
LREC 2020 Workshop
Language Resources and Evaluation Conference

11-16 May 2020

Multilingual Biomedical Text Processing
(MultilingualBIO 2020)

PROCEEDINGS

Editor:
Maite Melero, Barcelona Supercomputing Center (Spain)



Proceedings of the LREC 2020 Workshop on
Multilingual Biomedical Text Processing

(MultilingualBIO 2020)

Edited by: Maite Melero, Barcelona Supercomputing Center (Spain)

ISBN: 979-10-95546-65-8
EAN: 9791095546658

For more information:
European Language Resources Association (ELRA)
9 rue des Cordelières
75013, Paris
France
http://www.elra.info
Email: lrec@elda.org

c© European Language Resources Association (ELRA)

These workshop proceedings are licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License

ii



Introduction

Welcome to MultilingualBIO 2020, the LREC2020 Workshop on "Multilingual Biomedical Text
Processing" . As the COVID-19 pandemic unrolls during the first months of 2020 around the world, the
need for strong AI and NLP technologies for biomedical text is more evident than ever. As in other NLP
areas, we are currently witnessing fast developments, with improved access, analysis and integration of
healthcare-relevant information from heterogeneous content types, including electronic health records,
medical literature, clinical trials, medical agency reports or patient-reported information available form
social media and forums. There is an increasing automation of tasks in many critical areas, such as
detecting interactions or supporting clinical decision. However, progress is very uneven depending on
the language. Main achievements in processing biomedical text are almost restricted to English, with
most other languages lagging behind in this respect, due to lack of annotated resources, incomplete
vocabularies and insufficient in-domain corpora. More effort from the research community is needed
to endow these languages with the necessary resources. The second edition of MultilingualBIO, at the
LREC 2020 Conference, aims at promoting the development of biomedical text processing resources
and components in languages beyond English, exploring the use of novel methodological advances for a
diversity of tasks in the domain.
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Detecting Adverse Drug Events from Swedish Electronic Health Records Using
Text Mining

Maria Bampa, Hercules Dalianis
Department of Computer and System Science

Stockholm University
{maria.bampa, hercules}@dsv.su.se

Abstract
Electronic Health Records are a valuable source of patient information which can be leveraged to detect Adverse Drug Events (ADEs)
and aid post-mark drug-surveillance. The overall aim of this study is to scrutinize text written by clinicians in Swedish Electronic
Health Records (EHR) and build a model for ADE detection that produces medically relevant predictions. Natural Language Processing
techniques are exploited to create important predictors and incorporate them into the learning process. The study focuses on the five most
frequent ADE cases found in the electronic patient record corpus. The results indicate that considering textual features, can improve the
classification performance by 15% in some ADE cases, compared to a method that used structured features. Additionally, variable patient
history lengths are included in the models, demonstrating the importance of the above decision rather than using an arbitrary number for a
history length. The experimental findings suggest the importance of the variable window sizes as well as the importance of incorporating
clinical text in the learning process, as it is highly informative towards ADE prediction and can provide clinically relevant results.

1. Introduction
With the introduction of Electronic Health Records (EHRs)
an abundant of information has become available. This
provides unique opportunities not only for monitoring
patients but also for the use of these data sources in
secondary research. An EHR contains all the key in-
formation regarding a patient case over time, including
demographics, medication, diagnoses and procedures, vital
signs, laboratory results and hand-written text. Some of
the aforementioned are captured in a structured format, for
example, drug and diagnoses codes are represented in the
ATC and ICD-10 format respectively. However, the vast
majority of this information is captured in an unstructured
and non-standardized format, i.e. clinical free text notes.

As EHRs are a vast source of patient medical history, they
have enabled more efficient retrospective research in vari-
ous domains, namely epidemiology, public health research,
outcome research and drug surveillance (Weiskopf et al.,
2013). Specifically, in drug surveillance, EHRs are an
alternative method to evaluate drug risk and mitigate the
problem of Adverse Drug Reactions (ADEs). ADEs refer
to injuries caused by medication errors, allergic reactions
or overdoses, and are related to drugs1. They can happen
in different settings of patient care, from hospitals to
outpatient settings, after a drug has been released to the
market. In the United States alone, each year, they account
for approximately 2 million hospital stays, more than 1
million emergency department visits and cause prolonged
hospitalizations2. Due to several factors and barriers that
come with ADE reporting, they are heavily under-reported
in EHRs, causing in that way a long-term burden in the
healthcare sector and in the individuals suffering an ADE.
Nevertheless, it is estimated that about half of the ADEs

1ADE, https://health.gov/hcq/ade.asp
2https://health.gov/our-work/health-care-quality/adverse-

drug-events

are preventable3, indicating the importance of directing
research in post-market drug surveillance, to reduce
withdrawal of drugs from the market and more importantly
lessen human suffering.

EHRs are representative for a wide range of patients,
specifically for patients with different diseases, in different
age and gender distribution. Data and text mining methods
can be employed to leverage this information and predict
unwanted ADEs. In the side of structured data sources
stemming from EHRs, previous research has mainly
focused on utilizing specific predictors, for example
ICD-104, ATC5 or laboratory results, to predict ADEs. A
recent work by Bamba and Papapetrou (2019) has utilized
the temporal and hierarchical aspect of the previously
mentioned data sources to predict ADEs and concluded
in a framework with high classification performance.
Additionally, they experimented with variable history
lengths before the occurrence of an ADE and indicated
its importance in the experiments. However, they only
utilized features in a structured format and did not consider
important information that can be found in the text that
accompanies the majority of patients.

To meet the challenges posed by narrative data, text mining
is commonly used to extract and retrieve relevant infor-
mation by recognizing statistical patterns in the text. In
previous research the use of Natural Language Processing
(NLP) has been investigated for obtaining models that are
able to predict unseen ADEs from EHRs. For example,
Eriksson et al. (2013) constructed a dictionary from a Dan-
ish EHR and managed to identify 35,477 unique possible
ADEs. Henriksson et al. (2015) have modeled Swedish
EHR data in ensembles of semantic spaces and reported

3https://psnet.ahrq.gov/primer/medication-errors-and-
adverse-drug-events

4ICD-10, https://www.icd10data.com
5ATC, https://www.whocc.no/atc_ddd_index/
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improved performance in 27 datasets. Additionally, An
NLP system named MedLEE, was used to create discharge
summaries and outperformed traditional and previous
automated adverse event detection methods (Melton and
Hripcsak, 2005).

To the best of our knowledge existing data mining ap-
proaches for ADE prediction in Swedish EHRs, have been
mainly focusing on utilizing specific structured data types.
Moreover, many of the studies do not take into account
the importance of considering variable window lengths
depending on the ADE studied. Exploiting a very large
patient history window length can add noise to the data
and a very small window size can eliminate useful and
informative predictors.

Contributions. This paper, follows the work of Bamba
and Papapetrou (2019) utilizing variable window lengths,
but instead incorporating in the machine learning pro-
cess textual features, rather than structured, that can be
highly informative predictors for the specific ADEs stud-
ied. Specifically, the state-of-the-art is extended by:

1. including textual features, using the n-gram model and
tf*idf weighting,

2. exploring variable patient history trajectories for each
of the ADEs

3. benchmarking the proposed approach in three classifi-
cation models.

As shown in Section 5 the incorporation of text features
in the learning process, combined with the different win-
dow lengths for each ADE can provide improvements in the
classification performance while providing medical sound
predictions.

2. Related Work
EHRs contain a wealth of longitudinal patient history
which can be leveraged to create models for personalized-
care and provide clinically relevant insights. Post-market
drug surveillance based on EHRs can lead to further in-
vestigation and regulatory warnings about drugs (Karimi et
al., 2015) and a decrease in drug withdrawal from the mar-
ket. However, EHRs suffer from several disadvantages such
as under-reporting, absence of protocols and reporting bias
(Karimi et al., 2015), and in that way, the prevalence of an
ADE cannot be estimated with full confidence. Previous
research on EHRs tried to tackle problems like the afore-
mentioned, utilizing a wide range of predictors to iden-
tify ADEs. This section summarizes research conducted
towards ADE prediction from EHRs. The first paragraph
presents research that utilized the structured data founds in
EHRs; the rest of this section describes works that have fo-
cused on exploiting the textual features of EHRs to predict
ADEs.
Studies that use structured clinical codes (diagnoses and/or
drug codes) focus on different ways of representing them
by internationally defined standards (ICD diagnosis and

