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Abstract

This paper presents an approach to automatic head movement detection and classification in data from a corpus of video-recorded face-to-
face conversations in Danish involving 12 different speakers. A number of classifiers were trained with different combinations of visual,
acoustic and word features and tested in a leave-one-out cross validation scenario. The visual movement features were extracted from the
raw video data using OpenPose, the acoustic ones from the sound files using Praat, and the word features from the transcriptions. The
best results were obtained by a Multilayer Perceptron classifier, which reached an average 0.68 F1 score across the 12 speakers for head
movement detection, and 0.40 for head movement classification given four different classes. In both cases, the classifier outperformed
a simple most frequent class baseline, a more advanced baseline only relying on velocity features, and linear classifiers using different
combinations of features.
Keywords: head movement detection, multimodal corpora, visual and speech features

1. Introduction

Head movements play an important role in face-to-face
communication in that they provide an effective means
to express and elicit feedback, and consequently establish
grounding and rapport between speakers; they contribute to
turn exchange; they are used by speakers to manage their
own communicative behaviour, e.g. in connection with lex-
ical search (Allwood, 1988; Yngve, 1970; Duncan, 1972;
McClave, 2000). Therefore, it is crucial for conversational
systems to be able to identify and interpret speakers’ head
movements as well as generate them correctly when inter-
acting with users (Ruttkay and Pelachaud, 2006).
This paper is a contribution to the automatic identification
of head movements from raw video data coming from face-
to-face dyadic conversations. It builds on previous work
where a number of models were trained to detect head
movements based on movement and speech features, and
extends that work in several directions by extracting move-
ment features using newer software, by trying to distin-
guish between different kinds of movement, and by training
and testing speaker-independent models based on a larger
dataset.
The paper is structured as follows. In section 2 we discuss
related work in the area. Section 3 is dedicated to the fea-
tures for the prediction of head movements. In section 4 we
present the corpus that we used for the current study. Fi-
nally in section 5 we discuss the results and propose some
possible future directions.

2. Related work

Several studies have been relatively successful in perform-
ing head movement detection from tracked data, for ex-
ample by using coordinates obtained through eye-tracking
(Kapoor and Picard, 2001; Tan and Rong, 2003) or Kinect
sensors (Wei et al., 2013). A different approach to the task
is to detect head movements in raw video data. Such an ap-
proach has the potential of making available large amount
of data to train systems to deal with multimodal commu-
nication in different languages and communicative scenar-

ios. Large annotated multimodal corpora are in turn a pre-
requisite to the development of natural multimodal inter-
active systems. Surveys of the way computer vision tech-
niques can be applied to gesture recognition are given in
Wu and Huang (1999) and Gavrila (1999). Both works con-
clude, however, that the field is still a fairly new one, and
many problems remain as yet unsolved.

Work has also been done trying to detect gestures based on
visual as well as language or speech features. In this line
of research, Morency et al. (2005) proposed a methodology
where SVM and HMM models were trained to predict feed-
back nods and shakes in human-robot interactions. The vi-
sual features used for head movement recognition were en-
riched with features from the dialogue context. It can be ar-
gued, however, that human-robot interaction is much more
constrained than spontaneous human dialogue, and thus the
task of predicting the user’s head movements is probably
easier, or at least different than in human-human communi-
cation data. In Morency et al. (2007), models were trained
to recognise head movements in video frames in a variety
of datasets based on visual features obtained from tracked
head velocities or eye gaze estimates extracted from video
data. A number of different models were compared in
the study, and it was found that LDCRF (Latent-Dynamic
Conditional Random Field) was the best performing of the
models. The authors attribute the result to the fact that the
model is good at dealing with unsegmented sequences, in
this case movement sequences. Morency (2009) studied the
co-occurrence between head gestures and speech cues such
as specific words and pauses in multi-party conversations,
and relevant contextual cues were used to improve a vision-
based LDCRF head gesture recognition model.

