-
gual corpus. In 6th International Conference on Com-
puter Science and Information Technology.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia Computer Science,
142:315 – 320. Arabic Computational Linguistics.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76, Aug.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5:135–146.

Bordes, A., Chopra, S., and Weston, J. (2014). Question
Answering with Subgraph Embeddings. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 615–620.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the prob-
lem of offensive language. In Eleventh international
aaai conference on web and social media.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R.,
and Makhoul, J. (2014). Fast and robust neural network
joint models for statistical machine translation. In Pro-
ceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1370–1380.

Duwairi, R. and El-Orfali, M. (2014). A study of the
effects of preprocessing strategies on sentiment anal-

ysis for arabic text. Journal of Information Science,
40(4):501–513.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., 9(8):1735–1780,
November.

Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M.
(2018). Benchmarking aggression identification in so-
cial media. In Proceedings of the First Workshop on
Trolling, Aggression and Cyberbullying (TRAC-2018),
pages 1–11, Santa Fe, New Mexico, USA, August. As-
sociation for Computational Linguistics.

Lin, C.-C., Ammar, W., Dyer, C., and Levin, L. (2015).
Unsupervised POS Induction with Word Embeddings. In
Proceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1311–
1316.

Malmasi, S. and Zampieri, M. (2017). Detecting hate
speech in social media. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Language
Processing, RANLP 2017, pages 467–472, Varna, Bul-
garia, September. INCOMA Ltd.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and
Al-Khalifa, H. (2020). Overview of osact4 arabic offen-
sive language detection shared task. In Proceedings of
the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT), volume 4.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A.,
Eskander, R., Habash, N., Pooleery, M., Rambow, O.,
and Roth, R. (2014). MADAMIRA: A fast, compre-
hensive tool for morphological analysis and disambigua-
tion of Arabic. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), pages 1094–1101, Reykjavik, Ice-
land, May. European Language Resources Association
(ELRA).

Salameh, M., Bouamor, H., and Habash, N. (2018). Fine-
grained Arabic dialect identification. In Proceedings
of the 27th International Conference on Computational
Linguistics, pages 1332–1344, Santa Fe, New Mexico,
USA, August. Association for Computational Linguis-
tics.

Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017).
Aravec: A set of arabic word embedding models for use
in arabic nlp. Procedia Computer Science, 117:256–265.

Waseem, Z., Davidson, T., Warmsley, D., and Weber, I.
(2017). Understanding abuse: A typology of abusive
language detection subtasks. In Proceedings of the First
Workshop on Abusive Language Online, pages 78–84,
Vancouver, BC, Canada, August. Association for Com-
putational Linguistics.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,

96

N., and Kumar, R. (2019). SemEval-2019 task 6: Iden-
tifying and categorizing offensive language in social me-
dia (OffensEval). In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA, June. Association for
Computational Linguistics.

Zhang, J., Liu, S., Li, M., Zhou, M., and Zong, C. (2014).
Bilingually-constrained phrase embeddings for machine
translation. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 111–121.

	Introduction
	Related Work
	Data and Methodology
	Data Description
	Preprocessing
	Embedding Models
	Word-level Embeddings
	Char-level Embeddings

	Classification Models
	Logistic Regression
	XGBoost Classifier
	Deep Learning Model

	Experiment Results
	Conclusion
	Bibliographical References