ATC drug codes respectively) and conclude that predic-
tive performance was significantly improved when using
the concept of hierarchies (Zhao et al., 2014; Zhao et al.,
2015b). Other related work utilizes clinical codes and clin-
ical measurements while taking their temporal aspect into
account, for identifying ADEs (Zhao et al., 2015c). Studies
in this area typically exploit logistic regression (Harpaz et
al., 2010) or Random Forests (Zhao et al., 2015a) applied
in clinical codes to identify ADEs. Using only laboratory
abnormalities Park et al. (2011) used the underlying tempo-
rality of these events to predict ADEs. Finally, (Bagattini et
al., 2019) focused on lab results extracted from EHRs and
proposed a framework that transforms sparse and multi-
variate time series to single valued presentations that can
be used be any classifier to identify ADEs; they conclude
that taking into account the sparsity of the feature space
can positively affect the predictive performance and be ef-
fectively utilized to predict ADEs.
The unstructured sections of EHRs, i.e. free-text, have also
been used to detect ADEs. The main approach in this line
of research is to employ NLP techniques to transform the
text in some form of structured features in order to feed ma-
chine learning classifiers (Karimi et al., 2015). For exam-
ple, (Wang et al., 2009) and (Melton and Hripcsak, 2005)
have both used the MedLee NLP system to identify ad-
verse drug event signals and they outperformed traditional
and previous automated adverse event detection methods.
MedLee is a natural language processor that extracts in-
formation from text employing a vocabulary and grammar
and has been extended to cover a spectrum of applica-
tions (Melton and Hripcsak, 2005). LePendu et al. (2013)
proposed a method to annotate the clinical notes found in
EHRs and using medical terminologies, transformed them
to a de-identified matrix. Eriksson et al. (2013) identified
a wide range of drugs by creating an ADE dictionary from
a Danish EHR. Furthermore, Henriksson et al. (2015) fo-
cused on Swedish EHR data and reported improvement in
ADE detection by exploiting multiple semantic spaces built
on different sizes, as opposed to a single semantic space.
Finally, the combination of local and global representation
of words and entities has proven to yield better accuracy
than using them in isolation for ADE prediction according
to Henriksson (2015).

3. Data
The clinical dataset Stockholm EPR Structured and Un-
structured ADE corpus, (SU-ADE Corpus)6 used in this
study consists of information representing more than a
million patients from Karolinska University Hospital in
Sweden. The SU-ADE Corpus is an extract from the
research infrastructure Health Bank (the Swedish Health
Record Research Bank) at DSV/Stockholm University
that contain patients from 512 clinical units encompassing
the years 2007-2014 originally from the TakeCare CGM
electronic patient record system at Karolinska University
Hospital (Dalianis et al., 2015).

6Ethical approval was granted by the Stockholm Regional Eth-
ical Review Board under permission no. 2012/834-31/5.
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Both structured and unstructured data are part of the
database and are also timestamped. Structured data are
labelled using common encoding systems such as the
Anatomical Therapeutic Chemical Classification System
(ATC) for medications, the International Statistical Clas-
sification of Diseases and Related Health Problems, 10th
Edition (ICD-10) for diagnoses as well as the Nomen-
clature, Properties and Units (NPU) coding system7 for
clinical laboratory measurements. Regarding unstructured
format, each patient is described by a text that is written
in free format by clinicians; the SU-ADE Corpus contains
more than 500 million tokens, in total.

The ADE groups of this study were selected as they
are some of the most frequent in the SU-ADE Corpus.
The specific 5 ADE cases were chosen for comparison
reasons to the paper by Bamba and Papapetrou (2019)(see
section 5). The experiments are formulated as a binary
classification task; according to patients’ ICD-10 codes,
labels are assigned to each of them. More concretely, each
patient in a dataset is described by a class label that denotes
if that patient has an ADE or not. Negative examples are
denoted as 0, while positive examples are denoted as 1.
The following procedure was adopted: Patients that are
assigned a specific ADE code are considered positive to
that ADE (Stausberg and Hasford, 2011), while patients
that are not assigned that specific ADE code but have been
given a code that belongs to the same disease taxonomy
are considered ADE negative. For example, patients that
are given the ADE code D61.1 (drug induced aplastic
anaemia) are positive to that specific ADE, on the other
side, patients that are given codes that belong to D61.x
with x 6= 0 are considered ADE negative. A list and an
explanation for each dataset can be seen in Table 1.

The ICD-10 codes serve only as reference for the extrac-
tion of the sub-datasets and the subsequent class labeling.
In that way, from the original corpus we extract all the pa-
tients that have at least one reference of the following codes
in their history: D61.*, E27.*, G62.*, L27.*,T80.* (* de-
notes every possible digit from one to nine). Following that,
we create the sub-datasets according to the ADE codes and
assign the class labels as described above. The patients are
then described by text written by a healthcare expert. The
main methodology is described in section 4.

4. Methods
The following section provides a description of the methods
used in this work. In Figure 1 the process of the method that
was used is depicted.

4.1. Text Preprocessing
Following the class labeling, text assigned to each patient
is then pre-processed, so as to bring it in a format that
is analyzable and predictable. Swedish is different from
English thus the techniques used are different, for example

7NPU, http://www.ifcc.org/
ifcc-scientific-division/sd-committees/
c-npu/

Figure 1: Depiction of the method flow. Starting from the
SU-ADE corpus to the creation of the 5 ADE datasets and
finally evaluation of the model.

Swedish is a highly inflected language as well as a com-
pounding language, similar to German.

Since the datasets that are handled in this work are very
large, to help with the consistency of the expected output,
all the words were lower-cased. Also, noise and Swedish
stop word removal was carried out to help reduce the num-
ber of features before classification and produce consistent
results. Stop-words do not convey any significant seman-
tics in the output result, consequently they were discarded.
Finally, lemmatisation was performed to transform the
Swedish words into their dictionary form, a procedure
highly important in our study as the Swedish language is
highly inflectional (Carlberger et al., 2001). The library
used for stop word removal and lemmatisation was NLTK8.

8Natural Language Toolkit, https://www.nltk.org/
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Dataset Description Positive Negative
D61.* Aplastic Anaemia 557 (D61.1) 94(D61.x)
E27.* Adrenocortical insufficiency 55(E27.3) 219 (E27.x)
G62.* Polyneuropathy 79(G62.0) 672 (G62.x)
L27.* Generalized skin eruption 391 (L27.0) 172 (L27.x)
T80.* Infusion complications 502 (T80.8) 135 (T80.x)

Table 1: The 5 most common ADE cases studied. The * under the Dataset column: denotes every possible code under the specific
category included in the dataset; column Positive depicts the number of ADE positive patients and the specific ADE code is in parentheses;
column Negative depicts the number of ADE negative patients where x is any number besides the last digit of the ADE depicted in each
row and the examples are in parentheses.

4.2. Window Sizes
Furthermore, as this study focuses on events that occur over
various time periods, the sub-datasets are created on differ-
ent window sizes, in order to investigate potentially infor-
mative patient trajectories for specific ADEs. 30, 60 and
90 days window sizes are investigated. In those cases, the
day when the ADE was registered was excluded from the
learning process, as we are interested in predicting patients
with a potential ADE.

4.3. Word Vectors
The following representations of the text at word level
are considered: unigrams, bigrams, trigrams (n-grams)
and tf*idf (in a uni-gram word level) where tf stands for
term frequency and idf for inverse document frequency
(Van Rijsbergen, 1979).

The n-gram model predicts the occurrence of the n-th word
based on the occurrence of n-1 words in the document.
This follows the Markov assumption that only the previous
words affect the next word (Manning et al., 1999). For
instance, the bigram model (n=2) predicts the occurrence
of a word given only its previous word, while the trigram
model (n=3) predicts the occurrence of a word based on
the previous two words. Even though the trigram model
may be useful as it could predict sequences of words that
have better medical meaning in terms of interpretability
(ex. 500mg of paracetamol (In English)), it may not be
practical as it can increase the number of parameters and
also the dimensionality of feature space.

The final approach is to assign a tf*idf weighting to all
terms. tf is the simple term frequency; idf assigns in each
term a weight such that it can compensate for the words that
occur too often in the document, as they can be important
to discriminate between others (Schütze et al., 2008). The
number of features are reduced to a maximum of 500 terms,
those with the highest tf*idf scores. A motivation for tf*idf
was found in (Ehrentraut et al., 2016) where they utilized
tf*idf, to classify healthcare associated infections and this
method yielded the best results while extracting the most
relevant results.

4.4. Classification
Three algorithms are benchmarked to evaluate the perfor-
mance of the used methods :

• RF: Random Forests with 100 trees, gini impurity as

the split criterion and the number of features consid-
ered at decision split criterion set to default

√
m where

m is the number of features in each dataset;

• SVMlinear: Support Vector Machines using a linear
kernel and weighted class balance;

• SVMrbf: Support Vector Machines using the RBF
kernel and weighted class balance;

4.5. Evaluation
All models were trained in the four different word se-
quences and for the three different window sizes. Strati-
fied ten-fold cross validation was used, as described in (Ko-
havi, 1995) to ensure more efficient use of data. Since the
datasets in this study are imbalanced, the Area Under the
ROC Curve (AUC) was considered to be the most appro-
priate measure, as it has been proved to be an appropri-
ate evaluation for skewed classification problems (Fawcett,
2006). Nevertheless, as in some cases the class imbalance
favors the negative examples, the metrics precision, recall
(as described in (Van Rijsbergen, 1979)) and F1 score were
used to evaluate the results of each class independently.

