
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 76–81
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

76

Arabic Offensive Language Detection with Attention-based Deep Neural

Networks

Bushr Haddad*, Zoher Orabe*, Anas Al-Abood*, Nada Ghneim**

*Damascus University

Damascus, Syria

**AlSham Private University

Damascus, Syria

{bushr.haddad, zoherorabe999, anasabood3}@gmail.com

n.ghneim@aspu.edu.com

Abstract
The abusive content on Arabic social media such as hate speech, sexism, racism has become pervasive, and it has a lot of negative

psychological effects on users. In this paper, we introduce our work aiming to detect Arabic offensive language and hate speech. We

present our two deep neural networks Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU) used to

tackle this problem. These models have been further augmented with attention layers. In addition, we have tested various pre-processing

and oversampling techniques to increase the performance of our models. Several machine learning algorithms with different features

have been also tested. Our bidirectional GRU model augmented with attention layer has achieved the highest results among our proposed

models on a labeled dataset of Arabic tweets, where we achieved 0.859 F1 score for the task of offensive language detection, and 0.75

F1 score for the task of hate speech detection.

Keywords: Abusive Language, Text Mining, Arabic Language, Social Media Mining, Deep Learning, Convolutional Neural Network,

Gated Recurrent Unit, Attention Mechanism, Machine Learning.

1. Introduction

The internet and social media provide people with a range

of benefits and opportunities to empower themselves in a

variety of ways. There are millions of people using social

media platforms to maintain social connections and support

networks that otherwise would not be possible. All of these

benefits led to a huge growth of social media interactions

in the last few years. Arabic language has a very high rate

of growth in social networking usage. Based on the Arab

social media report (Salem, 2017), the average rate of using

Arabic language in social media reaches 55% in 2017.

With the massive increase of the social connections, there

has also been an increase of abusive language that should

be detected and eliminated from these networks, due to its

negative impacts on users. This paper has been prepared for

the competition of OSACT4 shared task on offensive

language detection (Mubarak et al., 2020). The competition

was divided into two sub-tasks; sub-task A (offensive

language detection) and sub-task B (hate speech detection).

Offensive language is defined as any implicit or explicit

insult or attack against other people, or any inappropriate

language, while hate speech1 is defined as any abusive

speech targeting individuals (a politician, a celebrity, etc.)

or particular groups (a gender, a religion, a country, etc.).

Hate speech is known to be complex and ambiguous

because it was not just a words identification. (Zhang and

Luo, 2019) showed that detecting a hateful content is a

challenging task compared to non-hateful content due to

their lack of unique, discriminative linguistic features. On

the other hand, Arabic language is known to be difficult and

ambiguous, the Arabic content on social media is noisy

1 https://www.dictionary.com/browse/hate-speech

with different dialects, and most Arabic users do not care

about using correct grammar, or spelling. All of these

factors made these tasks nearly impossible in the past to

detect and identify using conventional features widely

adopted in many language-based tasks.

Based on (Al-Hassan and Al-Dossari, 2019), offensive

language detection task depends mainly on text mining

approaches such as NLP and machine learning algorithms.

In the rest of this paper, a brief of related works are

summarized in section 2. In section 3, we represent our data

preparation process, then our proposed models are

presented in section 4. In section 5, a brief discussion on

the results is addressed. At the end, a short summary and

insights for the future are presented.

2. Related Works

Different researches have addressed both offensive

language detection, and hate detection subjects. (Cambray

and Podsadowski, 2019) evaluated their model on

OffensEval 2019 English dataset and presented their best

model as a bidirectional LSTM; followed by a two-branch

bidirectional LSTM and GRU architecture (macro F1 of

73% for offensive language detection task and 61% for

targeted hate speech detection).

(Mubarak, Darwish, and Magdy, 2017) have created a list

of 288 of Arabic obscene words and other list of 127 of

hashtags. They used this list in addition to patterns to

collect Arabic abusive tweets from Twitter API during

2014. They classified tweet users into two groups, namely:

those who authored tweets that did not include a single

obscene word from list words (clean group) and those who

used at least one of the words in list at least once (obscene

77

group). They computed unigram and bigram counts in both

of them and computed the Log Odds Ratio (LOR) for each

word unigram and bigram that appeared at least 10 times.