In Jongejan (2012), OpenCV was applied to the detection of
head movement from videos based on velocity and acceler-
ation, in combination with customisable thresholds, for the
automatic annotation of head movements using the ANVIL
tool (Kipp, 2004). The obtained annotations correlated well
with the manual annotation at the onset, but generated a
high number of false positives. In Jongejan et al. (2017),
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three visual movement features were used to train an SVM
classifier of head movement.
Frid et al. (2017) used the corpus of read news in Swedish
described in Ambrazaitis and House (2017) to detect head
movements that co-occur with words. The head movements
were manually annotated and OpenCV for frontal face de-
tection was used in order to calculate velocity and acceler-
ation features. A Xgboost classifier was trained to predict
absence or presence of head movements co-occurring with
words.
Acoustic features have also been used for head movement
prediction. For example Germesin and Wilson (2009) com-
bined pitch and energy of voice with word, pause and head
pose information to identify agreement and disagreement
signals in meeting data. Such work is based on linguistic
and psycho-linguistic findings that have shown a tight re-
lationship between facial movements and acoustic promi-
nence, to the point of talking about audiovisual prominence
(Granström and House, 2005; Swerts and Krahmer, 2008;
Ambrazaitis and House, 2017).
In the work by Paggio et al. (2018), movement features
were considered together with acoustic features to iden-
tify head movements in conversational data. The authors
performed several experiments with different feature sets
and also, several prediction paradigms were tested, includ-
ing common classifiers and sequence-based models. It was
observed that a Multilayer Perceptron showed the best re-
sults when trained on one speaker and tested on another
one. In this study, we build on those preliminary results by
extending our dataset to consider twelve different speakers,
and we experiment with the classification of different head
movement types.

3. Predictive features

Similarly to what was done in Paggio et al. (2018), three
time-related derivatives with respect to the changing posi-
tion of the head are used here as features for the identifi-
cation of head movements: velocity, acceleration and jerk.
Velocity is change of position per unit of time, acceleration
is change of velocity per unit of time, and finally jerk is
change of acceleration per unit of time. We suggest that a
sequence of frames for which jerk has a high value either
horizontally or vertically may correspond to the stroke of
the movement (Kendon, 2004).
OpenPose (Cao et al., 2018) was used to extract nose tip
positions from the data. Using a sliding window, veloc-
ity, acceleration and jerk values were computed for video
frame sequences using a polynomial (linear, quadratic and
cubic, respectively) regression over a number of observa-
tions of nose tip positions. Several window frames were
experimented with. The results reported in this paper were
obtained by considering 9 frames for velocity, 11 for accel-
eration and 13 for jerk. For each of the three derivatives,
four values are computed for each frame and used to train
the models. The 12 values are both the cartesian (x and
y) and polar (radius and angle) coordinates of the veloc-
ity, acceleration and jerk vectors. Since we analyse video
data, we do not have depth information, and so we are re-
stricted to express velocity, acceleration and jerk as vectors

in a two dimensional plane. Angle values have integer val-
ues between 1 and 12, like the directions on a clock dial.
It must be noted that the video recordings are characterised
by 25 frames per second and a resolution of either 640x360
(.avi) or 640x369 (.mov). Thus the quality is quite low
given today’s standards. In addition, since the participants
are recorded almost in full height, the head movements are
very tiny when expressed in pixels. All of this is bound to
have an effect on how accurately the movement derivatives
can predict head movement.
Acoustic features were extracted from the speech channels
of all speakers using the PRAAT software (Boersma and
Weenink, 2009). In general, several studies indicate that
head movements are likely to occur together with prosodic
stress, whereas the opposite is not necessarily true (Hadar
et al., 1983; Loehr, 2007). Since in Danish, which is the
language of our study, stress is expressed through funda-
mental frequency, vowel duration and quality, as well as
intensity (Thorsen, 1980), we decided to rely on pitch and
intensity features to model a possible relation between fo-
cal patterns and head movements. F0 values and intensity
values were sampled with 25 frames per second as is done
for the movement features and added to the training data.
The hypothesis is that changes in pitch or peaks of inten-
sity might be associated with head movement strokes, and
thus help in identifying movement.
Based on the analysis of co-occurrence patterns between
head movements and verbalisation in the corpus data (Pag-
gio et al., 2017), we finally added to the predictive features
information as to whether the person performing the move-
ment, the gesturer, is speaking or not. This binary feature
was added to each frame based on the speech transcription,
which was done manually and includes word boundaries.