5. Results
Table 2 presents our results in terms of predictive mod-
elling. Five different types of ADEs expressed in the
following ICD-10 codes D61.1, E27.3, G62.0, L27.0 and
T80.8 are investigated. The table is separated in three
sub-tables that present the investigation of variable window
sizes for each ADE. The columns present the investigation
of unigrams, bigrams, trigrams and tf*idf, for each ADE
and window size. The results are depicted as mean AUC.
Table 3 presents a classification report for the best per-
forming window size and word sequence method for each
ADE. Reported are: precision, recall, F1 score and support
for both positive and negative classes, for the previously
mentioned ADEs. Note that in binary classification, recall
of the positive class is also known as sensitivity; recall of
the negative class is specificity. Finally, Table 4 compares
our classification results to the approach by Bamba and
Papapetrou (2019).

Word vector representation. First, we investigate the
importance of different kind of representations in a
word level, for each ADE. We observe that although all
n-gram approaches perform well they are almost always
outperformed by the tf*idf approach. Specifically, ADEs
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E27.3, G62.0, L27.0 and T80.8 had better classification
performance when considering the inverse document
frequency (idf) with the SVM linear classifier. Comparing
the n-grams, the unigram was always performing better
than the bigram and trigram approaches (sequence of two
and three adjacent words), where the results are anging
from 2% to 9% improvement. Unigram was always the
second best performing after tf*idf.

Window Sizes. The aim in this section is to investigate
variable window sizes in the patient trajectory following
the work of Bamba and Papapetrou (2019). We can see
that L27.0 acquired better results in a small window size
of 30 days and E27.3, T80.8 gave an improvement of 1%
to 3% in a window size of 60 days as compared to 30 and
90 days. For ADEs D61.1 and G62.0 the best results are
obtained in a 90 days patient history length with AUC
0.9542 and 0.9045 respectively.

Classification Report. Furthermore, for each best per-
forming size and word vector representation we provide a
classification report for both negative and positive classes.
In Table 3, we observe that for the ADEs D61.1 and T80.8
where the class imbalance favors the positive class, the
precision and recall are high. However, for ADEs E27.3
and G62.0 we can see that the classifier is not performing
well in the positive class, failing both to retrieve and
correctly classify the cases, as the class distribution is
skewed towards the negative class.

Comparison to LDM approach. Finally, we compare our
approach to the LDM framework as described in (Bamba
and Papapetrou, 2019). In this paper the authors studied the
importance of incorporating three different types of struc-
tured predictors in the learning process, Lab measurements,
Drug codes, Diagnoses codes (LDM) while using variable
window sizes. In table 4, depicted are the best performing
windows sizes and classifiers for each of the approaches.
We observe that for 4 out for 5 classifiers, employing fea-
tures found in the clinical text improves the classification
task. Specifically, there is an improvement of 1% for D61.1,
13% for E27.3, 2% for G62.0 and 15% for L27.0.

5.1. Important Features and Medical Relevance
In this section top textual features are provided that were
found important by the SVM classifier, for two of the
studied ADEs. We are interested in investigating the
features that the classifier based its decision upon and
additionally, see if the are medically relevant. We only
consider the results from SVM linear classifier and use
the weights obtained from the coefficients of the vector
which are orthogonal to the hyperplane and their direction
indicates the predicted class. The absolute size of the
coefficients in relation to each other can then be used to
determine feature importance for the data separation task.

In figures 2, 3 we observe the most important features
for both the negative and positive classes as decided by
the SVM linear classifier for ADEs D61.1 (drug induced
aplastic anaemia) and L27.0 (drug induced generalized

skin eruption). Among the most import features for D61.1
are the words (In Swedish but also translated to English
in parenthesis) thrombocyter (platelets), sandimmun (a
drug), blodtransfusion (blood transfusion), cytostatica
(cytostatics), lymfom (lymphoma) and crp (a protein in
blood made by the liver). For example, according to
the literature, irregular levels of plateles in the blood are
indicators of aplastic anaemia and a way to treat is by
blood transfusions (NIDDK, 2019). For L27.0 among
the most important features are svullnad (swelling), mjölk
(milk), ägg (egg), övre (upper), hudutslag (rash), nötter
(nuts), andningsljud (noises heard on auscultation over any
part of the respiratory tract), mildison (cream prescribed
to relieve skin inflammation and itching), reagera (react),
akuten (emergency unit), hb (hemoglobin), ser (look), stor
(big) and remiss (referral).

These words are highly relevant for each ADE studied, thus
indicating that the model is not performing at random. Nev-
ertheless, we can observe that words such as the abbrevia-
tion pga (because of) or the numerical value 14, are consid-
ered important features but cannot be related to the ADEs
at a first glance. In the future, it would be of great impor-
tance to incorporate a medical expert in the process in order
to validate the procedure and results, so as to create a safe
and interpretable prediction model. Additionally, we ob-
serve that in some of the ADEs, the top important features
include drugs or diagnoses that are administered and reg-
istered after the manifestation of the ADE. This indicates
that the adverse events might be registered in the record at
a later point in time, thus capturing both the treatment and
the diagnosis of the ADE.

6. Analysis
The increased adoption of Electronic EHRs has brought a
tremendous increase in the quantities of health care data.
They contain records that offer a holistic overview of a
patient’s medical history, rendering them a valuable tool
source for drug safety surveillance. Machine learning
methods can be employed to uncover clinical and medical
insights stemming from both structured and unstructured
data to detect ADEs. Existing approaches on ADE predic-
tion from EHRs have been mainly focusing on utilizing
structured data types, on the other hand, text mining
techniques have focused on identifying ADEs globally
rather than focusing on specific types that occur frequently.
This paper followed the work of Bamba and Papapetrou
(2019) and incorporated in the learning process textual
features while considering variable window lengths, for
the five most frequent ADEs found in the SU-ADE corpus.

The experimental findings suggest that the textual features
contain information that is highly important for ADE
prediction. We observe that in many cases the word
predictors outperformed the framework by Bamba and
Papapetrou (2019) where the only utilized structured lab
measurements, diagnoses and medication codes. In section
5.1 we included a number of important predictors as found
by the SVM linear classifier, indicating that the model
is not performing at random. We observed that some of
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30 DAYS
unigram bigram trigram tf*idf

RF svmLin svmRbf RF svmLin svmRbf RF svmLin svmRbf RF svmLin svmRbf
D61.1 0.9330 0.8707 0.8780 0.9159 0.8504 0.9133 0.8630 0.7604 0.8179 0.9408 0.9432 0.9249
E27.3 0.8109 0.7466 0.7113 0.6970 0.6928 0.7384 0.6947 0.7481 0.7272 0.7985 0.8700 0.8630
G62.0 0.7875 0.7436 0.8805 0.6879 0.6871 0.7796 0.6777 0.6833 0.7002 0.8235 0.8268 0.8666
L27.0 0.9272 0.8491 0.9118 0.8863 0.8328 0.8811 0.8113 0.8145 0.7920 0.9226 0.9109 0.9031
T80.8 0.8929 0.8173 0.8871 0.8829 0.8168 0.8621 0.8221 0.8105 0.8339 0.8863 0.9060 0.8962

60DAYS
D61.1 0.9354 0.8632 0.8572 0.9369 0.8882 0.9025 0.8597 0.7585 0.8477 0.9415 0.9502 0.9275
E27.3 0.8224 0.7941 0.7567 0.7574 0.766 0.7674 0.7040 0.7294 0.7194 0.8626 0.8822 0.8677
G62.0 0.8382 0.7603 0.828 0.7660 0.7301 0.8467 0.7490 0.721 0.7956 0.8547 0.8742 0.8829
L27.0 0.9206 0.8408 0.9089 0.8882 0.8303 0.8862 0.8134 0.8083 0.7997 0.9120 0.9108 0.8936
T80.8 0.9076 0.8274 0.8865 0.9042 0.8304 0.8887 0.8581 0.8609 0.8691 0.9185 0.9207 0.9171

90DAYS
D61.1 0.9403 0.8933 0.8503 0.9245 0.8836 0.8980 0.8651 0.8128 0.8425 0.9424 0.9542 0.9352
E27.3 0.7833 0.7647 0.7367 0.7219 0.6886 0.7259 0.6748 0.6848 0.6912 0.8078 0.8420 0.8337
G62.0 0.8357 0.7902 0.8454 0.8000 0.7639 0.8666 0.7749 0.7341 0.8048 0.8788 0.9045 0.8892
L27.0 0.9216 0.8427 0.9085 0.8811 0.824 0.8834 0.8248 0.7995 0.8036 0.9165 0.9142 0.8941
T80.8 0.8984 0.7936 0.8565 0.8801 0.8172 0.8856 0.8623 0.8447 0.8654 0.8836 0.9005 0.8944