(Alakrot, Murray, and Nikolov, 2018) have collected a

dataset of 15,050 comments from YouTube and labelled

them manually by three annotators. This dataset was

collected in July 2017. They applied some preprocessing

operations on the dataset, and then applied SVM classifier

on tf-idf features with different methods for text

normalizing (macro F1 of 82%). (Mohaouchane, Mourhir,

and Nikolov, 2019) have used the same YouTube dataset.

They used Word2Vec embeddings and trained different

neural networks models namely: convolutional neural

network (CNN), bidirectional long short-term memory (Bi-

LSTM), Bi-LSTM with attention mechanism, and

combined CNN and LSTM. The CNN model achieved the

highest accuracy (87.84%), precision (86.10%), and F1

score (84.05%) among other models.

Several works have investigated the problem of hate speech

detection in English language. (Zhang and Luo, 2019)

Firstly: they demonstrated that hateful content exhibits a

‘long tail’ pattern compared to non-hate, and secondly: they

proposed two deep neural networks, CNN and GRU, to

identify specific types of hate speech. They outperformed

the previous state of the art methods by 5 percentage points

in macro-average F1. (Gambäck and Sikdar, 2017)

evaluated CNN model on various word embeddings, and

achieved their best score (F1 score of 78%) with CNN

model trained on Word2Vec word embeddings. (Badjatya

et al, 2017) evaluated several neural architectures on a

16 K annotated tweets benchmark dataset. Their best setup

involved a two-step approach using a short-term word-level

memory (LSTM) model, tuning GLoVe or randomly

initializing word embedding, and then training a gradient

boosted decision tree (GBDT) classifier on the average of

the tuned embedding in each tweet. They achieved the best

results using randomly initialized embeddings (macro F1

of 93%).

In Arabic language there was a limited number of works in

this area. (Mulki et al., 2019) constructed a Levantine hate

speech and abusive dataset from Twitter. (Haddad, Mulki,

and Oueslati, 2019) constructed a Tunisian hate and

abusive speech dataset. (Albadi, Kurdi, and Mishra, 2018)

built a lexicon of Arabic terms related to religion abuse

along with hate score, the labeled dataset is then used to

train several classification models using lexicon-based, n-

grams-based, and deep-learning based approaches. Their

best model achieved 0.84 area under receiver operating

characteristic curve (AUROC).

3. Data Preparation

The main dataset used in this work, is the one that was

firstly presented at OffensEval 2020. This dataset contains

10000 tweets, only 5% of tweets are labeled as hate speech

while 19 % of the tweets are labeled as offensive and the

other 81% as inoffensive tweets. The data has been given

by the following format: a tweet followed by a label

indicating its class {OFF/HS, NOT_OFF/NOT_HS}, all

hate speech tweets considered to be offensive language, but

not vice versa. The dataset was divided into 70% train data,

10% validation data, and the rest 20% test data.

3.1 Data Preprocessing

This dataset run through a series of pre-processing steps in

order to get the most normalized language form. Twitter

data is known for its unstructured and unformed language.

So, making a good preprocessing steps will results in a

much better text representation. As a first step, we removed

non-Arabic words, diacritization, punctuations, emoticons

and some other stopwords, while we replaced some words

with their simplified Arabic equivalent, (example: “URL”

will be substituted with “يورل”). We intend to study the

effect of the emoticons in a future work. Normalization step

was also applied (example, replacing “ة” with “ى“ ,”ه” with

 In addition, elongated and some .(”ا“ with ”[أاإ]“ ,”ي“

consecutive repetitive characters that people usually write

on their dialect speech are converted back to their original

form (example: “هههههه” was be converted to “هه”, and

 This step is very important as some .(”غول“ to ”غووول“

Arabic speakers tend to repeat and elongate some

characters on their dialect speech.

3.2 Data Balancing

After preprocessing, and as the provided dataset is

imbalanced, we applied different methods to balance out

the classes for better model performance. Researches

shows that classifiers trained on imbalanced dataset may

tend to have a high number of false negatives (offensive

tweets which are misclassified as inoffensive tweets) and

thus a lower recall (Mohaouchane, Mourhir, and Nikolov,

2019). Such detection systems are preferable to identify

offensive language even if it sometimes mistakes

inoffensive language as offensive. Because the number of

inoffensive language exceeds the number of offensive

language, so it is preferable to have a higher recall

comparing to a higher precession. A lot of ways have been

used previously trying to balance out the data like loss

function weighting (Cui et al., 2019), down sampling and

oversampling. For our case and for subtask A we used an

external augmenting technique by adding some offensive

and inoffensive comments from an already constructed

Arabic dataset collected from YouTube comments

(Alakrot, Murray, and Nikolov, 2018) (as YouTube have a

similar type of language to Twitter). Thus, augmenting our

data from this YouTube comments data guarantee the

compatibility of the language added with our given data.