4. Data, training and test setup

Figure 1: Screen shot from one of the video recordings
showing combined almost frontal camera views

The data used for this study is taken from the Danish
NOMCO corpus (Paggio et al., 2010), a collection of
twelve video-recorded first encounter conversations be-
tween pairs of speakers (half females, half males) for a
total interaction of approximately one hour. Each speaker
took part in two different conversations, one with a male
and one with a female. The speakers are standing in front
of each other. The conversations were recorded in a stu-
dio using three different cameras and two cardioid micro-
phones. For the work presented here we used a version of
the recordings in which both speakers are being viewed al-
most frontally, and the two views are combined in a singled
video as shown in Figure 1. The data have been annotated



17

Movement type No. movements No. frames
None NA 125,747
Nod 926 21,755
Shake 337 9,505
Other 1,854 41,053
Total movement 3,117 72,313

Table 1: Different types of head movements in the dataset:
total number of frames and whole movements

None Nod Shake Other All
Mean 10,479 1,813 792 3,421 6,026
CV 0.13 0.47 0.50 0.20 0.20

Table 2: Distribution of different head movement types in
the dataset: average mean number of frames and coefficient
of variation across 12 speakers

with many different annotation layers (Paggio and Navar-
retta, 2016), including a manually obtained speech tran-
scription with word-specific boundaries, and temporal seg-
ments corresponding to different types of head movement
(Allwood et al., 2007). The Cohen’s (1960)  score results
of inter-coder agreement experiments involving two anno-
tators are between 0.72 and 0.8 for the identification and
classification of head movements (Navarretta et al., 2011).
For this study, we have focused on two ways of looking at
the head movements; i. distinguishing between head move-
ment and absence of it; ii. distinguishing between nods,
shakes, other kind of head movement, and no movement.
In table 1 we show the distribution of the four types of head
movement in the annotated corpus both in terms of entire
movement sequences and number of video frames. Thus,
3,117 head movements were annotated in total, correspond-
ing to 72,313 movement frames. Frames containing no
head movement constitute by far the majority of the video
footage. The Nod class subsumes both down and up nods.
It was singled out together with Shake because these two
classes have been targeted previously in head movement
detection studies (Morency et al., 2005). The Other cate-
gory groups a number of distinct types in the annotation,
i.e. HeadBackward, HeadForward, SideTurn, Tilt, Waggle
and HeadOther.
There is of course speaker-dependent variation in the fre-
quency of the various movement types. Table 2 displays
mean averages and coefficient of variations for how dif-
ferent movement and non movement frames are distributed
across the twelve speakers. The figures show that the fre-
quency of occurrence of both Nod and Shake varies consid-
erably in the speaker sample.
The duration of the head movements in the annotated cor-
pus is 934.78 ms on average (SD: 579.44 ms). A histogram
of head movement duration is given in Figure 2. Although
most movements are shorter than 1500 ms, we see a long
tail of outliers with a maximum duration of up to 7,080 ms.
To derive training data from the twelve annotated videos,
movement, acoustic and word features were extracted as
explained in the previous section so that for each frame
in each video a vector was created with features express-
ing presence/absence of movement, a label for each of the
four movement classes, four velocity, four acceleration and