Table 2: AUC obtained by 3 classifiers on 3 different patient history lengths for 5 different ADE cases and 4 different word
weighting factor approaches. Each table presents the AUC obtained by stratified 10-fold cross validation on the different
window sizes. In bold: best AUC for each ADE in the specific window size across all approaches, In red: Best AUC for
the specific ADE across all window sizes, classifiers, and approaches;

Class Precision Recall F1 score
D61.1 Negative 0.78 0.80 0.79

Positive 0.90 0.89 0.89
E27.3 Negative 0.95 0.85 0.89

Positive 0.28 0.56 0.37
G62.0 Negative 0.98 0.91 0.94

Positive 0.30 0.62 0.40
L27.0 Negative 0.89 0.83 0.86

Positive 0.72 0.82 0.77
T80.8 Negative 0.70 0.79 0.74

Positive 0.93 0.89 0.91

Table 3: Classification report of each ADE in the best performing classifier and window size for each of them (the ones
reported as red in Table 2). Support: the number of occurrences of each class in the correct values

Figure 2: Top 20 feature importance for D61.1 in a 90 days window size using the tf*idf weighting and SVM linear. X-axis:
Feature words in Swedish, Y-axis: Vector coefficients.
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Figure 3: Top 20 feature importance for L27.0 in a 30 days window size using the tf*idf weighting and SVM linear. X-axis:
Feature words in Swedish, Y-axis: Vector coefficients

tf*idf LDM WS
D61.1 0.954 0.948 90
E27.3 0.882 0.756 30
G62.0 0.904 0.880 90
L27.0 0.927 0774 60
T80.8 0.920 0.946 30

Table 4: Comparison of textual tf*idf and LDM (Labs,
Diagnoses, Medication) approach. WS: Best Performing
Window Size for each ADE

the features are highly relevant with each ADE studied;
for L27.0 (drug induced skin eruption) important features
were swelling, egg and nuts or rash. This indicated that
incorporating the clinical text in the learning process can
provide medically sound predictions and provide a more
interpretable model. Moreover, we observed that, as pro-
posed by (Ehrentraut et al., 2016), tf*idf yields reasonably
good results that can be clinically interpreted. Finally, the
results indicate that considering different patient history
lengths can increase the classification performance by
3%. A long patient history length could add noise to the
dataset, while a short one could eradicate very important
information. Carefully studying the appropriate window
length depending on the ADE of interest is very important
as it can provide medically relevant predictions.

A limitation of this study is the formulation of the ADE
positive and negative groups. Although the positive groups
are based on the study by (Stausberg and Hasford, 2011)
the negative cases seem tightly close to the positive ones.
Someone could argue that as some ADE codes are very
similar to each other they can be used interchangeably
by medical experts. Moreover, another limitation is the
distribution of the positive and negative examples. In some
datasets the distribution of the positive examples is far
less than the one of the negative examples, causing lower
predictive performance.

For future work we would like to investigate other ways
of defining the control and test groups for the ADE exam-
ples. Furthermore, we would like to incorporate all struc-
tured and unstructured features in the learning process; we
believe that not only it will improve the model performance
but it will also shed light in ADE signalling. A natural ex-
tension of this paper would be to implement more recent
NLP techniques as well as word-embeddings and evaluate
them on the ADE problem. We plan to use decompounding
of words to see if the performance of our algorithms will
improve analysing the decompounded elements. Lastly, an
extension would be to dynamically adjust the window sizes
for each patient or ADE studied.

7. Conclusion
This paper focused on utilizing textual features using dif-
ferent word sequences and patient history lengths to predict
ADEs from EHRs. We demonstrated the importance of in-
corporating in the machine learning process clinical text, as
this textual source are very informative towards ADE pre-
diction. NLP techniques can be utilized to meet the chal-
lenges posed by narrative data and provide meaningful pre-
dictions.
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Abstract
We present a large Norwegian lexical resource of categorized medical terms. The resource merges information from large medical
databases, and contains over 77,000 unique entries, including automatically mapped terms from a Norwegian medical dictionary. We
describe the methodology behind this automatic dictionary entry mapping based on keywords and suffixes and further present the results
of a manual evaluation performed on a subset by a domain expert. The evaluation indicated that ca. 80% of the mappings were correct.
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1. Introduction
Named Entity Recognition (NER) is a common task within
the area of clinical Natural Language Processing (NLP)
with the aim of extracting critical information such as dis-
eases and treatments from unstructured texts (Friedman et
al., 1994; Xu et al., 2010; Jagannatha and Yu, 2016).
Current neural approaches to NER typically require a large
amount of annotated data for a reliable performance (Ma
and Hovy, 2016; Lample et al., 2016). Distant supervision
(Mintz et al., 2009), however, relaxes this constraint on the
training data size thanks to the combined use of informa-
tion from lexical resources, a small amount of training data
and large amounts of raw data. This technique has been
successfully applied also in the biomedical and clinical do-
main (Fries et al., 2017; Shang et al., 2018). In absence
of even a small amount of annotated data, categorized lex-
ical resources can also be used as gazetteers in rule-based
approaches.
There is currently no large and freely available lexical re-
source with categorized entity types for Norwegian medi-
cal terms to be used for clinical NER with distant super-
vision. This paper presents an effort to create such a re-
source by collecting and merging lists of terms available
from a number of other smaller and more specialized re-
sources. We implement and describe an automatic mapping
method which is applied to a dictionary containing a variety
of definitions for relevant terms and present an evaluation
of this mapping using both inter-resource overlap and man-
ual evaluation performed by a domain expert. The resulting
lexical resource will be made freely available.

2. Background
Medical Entity Recognition often makes use of lexical re-
sources such as lists of disease names derived from the
International Statistical Classification of Diseases and Re-
lated Health Problems (ICD) resource (World Health Or-
ganization and others, 2004) or from disease information
from general resources, such as the Medical Subject Head-
ings (Lipscomb, 2000, MeSH). There has been quite a bit
of work aimed at creating semantic lexicons for use in NLP
from such domain-specific resources (Johnson, 1999; Liu
et al., 2012).

Automated extraction of medical entities from clinical text
has been the topic of several research efforts more recently,
a majority aimed at English (Xu et al., 2010; Jagannatha
and Yu, 2016) and Chinese clinical text (Wu et al., 2018).
For a language that is very closely related to Norwegian,
Skeppstedt et al. (2014) developed and evaluated an entity
detection system for Findings, Disorders and Body Parts in
Swedish. In order to alleviate the need for manual annota-
tion, distant supervision has recently been applied also to
entity recognition in the medical domain for English and
Chinese (Shang et al., 2018; Nooralahzadeh et al., 2019).

3. Norwegian Medical Terminology
Resources

There are a number of resources which contain Norwegian
medical terms that could in principle be relevant for NER.
The Medisinsk ordbok (MO) ‘Medical Dictionary’
(Nylenna, 1990) contains 23,863 Norwegian medical
terms of various kinds including, among others, names of
diseases and treatments, anatomical terminology as well as
types of medical specialists and specialization areas. The
dictionary contains synonyms and one or more definitions
of these terms depending on the number of senses per
entry.
Other rich sources of Norwegian medical terms and their
corresponding standardized codes are available from the
website of Directoratet for e-helse ‘Norwegian Directorate
for e-health’. One is the Norwegian equivalent of the
10th Revision of ICD (ICD-10). The widely-used resource
lists both coarse and fine-grained codes and corresponding
terms relative to diseases, symptoms and findings. Another
source is the Procedure Coding Schemes list (referred to as
PROC here), which includes diagnostic, medical and surgi-
cal intervention names and codes (Direktoratet for e-helse,
2020). Moreover, Laboratoriekodeverket1 ‘List of labora-
tory codes’ (LABV) contains various substance names rel-
evant in laboratory analyses. The web page of this list also
includes a shorter list of anatomical locations, which we re-
fer to as ALOC here. Yet another resource available from
the Directorate’s web site is the Norwegian equivalent of

1https://ehelse.no/kodeverk/
laboratoriekodeverket
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the International Classification of Primary Care (ICPC-2),
which includes diagnosis terms as well as health problem
and medical procedure names.
The FEST (Forskrivnings- og ekspedisjonsstøtte, ‘Prescrib-
ing and dispensing support’) database2 contains informa-
tion about all medicines and other goods that can be pre-
scribed in Norway. FEST is a publicly available re-
source published by Statens legemiddelverk ‘The Norwe-
gian Medicines Agency’.
Rama et al. (2018) present a corpus of synthetically pro-
duced clinical statements about family history in Norwe-
gian (here dubbed FAM-HIST). The corpus is annotated
with clinical entities relating to family history, such as Fam-
ily Member, Condition and Event, as well as relations be-
tween these.