We have achieved a balanced dataset that contains

approximately the same number of offensive and

inoffensive samples.

For subtask B, we did not use the same technique used for

sub-task A. Different reasons were behind this decision:

insufficient hate speech examples in these datasets (only

468 tweets) (Mulki et al., 2019), some datasets are specific

for one kind of hate speech, like religious hate speech

(Albadi, Kurdi, and Mishra, 2018), and some datasets are

specific for one or more Arabic dialectical form (example:

Tunisian (Haddad, Mulki, and Oueslati, 2019) or Levantine

(Mulki et al., 2019)). However, for future works, we intend

to test augmenting our given data with the combination of

all the existing hate speech datasets. Instead, we used the

random oversampling technique by shuffling the words

into hate speech tweets to create new samples. This method

repeated many times over the undersampling class (hate

78

speech) until each class in the dataset is represented

apporoximately equally. Table 1 presents the number of

tweets in each category before and after balancing.

 Before After

Offensive 1330 7184

Inoffensive 5670 8705

Subtask A total 7000 15889

Hate Speech 361 7486

Not Hate Speech 6639 6639

Subtask B total 7000 14125

Table 1: Number of samples before and after balancing

3.3 Data Representation

The main idea of data representation is to represent words

as feature vectors. Each entry in a word vector stands for

one hidden feature inside the word meaning. Word

embedding is one of the best data representation neural

network depends on. Word embedding can reveal semantic

or syntactic dependencies. We used the publically available

Word2Vec Arabic model (AraVec) (Mohammad et al.,

2017) that supports two types of words embeddings

skipGram and CBOW, each of which has been trained on

one of three datasets: tweets, Wikipedia articles, or web

pages. AraVec also provides multiple dimensions for its

word vectors. The choice of words embeddings used in this

work is the vectors that was trained on the twitter dataset

with the skipGram architecture. The choice of twitter

model is to be compatible with the language used in the

given dataset and also to ensure a huge cover of the

dialectical words found on the tweets. We have further

checked the overlap between our balanced dataset and the

AraVec Twitter model. Table 2 shows the number of

tokens that has been found on the final balanced datasets,

number of dataset tokens found on the AraVec Twitter

model and the percentage of overlapping between them.

N. of tokens
Balanced

 Dataset

AraVec

Twitter
Overlapping

Sub-task A 40562 33777 83%

Sub-task B 24504 21592 88%

Table 2: Number of tokens found on the balanced

datasets, dataset tokens found on the AraVec Twitter

model, and the percentage of overlapping.

4. Proposed Approaches

Before introducing our attention based models. We will

introduce two deep neural models; convolutional neural

network and Gated Recurrent unit, and then augment these

models with an attention layer, and finally compare the

attention models with the original versions.

4.1 Convolutional Neural Network (CNN)

Although the main purpose of creating CNN was to

convolve over image data, CNN have recently been used a

lot in document classification, and experiment on textual

data has shown improvements in multiple tasks (Kim,

2014). In this work, we use relatively the same model

presented in (Kim, 2014), (Mohaouchane, Mourhir, and

Nikolov, 2019), and (Gong et al., 2016), with some

parameters’ changes (number of filters and filter sizes). The

first layer of this model is an embedding layer (represents

a lookup table for words already in the table, and others are

initialized with random weights, and tuned jointly while

learning). The second layer contains a number of filters

with different filter sizes to capture different contextual

features. Then, a Max-pooling layer was used to capture the

most important features. After that, all feature vectors is

concatenated together in order to be passed for a fully

connected layer of one neuron. The output layer is

responsible of classifying the tweet into a positive class

(offensive/ hate speech) or a negative class (inoffensive/

not hate speech). We refer to this model as CNN. This

model is shown at figure 1.