Histogram of head movement duration
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Figure 2: Duration of annotated head movements in the
dataset

four jerk features, pitch and intensity values referring to the
gesturer and a binary feature expressing whether the same
gesturer is speaking or not.
The data were then used to train a number of different clas-
sifiers to predict the head movements of each speaker given
training data from the other eleven speakers (leave-one-out
cross validation). In what follows, we will report accuracy
and F1 results achieved by the various classifiers on aver-
age across speakers. It should be kept in mind, however,
that there is variation across speakers in number of types
of head movement produced, as already noted. Moreover,
the accuracy of the classifiers may be influenced by the fact
that some speakers are sometimes situated on the left and
sometimes on the right, and others are in the same position
in both the conversations they took part in.
As mentioned earlier, two tasks were conducted. The first is
detection of head movement (irrespective of the type), and
the second is classification of head movement type given
the four classes None, Nod, Shake and Other.
Two baselines were chosen. The first one corresponds to
the results obtained by a simple most-frequent category
model, which will always predict that there is no movement
in the frame. The second one is a logistic regression classi-
fier that only uses velocity features. We then experimented
with the complete range of movement derivatives (veloc-
ity, acceleration and jerk). Finally, we added acoustic and
word information relative to the gesturer. The following
classifier types were used to train models using the various
feature combinations: i. a Logistic Regression (LR) clas-
sifier, which is an example of a simple model, ii. a linear
Support Vector Machine (LINEARSVC), which was used
by several earlier studies for head movement detection, and
iii. a Multilayer Perceptron (MLP) with four layers, as an
example of a non-linear classifier. 1

5. Results

The results of the binary classification experiments are
given in terms of average accuracy in table 3, and F1 score
(macro average) in table 4. Looking at accuracy first, all
models perform better than the most frequent class (MF)

1The data and the Jupyter notebooks that were used in
our experiments can be found at https://github.com/
kuhumcst/head_movement_detection.
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Exp Features MF LR LINEARSVC MLP
1 Only velocity 0.635 0.686 0.680 0.707
2 All visual features (no sound) 0.635 0.721 0.718 0.733

3 All visual and acoustic (only gesturer) 0.635 0.722 0.718 0.730
4 All visual and acoustic+word (only gesturer) 0.635 0.725 0.723 0.730

Table 3: Accuracy results of classification experiments (mean over 12 speakers). Classes are presence and absence of
movement.

Exp Features MF LR LINEARSVC MLP
1 Only velocity 0.387 0.575 0.557 0.648
2 All visual features (no sound) 0.387 0.644 0.633 0.684
3 All visual and acoustic (only gesturer) 0.387 0.646 0.634 0.681
4 All visual and acoustic+word (only gesturer) 0.387 0.658 0.650 0.684

Table 4: F1 results (macro average) of classification experiments (mean over 12 speakers). Classes are presence and absence
of movement.

Predicted as
None Nod Shake Other Sum

G
ol

d
va

lu
e None 113,566 1,984 327 9,870 125,747

Nod 13,429 4,528 74 3,724 21,755
Shake 5,977 184 618 2,726 9,505
Other 23,148 2,089 584 15,232 41,053

Table 5: Classification of different types of head move-
ments in the whole dataset: error matrix

Movement type No. frames Precision (%) Recall (%)
None 125,747 72.74 90.31
Nod 21,755 51.54 20.81
Shake 9,505 38.55 6.5
Other 41,053 48.28 37.1

Table 6: Classification of different types of head move-
ments in the whole dataset: total number of frames, pre-
cision and recall for each type

baseline. We also see that the MLP classifier performs bet-
ter than all the others irrespective of the combination of
features used in the training. The overall best accuracy is
achieved by MLP using all the three movement features,
whereas acoustic and word features seem to introduce some
noise (even though the difference between the MLP results
in experiment 2 on the one hand and 2 and 3 on the other is
marginal).
Turning to F1, we observe again that all models definitely
outperform the baseline, and that the MLP classifier is con-
sistently the best in all experiments. In this case, the best
result is achieved either using the entire range of features or
only the visual ones. Adding acoustic features alone pro-
duces a slightly lower F1.
Figure 3 shows how the F1 score obtained by the best bi-
nary models, i.e. those trained with the complete range of
features, varies depending on the speaker. The MLP clas-
sifier is not only the best performing one on average, but
also the one where the F1 score varies the least. However,
there is still some variation. In fact, the standard deviation
for the results achieved by MLP is 0.053 for accuracy and
0.046 for F1.
We now turn to the results of the multi-class prediction ex-
periments, which are shown in table 7 for accuracy and ta-