4. Automatic Dictionary Entry Mapping
Method

The use of dictionary definitions as a source of semantic
information has been the topic of quite a bit of research in
lexical semantics, from the early work of Markowitz et al.
(1986) where patterns in the dictionary definitions along
with suffix information gave rise to a semantic lexicon to
more recent efforts to embed dictionary definitions in order
to derive semantic categories for phrasal units (Hill et al.,
2016).
In this work, we map entries from the MO dictionary to
categories, i.e. to medical entity types. We identify 12 dif-
ferent types of entity categories based on previous work
(Zhang and Elhadad, 2013) and the inspection of MO en-
tries. We then implement a rule-based mapping method re-
lying on suffixes and keywords.

4.1. Mapping Strategies
The mapping method consists of four different mapping
strategies: two relying on the entries themselves and two
deriving the mapped category from the definitions. One of
these is suffix based, the others operate based on keywords.
In what follows, we describe each of these strategies in de-
tail.

Suffix-based mapping (strategy SUFF) This strategy
consists of mapping an entry to a category whenever its
last characters match a specific suffix. Many medical terms
have Greek or Latin origin resulting in suffixes that give
rather clear indications of the category of an entry. We
compile a list of suffixes based on both frequently occur-
ring suffixes in the data and an online resource3. We only
include suffixes and endings which can be mapped to an un-
ambiguous category in the majority of cases. The complete
list used for the mapping is presented in Table 1.

Keyword-based mapping Mapping entries to keywords
is primarily used to map an entry to a category based on the
first noun occurring in their definition (strategy KW-1N). To
be able to detect first nouns, definitions are tokenized and
part-of-speech tagged with UDPipe (Straka et al., 2016).

2https://legemiddelverket.no/andre-
temaer/fest

3https://en.wikipedia.org/wiki/List_of_
medical_roots,_suffixes_and_prefixes

Category Suffixes
CONDITION -agi, -algi, -algia, -blastom, -cele,

-cytose, -donti, -dynia, -emi, -emia,
-epsi, -ism, -isme, -ismus, -itis, -oma,
-pati, -plasi, -plegi, -ruptur, -sarkom,
-sis, -trofi, -temi, -toni, -tropi

DISCIPLINE -iatri, -logi
MICROORG -coccus, -bacillus, -bacter
PERSON -iater, -olog
PROCEDURE -biopsi, -grafi, -metri, -skopi, -tomi
SUBSTANCE -cillin
TOOL -graf, -meter, -skop

Table 1: Suffix mapping.

To create a list of keywords for the mapping, we inspect the
200 most frequent nouns in the definitions and manually
map the ones with a strong indication of a single category.
We complement this with other frequent nouns which can
be good indicators of a category. This results in a list of 168
mapped keywords, see Table 2 for some examples.
When mapping, we require the first noun of a definition to
either (i) exactly match a keyword or (ii) to contain it. The
latter is only applied for keywords longer than 4 characters
to avoid short sequences which might over-generate false
positives (e.g. tap ‘loss’ for katapleksi ‘cataplexy’). When
checking for contained keyword, we limit the position of
the keyword match to the second character onward in the
first noun to approximate the occurrence of a keyword as
the second part of a compound as this is more indicative
of categories. Given that many dictionary entries are also
compounds, we apply the mapping based on contained key-
word also to the entries themselves (strategy KW-E).
When applying keyword-based mapping to definitions, be-
fore detecting the first noun, we remove those nouns and
phrases which have little added semantic value relevant for
the category. These include prepositional phrases forming
a complex noun phrase typical of definitions (e.g. form av
‘form of’), nouns not indicative of a category (e.g. uttrykk
‘expression’) and abbreviations (plur. ‘plural’, lat. ‘Latin’).
During the mapping procedure, first each strategy casts a
vote on the category. In case of multiple votes with a dis-
agreement, the category is based on a single mapping strat-
egy chosen following a specific order, starting from the
strategy with the highest expected precision and continu-
ing with the ones with increasingly high recall as follows:
SUFF → KW-E → KW-1N. After a first iteration of map-
ping, we perform a second iteration and map uncategorized
entries if there is an entry already mapped available for the
first noun in their definition (strategy ITER).
The MO resource contains altogether 2,387 synonyms,
which were treated as separate entries with the same def-
inition. The number of entries with multiple meanings (and
definitions) were merely 360 in total, amounting to 1.5%.
Since such polysemous entries were so rare, we consider
only the first sense of each entry.
The methodology outlined above could be applied also
for categorizing medical terminology in other languages
via, for example, machine translating the list of keywords
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Category Description Example keywords Mapped entry examples
ABBREV abbreviations, acronyms forkortelse ‘abbreviation’ Ahus, ADH
ANAT-LOC anatomical locations celler ‘cells’, muskel ‘muscle’,

kroppsdel ‘bodypart’
fødselskanalen ‘birth-channel’,
halsmusklene ‘throat-muscles’

CONDITION diseases, findings sykdom ‘disease’, tilstand
‘condition’, mangel ‘deficiency’

leukemi ‘leukemia’, leverkoma
‘hepatic coma’

DISCIPLINE medical disciplines studium ‘study’, forskning
‘research’, teori ‘theory’

dietetikk ‘diethetics’,
biomekanikk ‘biomechanics’

MICROORG microorganisms of
different kind

bakterie ‘bacteoria’, organisme
‘organism’, virus ‘virus’

kolibakterie ‘colibacteria’,
blodparasitter ‘blood parasites’

ORGANIZATION institutions and
organizations

foretak ‘company’, institutt
‘institute’

Røde Kors ‘Red Cross’,
sanatorium ‘sanatorium’

PERSON types of practitioner or
patient

lege ‘doctor’, pasient ‘patient’,
individ ‘individual’

myop ‘myope’, nevrolog
‘neurologist’

PHYSIOLOGY physiological functions refleks ‘reflex’, sammentrekning
‘contraction’

adsorpsjon ‘absorption’,
forbrenning ‘burning’

PROCEDURE procedure and treatment
types

behandling ‘treatment’, fjerning
‘removal’

nyrebiopsi ‘kidney biopsy’,
detoksifisering ‘detoxification’

SERVICE types of services tjeneste ‘service’, omsorg ‘care’ tannhelsetjeneste, ‘ dental
service’, sjelesorg ‘counseling’

SUBSTANCE medicines and other
substances

stoff ‘substance’, løsning
‘solution’ medikament ‘drug’

aspartam ‘aspartam’,
paracetamol ‘paracetamol’

TOOL instruments and tools instrument ‘instrument’, verktøy
‘tool’

diatermikniv ‘diathermy blade’,
defibrillator ‘defibrillator’

Table 2: List of entity type categories, keywords and mapped entries.

(or terms) used and making small language-specific ortho-
graphic adjustments to the suffix mappings from Table 1.
Such suffixes are often adapted to the orthographic conven-
tions of a certain language, as also Grigonytė et al. (2016)
found in the case of Swedish.

5. Mapping Results
The results of the category mapping for MO based on the
methodology outlined in Section 4. is presented in Table 3.

Category # entries
CONDITION 5,522
SUBSTANCE 2,216
PROCEDURE 1,467
DISCIPLINE 418
ANAT-LOC 408
PERSON 282
MICROORG 227
ABBREV 216
TOOL 210
PHYSIOLOGY 132
ORGANIZATION 81
SERVICE 48
Total mapped 11,227
Not mapped 12,636
Total 23,863

Table 3: Mapping results for MO.

The percentage of mapped entries was 47%, almost half of
all available entries in MO. The other terms, which were not

mapped, did not match either any of the suffixes or the key-
words used. The latter includes, among others, cases where
the first noun in the definition was a synonym of the term
and hence too specific to be included in the list of keywords
used (e.g. the term klorose ‘chlorosis’, a type of anemia oc-
curring mosty in adolescent girls is defined using jomfrusyk
‘virgin sick’).

Based on some manual inspection, most non-mapped terms
would fit one of the categories proposed, with few ex-
ceptions that might lead to rather small categories, such
as regulations (e.g. internasjonalt helsereglement ‘inter-
national health regulations’). Several non-mapped terms
should belong to the ANAT-LOC category. The proposed
keyword-based methods would often be ambiguous for
these terms and could indicate either an anatomical loca-
tion or a medical condition related to it. For example, both
the ANAT-LOC hjertekammer ‘ventricle’ and the CONDI-
TION panserhjerte ‘armoured heart’ contain the keyword
hjerte ‘heart’ and have this word also as the first noun in
their definition, their category could thus not be determined
by our method. Additional databases containing a detailed
list of anatomical location terms are therefore particularly
useful for expanding our resource.