Figure 1: CNN Model

4.2 Bidirectional Gated Recurrent Unit (Bi-

GRU)

Bidirectional GRUs are a type of bidirectional recurrent

neural networks with only the input and forget gates. It

allows for the use of information from both previous time

steps and later time steps to make predictions about the

current state. We stack two layers of bidirectional GRU on

top of each other, followed by a fully connected layer of

one neuron to predict the output. We refer to this model as

Bi-GRU, figure 2 shows the model.

Figure 2: Bi-GRU Model

4.3 Convolution Neural Network with

Attention (CNN_ATT)
Certainly, some words on the sentence plays more

important role than others and some words are more

important than others to the class of the tweet. (Bahdanau,

Cho, and Bengio, 2014) was the first to present this type of

attention in seq2seq model to improve machine translation

model. After that, attention-based neural networks have

79

been used in various tasks and achieved promising

performance, such as (Gong et al., 2016) retweet

prediction, (Xu et al., 2015) image captioning, (He and

Golub, 2016) question answering, and so on.

In this section, we present a CNN neural network model

augmented with an attention layer. Using an attention layer

after the max pooling layer can learn which max pooled

feature vectors are most important and thus learn which n-

grams are most important for classification. So, after max

pooling the feature vectors, they are stacked above each

other and fed into an attention layer to learn the most

important feature vectors. We refer to this model as

CNN_ATT, Figure 3 shows the model.

Figure 3: CNN_ATT Model

4.4 Bidirectional Gated Recurrent Unit with

Attention (Bi-GRU_ATT)

Although Bidirectional Recurrent model has achieved a

very good results in many tasks, they still treat all steps as

equal. In this model, we stack the vectors of all computed

steps, and then we calculate the score function of each step

and then implement a folding layer to generate a context

vector indicating the importance of each step vector. This

is followed by one dense layer of 64 neurons with Relu

activation function (to increase the nonlinear property of

this model). After that, we add a fully connected layer with

one neuron of a sigmoid activation function as the output

layer. This model is referred as Bi-GRU_ATT and shown

in figure 4.

Figure 4: Bi-GRU_ATT Model

4.5 Basic machine Learning Models

We compared our proposed model with three basic

machine learning classifiers (Ridge, SVM, and Logistic

Regression). The Ridge classifier used RMSE and l2

penalty on both bag of word features (Bow_Ridge) or Tf-

idf features (Tf-idf_Ridge). The SVM classifier was trained

on bag of word (Bow_SVM) or tf-idf features (Tf-

idf_SVM). In this method, we conducted a grid search to

obtain the best parameters of SVM kernel. The Logistic

Regression classifier was trained on bag of word features

(Bow_LR) or tf-idf features (Tf-idf_LR).

5. Experimental Results

For Subtask A and B, we used the Adam optimizer, to adapt

the learning rate and optimize the training of the neural

networks. For both subtasks, we used the binary cross-

entropy loss function. We also used an early stopping

strategy based on a long-term moving-average of the F1

score evaluated at the end of every epoch.

Number of filters, recurrent units and neurons in dense

layers have been optimized using a grid search. We used

filter sizes of 1, 2, 3, and 4 to capture unigram, bigram,

trigram, and quad-gram features. These filters are not

organized in a sequential order, but rather in parallel to each

other as shown in Fig. 1 and Fig. 3.

We used an early stopping strategy to determine the

number of epochs that should be used. For other hyper-

parameter optimization, we performed a manual twerking

over successive runs on the validation set.

As a result, we found that the following parameters yielded

the best validation performance based on our experiment.

- Maximum Tweet length= 100

- Filter sizes = [1,2,3,4]

- Number of Filters = 64

- Recurrent unit in Bidirectional GRUs’ = 128, 64

- Neurons number in dense layers = 64

- Dropout rate = 0.2 and 0.3

- Batch size = 512

- Number of epochs = 5

To initialize the word vectors, the publicly available

AraVec word vectors were used (Mohammad et al., 2017)

(skipGram model from Twitter, with 1,476,715 tokens).

The dimension of the vectors used is 100. Table 2 shows a

good overlapping with our data, and for words that are not

found in the vocabulary of pre-trained words, we initialized

them with random vectors and tuned them while training.

Hereafter, we present our validation results. Table 3 and 4

lists the results of using various baseline machine learning

classifiers (Bow_LR, Tf-idf_LR, Bow_Ridge, Bow_SVM,

Tf-idf_Ridge, and Tf-idf_SVM).