Figure 3: Visualisation of the F1-score of the binary model
that include all features (exp. 4 in table 4)

ble 8 for F1 score (macro average). Determining the type
of head movement in a multi-class prediction scenario is a
more difficult task than having to choose between move-
ment and non-movement. Therefore, it is not surprising
that the results are generally worse. Nevertheless, all the
models perform better than the baseline both as regards ac-
curacy and F1. Also in this case, MLP is generally the best
classifier. If we now focus on the accuracy results first, we
see again that the best accuracy is achieved by MLP when
using all the movement features but no acoustic or word
features. When we look at the F1 scores, however, we see
that acoustic features this time not only help the classifier,
but provide the best performing model in combination with
movement features.
Further analysis of the results is provided by the error ma-
trix in table 5, which relates to the best performing classifier
(MLP in exp. 3). We see first of all that head movements
of all types are confused with no movement, and to some
extent with movements of type Other. Nods and shakes, on
the contrary, are seldom exchanged for one another, which
seems a good result given the fact that they are quite differ-
ent from the point of view of their movement characteris-
tics.
In table 6 we show precision and recall figures for the dif-
ferent movement types. Recall is in general low for move-
ment frames, while precision is better. We see this as an
advantage in that an automatic procedure that misses exist-
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Exp Features MF LR LINEARSVC MLP
1 Only velocity 0.635 0.648 0.646 0.657
2 All visual features (no sound) 0.635 0.660 0.657 0.677

3 All visual and acoustic (only gesturer) 0.635 0.661 0.658 0.676
4 All visual and acoustic+word (only gesturer) 0.635 0.668 0.665 0.679

Table 7: Accuracy results of multi-class prediction experiments (mean over 12 speakers). Classes are nod, shake, other,
none.

Exp Features MF LR LINEARSVC MLP
1 Only velocity 0.194 0.256 0.249 0.308
2 All visual features (no sound) 0.194 0.291 0.277 0.396
3 All visual and acoustic (only gesturer) 0.194 0.294 0.279 0.397

4 All visual and acoustic+word (only gesturer) 0.194 0.313 0.297 0.394

Table 8: F1 results (macro average) of multi-class prediction experiments (mean over 12 speakers). Classes are nod, shake,
other, none.

ing head movements seems more acceptable than one that
finds non-existing ones. Precision in the detection of head
movements is highest for Nod, followed by Other, followed
by Shake. The degree of precision depends not only on fre-
quency of occurrence (there are more nods than shakes), but
also on how homogeneous the classes are (the class Other
is not as homogeneous as the class Nod).

6. Discussion

In general, it is difficult to compare our results directly to
what other head movement detection studies have achieved
because of the diversity of recording settings, number of
participants, communicative situations etc. The work that
resembles ours the most in terms of the methodology used
is perhaps the paper by Frid et al. (2017) in that they also
rely on movement derivatives. They also look at the co-
occurrence of head movements and words, but do so in a
different way by predicting for each word whether it is ac-
companied by a movement or not. Their results, 0.89 accu-
racy and 0.61 F1 score, are not very dissimilar from those
obtained by our best model in the binary classification.
It must be noted, however, that we are detecting head move-
ments in less favourable conditions since our subjects are
recorded in full body size. In addition, the quality of our
videos is, as already mentioned, not up to today’s standards.
Furthermore, the acoustic signal is also far from optimal be-
cause the microphones were hanging from the ceiling rather
than being close to the participants’ mouths.
The present study is a further development of the earlier
experiment reported in Paggio et al. (2018), where we per-
formed head movement detection in a subset of the data
only consisting of two speakers. The best result was ob-
tained in that study by a Multilayer Perceptron trained on
visual and acoustic features, which achieved 0.75 accuracy
and outperformed a classifier trained on monomodal visual
features. The performance of the best model in the current
study, which applies to the entire dataset, is only about 2%
lower, thus showing that our methodology is reasonably ro-
bust.
An interesting question is whether approaching the problem
in terms of single frames is a good way of approximating
what the human annotators did. After all, they were asked
to annotate whole head movements, not individual frames.
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Figure 4: Histogram of the duration of uninterrupted se-
quences of movement frames predicted by the binary MLP
classifier in exp. 4