We also inspected the distribution of the mapping strate-
gies used (see Table 4), where MULTI stands for a category
selected based on the unanimous vote of multiple voting
strategies. We can observe that the most frequently used
strategy was KW-IN. Mappings based on multiple voting
strategies selecting the same category were also rather com-
mon, occurring in 21% of all mapped entries.
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Strategy # entries
KW-1N 5,489
MULTI 2,397
ITER 1,157
SUFF 1,096
KW-E 1,088
Total 11,227

Table 4: Distribution of mapping strategy use.

6. Resource Merging
The mapped MO entries were complemented with data
from the other resources described in Section 3. The map-
ping for these resources was straightforward since each re-
source contained either one specific type of entity or man-
ual annotation was available.
At a closer inspection, we found that the ALOC list con-
tains, besides anatomic locations, several terms which
could belong to more than one category depending on the
context of their use, e.g. tracheostomi ‘tracheostomy’ could
either be ANAT-LOC referring to the hole created during
a tracheostomy or it could refer to the procedure itself.
These cases were mapped to PROC for reasons of consis-
tency with the suffix-based mapping applied, but it might
be worth to accommodate multiple categories in future ver-
sions. This list has been manually revised by a medical ex-
pert who disambiguated the category consistently with the
mapping methodology used.
From FAM-HIST, we collected all occurrences of condition
and event entities and mapped them to our CONDITION
category. The SUBSTANCE category was augmented, in
part, based on the FEST resource. The terms collected from
FEST included substance names (also in English, when
available) as well as medical product names with and with-
out strength information. From ICD-10, both the disease
names corresponding to the 3 and the 4 digit codes were
preserved. Only 16% of the ICD codes were 3 digit codes.
From ICPC-2, we included all terms, sub-terms and short
forms under the CONDITION category except for the terms
appearing in the Procedure codes chapter, which were
mapped to the PROCEDURE category. Terms from the So-
cial problems chapter were excluded as most of these were
not strictly speaking medical conditions (e.g. lav inntekt
‘low income’). We observed a minor difference compared
to ICD between some terms associated to the same code
(e.g. Blindtarmsbetennelse vs. Uspesifisert appendisitt for
code K37, appendicitis).
In the case of LABV, we included under the SUBSTANCE
category all substance names, medicine and other medical
product names and brands together with type and strength
information when available (e.g. Kortison Tab 25 mg ‘Cor-
tisone Tablet 25 mg’). Lastly, all codes from PROC were
included without any filtering.
Table 5 presents the amount of total entries available from
various resources compared to MO. The total number of
categorized entries created after merging and excluding all
inter-resource overlaps was 78,105 with the original casing
and 77,320 when normalizing all entries to lowercase.

Resource Category # entries
MO Multiple 11,227
ALOC Multiple 287
FAM-HIST COND. 283
FEST SUBST. 26,234
ICD-10 COND. 10,765
ICPC-2 Multiple 9,420
LABV SUBST. 14,193
PROC PROC. 8,883
Total N/A 81,292

Table 5: Number and type of entries in different resources.

7. Resource-based Automatic Evaluation
Thanks to a certain amount of overlap between the mapped
MO entries and the other resources, we can use information
from the latter to automatically evaluate the former. Table 6
shows the overlap and the percentage of correct mappings.

Resource # overlap Correct (%) Category
ALOC 33 57.6 Multiple
FAM-HIST 22 63.6 COND.
FEST 744 97.3 SUBST.
ICD-10 307 97.7 COND.
ICPC-2 886 94.0 Multiple
LABV 297 85.5 SUBST.
PROC 89 97.8 PROC.

Table 6: Evaluation results of the mapped MO entries.

On average, 85% mappings were correct out of the total of
2,378 overlapping terms from the resources listed in Table
6. Approximately 21% of all mapped terms from MO were
thus evaluated (and corrected) automatically with the help
of the other resources. Most misclassifications occurred
with the ALOC and FAM-HIST resources and concerned
the ANAT-LOC and CONDITION categories.

8. Manual Evaluation
Given that the overlap between MO and the other resources
was limited to certain categories, we further performed a
manual evaluation of the automatically mapped MO entries
in order to assess their quality.
We randomly selected 1,128 terms to evaluate manually,
aiming at a balanced amount per category (100 each) and
mapping method. We included all available terms for cat-
egories where the total amount of terms remained below
100. The terms were categorized by a medical expert with-
out access to the automatically mapped categories and the
mapping method used. We present the per-category preci-
sion and recall in Table 7, where the number of terms in the
last column refers to manually assigned labels.
112 terms were labeled as ‘OTHER’ in cases where a term
did not belong to any of the 12 categories indicated or when
terms were outside of the area of expertise of the evalua-
tor. Table 7 excludes OTHER, as this was not part of the
automatically mapped categories. The percentage of cor-
rectly categorized entries including and excluding terms la-
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Category Prec Recall #
ABBREV 0.969 0.750 124
ANAT-LOC 0.928 0.796 113
CONDITION 0.915 0.623 138
DISCIPLINE 0.702 0.855 69
MICROORG 0.871 0.976 83
ORGANIZATION 0.548 0.714 56
PERSON 0.593 0.923 52
PHYSIOLOGY 0.710 0.815 81
PROCEDURE 0.793 0.821 84
SERVICE 0.667 0.468 47
SUBSTANCE 0.809 0.905 84
TOOL 0.846 0.906 85
Total 0.779 0.796 1,016
ORG+SER 0.830 0.854 103
Total ORG+SER 0.815 0.839 1,016

Table 7: Manual evaluation results.

beled as OTHER, was 71.5% and 79.4% respectively. In
20 cases, SERVICE and ORGANIZATION were indicated
as alternative labels to each other. We therefore compute
evaluation measures also with these two categories merged
(ORG+SER). This yields in total 82% correct labels when
excluding OTHER.
According to the confusion matrix in Figure 1, most auto-
matic categorization errors occurred between CONDITION
and PHYSIOLOGY. (SERVICE was mapped to ORGANI-
ZATION here.)

Figure 1: Confusion matrix over categories.

Errors related to the PERSON category were mostly con-
nected to the use of person as keyword with the KW-E
strategy, which generated false positives such as schizoid
personlighetstype ‘schizoid personality type’. Some cat-
egorization errors occurred because of the lack of pre-
fix information, e.g. in the case of the keyword refleks
‘reflex’ in arefleksi ‘areflexia’ and hyperrefleksi ‘hyper-

reflexia’, which were both mapped to PHYSIOLOGY in-
stead of CONDITION. This indicates that taking into con-
sideration prefixes would contribute to improving the auto-
matic categorization, especially for the KW-E strategy. The
category label confusions between TOOL and ANAT-LOC
originated from the keyword apparat, which proved to be
ambiguous for the proposed categories, not only meaning
‘device’ and thus mappable to TOOL, but also meaning ‘ap-
paratus, system’ as in immunapparatet ‘immune system’
and thus belonging to ANAT-LOC.
Most correct mappings (88.3%) with a single strategy were
obtained using suffixed (SUFF), followed by the keyword
mapping from first nouns (KW-1N, 79.9%) and entries
(KW-E, 76.6%). The iterative mapping (ITER) yielded
considerably fewer correct mappings, only 64.7%. When
multiple strategies opted for the same category label, 98.2%
of terms were correctly categorized.
As a final step during the resource creation, we revised the
automatic categories based on the manually assigned ones.
The updated count of terms per category in the resource af-
ter merging with other databases (eliminating overlap) and
incorporating the evaluation results is reported in Table 8.

Category # entries
SUBSTANCE 41,365
CONDITION 24,071
PROCEDURE 10,420
ANAT-LOC 658
DISCIPLINE 387
ABBREV 236
PERSON 232
TOOL 216
MICROORGANISM 193
OTHER 112
PHYSIOLOGY 112
ORGANIZATION 103
Total (original casing) 78,105

Table 8: Final term counts per category in the resource.