Subtask A Avg. Acc Avg. P Avg. R Avg. F1

Bow_LR 0.86 0.77 0.79 0.78

Tf-idf_LR 0.85 0.75 0.79 0.77

Bow_Ridge 0.880 0.8 0.78 0.79

Tf-idf_Ridge 0.905 0.85 0.8 0.83

Bow_SVM 0.872 0.78 0.77 0.78

Tf-idf_SVM 0.906 0.85 0.81 0.83

Table 3: Performance of baseline models on subtask A

Subtask B Avg. Acc Avg. P Avg. R Avg. F1

Bow_LR 0.491 0.49 0.45 0.36

Tf-idf_LR 0.492 0.51 0.55 0.37

Bow_Ridge 0.463 0.5 0.49 0.35

80

Tf-idf_Ridge 0.462 0.51 0.57 0.36

Bow_SVM 0.391 0.49 0.46 0.31

Tf-idf_SVM 0.386 0.5 0.52 0.31

Table 4: Performance of baseline models on subtask B

Comparing the models of Tf-idf and Bow features, we can

see that tf-idf features is relatively better than Bow features,

which may be due to the tf-idf’s ability to determine how

relevant a given word is in a particular document. We can

also observe that Tf-idf_SVM achieved a high performance

on subtask A, this may be because SVM generalized better

with nonlinear kernel that has been found by a grid search

over its parameters.

Table 5 and 6 shows the comparison of the proposed

models (CNN, Bi-GRU, CNN_ATT, and Bi-GRU_ATT)

when evaluated on subtask task A and B respectively.

Subtask A Avg. Acc Avg. P Avg. R Avg. F1

CNN 0.92 0.63 0.84 0.85

CNN_ATT 0.92 0.86 0.85 0.86

Bi-GRU 0.91 0.85 0.86 0.85

Bi-GRU_ATT 0.93 0.91 0.83 0.86

Table 5: Performance of proposed models on subtask A

Subtask B Avg. Acc Avg. P Avg. R Avg. F1

CNN 0.91 0.63 0.78 0.67

CNN_ATT 0.9 0.63 0.84 0.67

Bi-GRU 0.92 0.65 0.78 0.69

Bi-GRU_ATT 0.93 0.66 0.79 0.7

Table 6: Performance of proposed models on subtask B

We can observe that baseline models was less efficient

compared to our proposed models in both subtasks. The

proposed models have increased the F1 measure of the

baseline models on subtask B (from 37% to 70%). We also

can observe that models augmented with attention layer can

achieve a better performance than the models without the

attention layer. The improvement is in the order of 1 to 2%

in Recall and F1 score. However, attention layer has

achieved a significant improvement in Precision, which

means that attention layer helps in detecting the right

offensive and hate speech words and thus raising precision.

Bi-GRU_ATT achieved the highest accuracy, Precision

and F1 score for both subtasks A and B, and outperformed

the CNN models. This may be due to the fact that GRU

models have more information of text sequence

dependencies and order that CNN models does not have.

These features seems to be very important for such tasks as

shown in (Zhang and Luo, 2019).

Table 7 shows the results of our best model (Bi-

GRU_ATT) evaluated on the test data.

Bi-GRU_ATT Avg. Acc Avg. P Avg. R Avg. F1

Subtask A 0.91 0.88 0.83 0.85

Subtask B 0.95 0.75 0.74 0.75

Table 7: Test performance of Bi-GRU_ATT on subtasks

A and B

We observe that Bi-GRU_ATT performance on test data -

for both subtasks is close to performance on the validation

data, which is a good indication of a good generalization of

the model. We can also notice that general performance on

sub-task B is less efficient than performance on sub-task A,

due to the hard separation of hate speech from other

instances of offensive language.

6. Conclusion

In this paper, we tackle the problem of offensive language

and hate speech detection. We proposed our methods for

data preprocessing and balancing, and then we presented

our Convolutional Neural Network (CNN) and

bidirectional Gated Recurrent Unit (GRU) models used.

After that, we augmented these models with attention layer.