A way to compare the results of the frame-wise predictions
made by the models is to look at the number and duration
of uninterrupted movement frame sequences and compare
them with the gold standard. The total number of move-
ments predicted by the best binary classifier is 7,782, and
their mean duration is 291.25 ms (SD: 360.91). In compari-
son to the annotated movements, the classifier detects many
more but shorter ones. In figure 4 we visualise the whole
distribution of the duration of the predicted movements. If
we compare it with the histogram in figure 2, we can clearly
see that the classifier tends to find many more shorter move-
ments (up to 500 ms), and even though the distribution is
also left-skewed, the maximum duration of 4,880 is consid-
erably shorter than the longest movement in the gold stan-
dard. There may be several explanations for these differ-
ences, e.g. the fact that annotators may have seen a se-
quence of movements as an uninterrupted repeated gesture
of a certain kind rather than separate individual ones.
Looking at the feature combinations used in the experi-
ments, the results confirm the fact that combining the three
movement derivatives in the training reliably improves de-
tection and classification for all the models. It can be dis-
cussed, however, whether all the values currently used in
the vectors are in fact necessary. Having a representation
of velocity, acceleration and jerk not only in terms of po-
lar coordinates but also in terms of cartesian coordinates is
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redundant since such representations are equivalent. We re-
peated some of the experiments without the inclusion of po-
lar coordinates. Only the MLP classifier was not adversely
influenced by this and became even marginally better. The
linear classifiers, on the other hand, performed not any bet-
ter than the baseline without the polar coordinates.
The role played by the acoustic and word features, on the
contrary, is not totally clear in that they only add marginal
gains to the F1 scores obtained by the models and in some
cases even harm them. It is possible that the speech signal
is superfluous, but also that we have not found the most ef-
ficient way to combine those features with the visual ones.
More research is needed to understand this.
Finally, as we noted the performance of the classifiers
varies depending on the speaker. A first analysis of the data
indicates that the factors which might influence the results
in this direction are the types of head movement performed
by the speakers as well as whether the speaker is standing
on the same side during the two conversations or not.

7. Conclusions and future work

In conclusion, we have shown that head movements can
be detected in unseen speaker data by an MLP classi-
fier trained with multimodal data including movement and
acoustic features. The results achieved by this classifier
perform at state-of-the-art level. When the same method is
applied to the classification of four different types of head
movement in the same data, the performance decreases.
In order to develop the present work further, we can inves-
tigate different approaches. Firstly, we plan to add more
features from OpenPose: the position of ears and chin, for
example, might be helpful to add to the position of the nose
for some of the head movements. An alternative to Open-
Pose, or a method that we would like to use in combination
with it, could be found in computer vision techniques that
identify changing head positions as proposed in Ruiz et al.
(2018), who trained a multiloss Convolutional Neural Net-
work on a synthetically created dataset in order to predict
yaw, pitch and roll from image intensities.
Secondly, we intend to investigate different ways to use
acoustic and word features, either by adding more features
or by using them in more selective ways for specific head
movement classes.
Thirdly, we would like to analyse the extent to which the
depth of the neural network contributes to the results by
testing different numbers of layers. Furthermore, we would
like to experiment with sequential models such as Recur-
rent Neural Networks (RNN), which are often used to anal-
yse video sequences and might therefore predict gestures
more precisely than the classifiers we have tested until
now. In that connection, it would also be interesting to ex-
periment with an architecture in which representations are
learnt separately for each feature by different networks and
then concatenated into one vector.
Finally, we want to carry out a more precise comparison of
the movements predicted and the annotated ones by making
the predictions readable by the ANVIL gesture annotation
tool.

8. Ethical considerations

We have obtained written permission by the participants to
use the videos for research purposes specific to the project
within which the recordings were obtained. Therefore, we
are making all the features extracted from the corpus avail-
able together with the code we have used to train and test
the classifiers. However, we do not share the videos or the
transcriptions from the corpus because of privacy and data
protection issues.
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