9. Conclusion
We introduced the first Norwegian lexical resource of cate-
gorized medical entities and provided an overview of the
process of its creation. The resource unites information
from medical databases as well as entries automatically
mapped from a medical lexicon. A manual evaluation of
a subset of the mapped terms confirmed that the automatic
mappings were of a suitable quality to be used as additional
supervision signal with machine learning based NER ap-
proaches. In future work we plan to apply the resource in
medical entity recognition for Norwegian, using it to pro-
vide initial categories for distant supervision. We also plan
to perform annotations with multiple raters and measure
inter-annotator agreement for the proposed categories.
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Swellshark: A generative model for biomedical
named entity recognition without labeled data. CoRR,
abs/1704.06360.
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Abstract 
Medical language exhibits large variations regarding users, institutions, and language registers. With large parts of clinical information 
only documented in free text, NLP plays an important role in unlocking potentially re-usable and interoperable meaning from medical 
records in a multitude of natural languages. This study highlights the role of interface vocabularies. It describes the architectural 
principles and the evolution of a German interface vocabulary, which is under development by combining machine translation with 
human annotation and rule-based term generation, yielding a resource with 7.7 million raw entries, each of which linked to the reference 
terminology SNOMED CT, an international standard with about 350 thousand concepts. The purpose is to offer a high coverage of 
German medical jargon, in order to optimise terminology grounding of clinical texts by NLP systems. The core resource is a manually 
maintained table of English-to-German word and chunk translations, supported by a set of language generation rules. We describe a 
workflow consisting in the enrichment and modification of this table by human and machine efforts, together with top-down and bottom-
up methods for terminology population. A term generator generates the final vocabulary by creating one-to-many German variants per 
SNOMED CT English description. Filtering against a large collection of domain terminologies and corpora drastically reduces the size 
of the vocabulary in favour of terms that can reasonably be expected to match clinical text passages within a text-mining pipeline. An 
evaluation was performed by a comparison between the current version of the German interface vocabulary and the English description 
table of the SNOMED CT International release. An exact term matching was performed with a small parallel corpus constituted by text 
snippets from different clinical documents. With overall low retrieval parameters (with F-values around 30%), the performance of the 
German language scenario reaches 80 – 90% of the English one. Interestingly, annotations are slightly better with machine-translated 
(German – English) texts, using the International SNOMED CT resource only.       

Keywords: clinical language, under-resourced languages, technical term generation 

 

1. Introduction 

Clinical documentation addresses the needs of health 
professionals to communicate, collect, and share 
information for joint decision making, to summarize 
heterogeneous data, and to customize them to provide 
optimal support to different use cases.  
Electronic health records (EHRs), besides their primary 
purpose of data presentation and visualisation, bear the 
potential of large data analysis. It has turned out that 
structured data do not optimally meet clinicians’ 
documentation and communication requirements, which 
explains their preference of free text and a general tendency 
of bias regarding structured (and especially coded) clinical 
data. 
Clinical information ecosystems, their support by 
computers, and particularly the role clinical language plays 
therein are far from being ideal. Yet modern clinical care, 
biomedical research and the translation of the latter into 
clinical care require ontological and terminological 
standards in order to make clinical information and data 
reliable, precise and interoperable.  
The need for health data interoperability and exchange is 
addressed by a multitude of terminology and classification 
systems, which categorize and define technical terms and 
their meaning (Schulz et al. 2019; Bodenreider et al., 2018). 
A certain tragedy lies not only in the fact that these systems 
interoperate with each other only in exceptional cases and 
their contents are barely mappable, but also that, despite 
their commitment to language and concept representation, 
they are far from representing the jargon that clinicians use 
in their daily practice. Yet there are some reasons to be 
optimistic, given the increasing acceptance of large, well-

curated terminology systems like SNOMED CT (Millar 
2016) and LOINC, used by impressive applications like 
OHDSI, demonstrating the potential of universal 
terminologies to integrate and compare data extracts from 
a variety of clinical information sources (Hripcsak et al., 
2018).    
Clinical language is largely different from the standard 
language, including the language used in medical literature. 
Text is produced in a hurry; often entered directly by 
clinicians, partly by dictation (with subsequent 
transcription), increasingly by using speech recognition. 
Often, no documentation standards are used. 
In all these cases, parsimony of expression dominates, to 
the extent that ambiguous expressions, as long as they are 
short enough, are preferred, assuming the reader has the 
context to disambiguate them. Abbreviations and acronyms 
abound, so that many clinical texts appear overly cryptic 
even to specialists from other disciplines, let alone to 
patients. Clinical language is furthermore characterized by 
incomplete sentences, by lack of grammatical correctness 
and by a wild mixture of hybrid technical terms that blend 
the host language with fragments of English, Latin and 
Greek vocabularies. 
The vocabulary mismatch between the clinical jargon and 
the controlled language of medical terminology systems is 
immense. For instance, the SNOMED CT concept label 
“Primary malignant neoplasm of lung” (the eighth most 
common cause of death worldwide) is unlikely to be 
literally found in any text written by a doctor. Even in 
scientific texts (which are of better editorial quality), such 
artificial terms are highly uncommon. There is no single 
occurrence of the above term in 27 million MEDLINE 
records (opposed to about 150,000 hits for the synonym 
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“lung cancer”). It is no wonder that terminology 
implementation studies have shown that standardized terms 
are often inadequate for clinical use (Højen et al., 2014).  
This gap can only be filled by a bottom-up, community-
driven non-prescriptive terminology building approach 
(Schulz et al, 2017). Interface vocabularies, also known as 
(user) interface terminologies have been proposed (Kalra et 
al, 2016) as mediators between the real-world clinical 
language in a given setting (local, national, and user-
specific) and international terminology standards like 
SNOMED CT. 
The content of interface vocabularies depends on a series 
of factors; from language groups (e.g. German, French) to 
dialects (German spoken in Austria, French spoken in 
Canada, etc.) to user groups (physicians, nurses, 
laypersons) to institutions (department A of hospital X, 
clinic B inside health centre Y) to document types and 
document sections. The choice of terms also depends on the 
way the text is produced. Fig. 1 shows how medical 
language registers are shaped along several axes.  
Ideally, an interface vocabulary maps every lexeme into 
this space, so that most terms become unambiguous 
according to the context in which they are used. If this 
context is not known, or not specified in the dictionary, 
lexical ambiguity becomes a main source of errors in 
natural language processing.   
A manual creation of highly fragmented and specialised 
interface vocabularies prohibits itself. Instead, automated 

means should support interface vocabulary creation and 
management.  
There are several use cases for clinical interface 
vocabularies, some of which are directly related to NLP 
systems, particularly systems for semantic search within 
term lists of whole documents, and information extraction. 
However, collections of interface terms also are important 
as parts of mono and bilingual dictionaries for specific 
technical or scientific domains.  
Equally important is their use as source for value sets for 
structured data entry within data acquisition forms, where 
the terms should be close to the users' language 
preferences.  

2. Materials and Methods 

2.1 Source Terminology 

SNOMED CT (Millar, 2016) is an ontology-based 
terminology owned and maintained by the standards 
development organisation SNOMED International. 
SNOMED CT is intended to provide the vocabulary needed 
to represent electronic health records. The current 
international release has about 350,000 active 
representational units, called SNOMED concepts. They 
represent language-independent meanings and are rooted in 
a formal framework based on the description logics OWL-
EL. In this sense, SNOMED CT is very advanced 
compared to other terminologies. E.g., the concept 

Fig. 1 – Determinants of medical interface terms 
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Thyroiditis is defined as logically equivalent to a Disorder 
with Inflammatory morphology that is located at some 
Structure of the thyroid gland. For several natural 
languages, SNOMED concepts are linked to one or more 
technical terms via a so-called description table. E.g., the 
international English version includes about 950,000 such 
terms, divided into fully specified terms, i.e. self-
explaining, often synthetic labels like the one discussed in 
the previous section, and synonyms, which are closer to the 
clinical language in use and correspond to what we have 
introduced as "interface terms" in section 1. SNOMED CT 
terms range from single words ("appendectomy", "aspirin") 
to complex phrases and even sentences ("Computed 
tomography of neck, chest, abdomen, and pelvis without 
contrast", "Product containing only sulfamethoxazole and 
trimethoprim in parenteral dose form").  
Besides English, Spanish is the only language for which an 
official SNOMED CT version, maintained by SNOMED 
International, exists. Danish and Swedish versions have 
been locally created, however with only one localised term 
per concept. For other languages (French, Dutch), partial 
localization efforts are ongoing. However, for many 
important languages (German, Italian, Russian, Japanese, 
Chinese) no SNOMED CT language resources exist, let 
alone for the multitude of smaller languages, despite their 
importance in clinical documentation and communication.    

2.2 Resources for term harvesting and scoring 

Several domain-specific, German language clinical corpora 
with clinical discharge summaries have been collected at 
the authors' institution, thanks to several projects on clinical 
NLP, with authorisation from the institutional ethics 
committee. In particular, a corpus with about 30,000 
cardiology summaries, one with about 5,000 melanoma-
related summaries, and one with about 2,000 colorectal 
cancer summaries were harvested. Another source of 
clinical language was a database with about 1.7 million 
unique clinical problem list entries. In addition, the official 
Austrian drug dictionary was used as a source. For scoring 
and filtering the machine-generated German interface 
vocabulary, a collection of 17 German medical 
terminology systems was exploited, together with a dump 
from the leading German Medical Journal, the German 
Wikipedia, filtered by domain, and several drug 
repositories with drug names, ingredients, and additional 
drug-related information.   