The best results achieved was using the Bidirectional Gated

Recurrent Unit augmented with attention layer (Bi-

GRU_ATT). Comparing the Precision results of models

without attention layers and models with attention layer

reveals that attention layer enabled our model to effectively

select the relevant input series to the output class, and thus

raising Precision score. Future work will consider the same

problem working with both character-level and word-level

features. Another improvement of models could be using

LSTM instead of GRU to capture long range dependencies

in tweets, which plays a big role in offensive language and

hate speech detection tasks.

7. Bibliographical References

Alakrot, A., Murray, L., & Nikolov, N. S. (2018). Dataset

construction for the detection of anti-social behaviour in

online communication in Arabic. Procedia Computer

Science, 142, 174-181.

Alakrot, A., Murray, L., & Nikolov, N. S. (2018). Towards

accurate detection of offensive language in online

communication in arabic. Procedia computer science,

142, 315-320.

Albadi, N., Kurdi, M., & Mishra, S. (2018, August). Are

they our brothers? Analysis and detection of religious

hate speech in the Arabic Twittersphere. In 2018

IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining (ASONAM) (pp.

69-76). IEEE.

Al-Hassan, A., & Al-Dossari, H. (2019). Detection of hate

speech in social networks: a survey on multilingual

corpus. In 6th International Conference on Computer

Science and Information Technology.

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017,

April). Deep learning for hate speech detection in tweets.

In Proceedings of the 26th International Conference on

World Wide Web Companion (pp. 759-760).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural

machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473.

Cambray, A., & Podsadowski, N. (2019). Bidirectional

Recurrent Models for Offensive Tweet Classification.

arXiv preprint arXiv:1903.08808.

Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S.

(2019). Class-balanced loss based on effective number of

samples. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 9268-

9277).

Gambäck, B., & Sikdar, U. K. (2017, August). Using

convolutional neural networks to classify hate-speech. In

81

Proceedings of the first workshop on abusive language

online (pp. 85-90).

Golub, D., & He, X. (2016). Character-level question

answering with attention. arXiv preprint

arXiv:1604.00727.

Haddad, H., Mulki, H., & Oueslati, A. (2019, October). T-

HSAB: A Tunisian Hate Speech and Abusive Dataset. In

International Conference on Arabic Language

Processing (pp. 251-263). Springer, Cham.

Kim, Y. (2014). Convolutional neural networks for

sentence classification. arXiv preprint arXiv:1408.5882.

Mohaouchane, H., Mourhir, A., & Nikolov, N. S. (2019,

October). Detecting Offensive Language on Arabic

Social Media Using Deep Learning. In 2019 Sixth

International Conference on Social Networks Analysis,

Management and Security (SNAMS) (pp. 466-471).

IEEE.

Mubarak, H., Darwish, K., & Magdy, W. (2017, August).

Abusive language detection on Arabic social media. In

Proceedings of the First Workshop on Abusive Language

Online (pp. 52-56).

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., & Al-

Khalifa, H. (2020). Overview of OSACT4 Arabic

Offensive Language Detection Shared Task. Proceedings

of the 4th Workshop on Open-Source Arabic Corpora

and Processing Tools (OSACT), 4.

Mulki, H., Haddad, H., Ali, C. B., & Alshabani, H. (2019,

August). L-HSAB: A Levantine Twitter Dataset for Hate

Speech and Abusive Language. In Proceedings of the

Third Workshop on Abusive Language Online (pp. 111-

118).

Salem, F. (2017). Social media and the internet of things

towards data-driven policymaking in the Arab world:

potential, limits and concerns. The Arab Social Media

Report, Dubai: MBR School of Government, 7.

Soliman, A. B., Eissa, K., & El-Beltagy, S. R. (2017).

Aravec: A set of arabic word embedding models for use

in arabic nlp. Procedia Computer Science, 117, 256-265.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,

Salakhudinov, R., ... & Bengio, Y. (2015, June). Show,

attend and tell: Neural image caption generation with

visual attention. In International conference on machine

learning (pp. 2048-2057).

Zhang, Q., Gong, Y., Wu, J., Huang, H., & Huang, X.

(2016, October). Retweet prediction with attention-based

deep neural network. In Proceedings of the 25th ACM

international on conference on information and

knowledge management (pp. 75-84).

Zhang, Z., & Luo, L. (2019). Hate speech detection: A

solved problem? The challenging case of long tail on

twitter. Semantic Web, 10(5), 925-945.