2.3 General Method 

A more detailed description of the workflow can be found 
elsewhere (Hashemian Nik et al., 2019). The main idea of 
our approach is the combination of machine translation 
with human translation and validation, as well as a 
generative process that assembles translations of complete 
SNOMED CT terms out of their – often highly repetitive – 
single word or short chunk translations. Briefly, the 
terminology building process can be described as follows:  

Pre-processing 

1. Definition of the source terminology (in our case, 
English textual descriptions (terms) linked to 
SNOMED CT codes); 

2. Identification of terms that are identical across 
existing translations (e.g. Latin names of 
organisms); 

3. Rule-based chunking of terms into single tokens,  
noun phrases and prepositional phrases; 

4. Sorting chunks and words by decreasing 
frequency; 

5. Submission to neural Web-based translation 
engines (Google translate, DeepL).  

These steps have to be repeated for new terms that come 
with each semi-annual updates of SNOMED CT. 

Specification and implementation 

6. Specification of grammar-specific annotations, 
e.g. POS, gender, number and case for nouns, case 
for prepositions. 

7. Implementation of term building routines, e.g. for 
adjective / noun inflection and single-word 
composition, using Python scripts. 

Manual curation 

8. Manual checking of chunk translation results; 
9. Adding new synonyms and spelling variants 
10. Adding short forms (acronyms, abbreviations); 
11. Identifying ambiguous source terms and adding 

context-aware translations of longer phrases; 

Term creation and manual validation 

12. Execution of term assembly routines; 
13. Manual assessment of results for formal, stylistic, 

and content correctness; accordingly repeating 
former steps, particularly 6, 7, 10, 11. 

Bottom-up enhancement by corpora 

14. Creation of n-gram lists ("real-world chunks") 
from clinical corpora, according to the rules 
developed in 3; 

15. Manual mapping of real-world chunks to chunk 
translation table, iteration of steps 12 and 13. 

Validation of progress 

16. Validation against benchmarks; blind checking of 
results against fully machine-translated terms; 

17. Manual validation of concept annotations within 
an NLP pipeline that uses the terminology on real 
clinical texts. 

Enhancement and filtering  

18. Exclusion of short (length < 4 characters) 
acronyms, unless embedded in context (e.g., "CT" 
is excluded, "CT scan" is preserved). 

19. Selection of resources (corpora, dictionaries, 
databases) to be used as sources of truth for 
filtering and enhancement; 

20. Semi-automated addition of brand names using 
national drug databases; 

21. Creation of rules to harvest spelling variants from 
external sources (e.g. "ce" vs. "ze", hyphenation 
vs. spaces or single-word compounds); 

22. Defining scoring metrics based on token and n-
gram occurrences in external sources; 

23. Manual collection of negative examples to 
constitute patterns for term candidate rejection. 
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Terminology profiling 

24. Using scores and other parameters to filter the 

terminology according to different usage profiles, 

e.g. for text mining or value set creation. 

2.4 Benchmarking 

The interface terminology is periodically checked against a 
benchmark that was built on top of the results of a 
multilingual manual SNOMED CT annotation experiment 
(Miñarro-Gimémez et al., 2018, 2019) for which a small 
(average 3650 words), but highly diverse corpus had been 
built, composed by text snippets from clinical documents 
in six European languages (English, Swedish, French, 
Dutch, German and Finnish), out of which a parallel corpus 
was created by medical translators. Texts were annotated 
with SNOMED CT codes by terminology experts. These 
texts and related code assignments had never been used in 
the interface vocabulary building process. 

For interface vocabulary benchmarking we re-used the 
German and English portions of this parallel corpus, 
together with the SNOMED CT codes attached. For the 
SNOMED CT representation, two reference standards were 
used:  

• Reference standard R1: annotations using the 
English, French, Swedish and Dutch versions of 
SNOMED CT on the respective parallel texts 
performed by nine terminologists, totalling 2,090 
different SNOMED CT codes; 

• Reference standard R2: annotation using the 
English (International) version of SNOMED CT 
on the English portion of the corpus, performed by 
two annotators, totalling 1075 different codes 
(reference standard 2).  

These reference standards were used to compare the 
following scenarios by using a very simple term mapper:  

a. SNOMED codes retrieved by matching terms of 
our German interface vocabulary with the German 
portion of the corpus; 

b. SNOMED codes retrieved by matching English 
terms of the International SNOMED CT 
description table1  with the German portion of the 
corpus, machine-translated into English by using 
the freely available Google translator;  

c. SNOMED codes retrieved by matching English 
terms of the International SNOMED CT 
description table1 with the English portion of the 
corpus. 

The concept mapper is based on exact match between one 
or more decapitalised tokens, iterating over the vocabulary 
reversely ordered by string length. For each match of a 
lexicon entry the corresponding string is removed from the 
corpus and the SNOMED CT code(s) assigned to it is (are) 
stored. The resulting code sets are compared to the set of 
codes in R1 and R2; and precision, recall and F-measures 
are calculated.  

 
1 which includes canonical and interface terms 

3. Results 

The work started in 2014 with limited resources (one part-
time terminologist and one to three medical students 
working on average 8 hours per week). Since then, it has 
been subject to constant optimization and quality 
improvement.   

The current size of the terminology is about 7.7 million 
records, each record consisting of the SNOMED identifier, 
an interface term ID, the English source term and the 
automatically generated German interface term. Table 1 
shows an example of eight German interface terms, 
automatically created out of two English SNOMED terms. 
All eight translations are correct in content and 
understandable, but only those in bold are grammatically 
correct and likely to be found in clinical documents. The 
interface terms were generated out of 125 thousand 
German word / chunk translations from about 100,000 
English words / chunks.   

An analysis of the current quality of the interface 
terminology by blinded human assessment terminology 
stated equivalence regarding content correctness when 
comparing a random interface term with the (only) term 
that resulted from the machine translation system DeepL 
(Hashemian Nik et al., 2019). However, the results show 
deficits regarding grammar, spelling, and style issues of the 
current state of the interface vocabulary. The same study 
revealed that a case insensitive, spelling variation tolerant 
match between an ideal translation suggested by a domain 
expert (not knowing the generated results) occurred with 
half of the machine-generated interface terms.   

The combinatory explosion observed especially with long 
SNOMED term translations, many of which are not ideal 
and some of them not even understandable makes filtering 
and profiling necessary. 

Code English German 

5
3

7
0

1
0

0
4
 

Sebaceous 

gland 

activity 

Glandula sebacea Tätigkeit 

Glandula sebacea Aktivität 

Talgdrüsentätigkeit 

Talgdrüsenaktivität 

Sebaceous 

gland 

secretion 

Glandula sebacea Absonderung 

Glandula sebacea Sekretion 

Talgdrüsenabsonderung 

Talgdrüsensekretion 

Table 1: Example of a SNOMED CT code, two English 
terms and eight generated German terms 

We started with three profiles, viz. (i) one for text mining, 
limited to terms with a maximum of six tokens; another one 
(ii) in which only terms that literally matched the resources 
(cf. subsection 1.2) were preserved; and a third one (iii) 
which allowed more flexibility regarding plausibility 
checking, and in which up to 50 synonyms above a quality 
threshold were accepted.   
Whereas (i) yielded 506 thousand interface terms (6.5% of 
the raw list), (ii) yielded only 89 thousand (1.2%), and (iii) 
387 thousand. The corresponding coverage of SNOMED 
CT codes was 39% for (i), 17% for (ii) and 29% for (iii).  
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The rationale for producing different profiles is explained 
by the use cases to be served by the interface vocabulary. 
For text mining purposes, exact or moderately fuzzy 
matches of terms with more than six tokens are very 
unlikely. On the other hand, implausible terms (because of 
combinations), which hardly ever match are harmless.  

In cases where interface terms are created for human use 
(e.g. supporting picklists or auto-completion functionality 
for data entry), well-formedness, comprehensibility and 
currency are crucial. However, by using a strict filter, many 
of the synthetically created labels, like the above-discussed 
"primary malignant neoplasm of the lung" would be thrown 
out, because they do not occur in medical documents and 
not even in other terminology sources. The benchmark 
results are given in Table 2 and Table 3. 

 

Experiment R1 Precision Recall F1 

a. German texts 0.49 0.16 0.28 

b. German texts,  
 machine translated 

0.48 0.16 0.28 

c. English texts 0.50 0.19 0.31 

Table 2: Retrieval performance using reference standard 
R1 (pooled annotations by nine terminology experts, 
performed with English, Swedish, Dutch, and French 
SNOMED CT translations, performed on the respective 
language portion of the ASSESS-CT parallel corpus). 

 

Experiment R2 Precision Recall F1 

a. German texts 0.36 0.23 0.29 

b. German texts, 
 machine translated 

0.37 0.25 0.30 

c. English texts 0.41 0.31 0.35 

Table 3: Retrieval performance using reference standard 
R2 (pooled annotations by two terminology experts, 
performed with the SNOMED CT version on the English 
language portion of the ASSESS-CT parallel corpus). 
 

4. Discussion and Outlook 

We have outlined a complex heuristics that generates 
German interface terms for SNOMED CT concepts. In a 
previous work, we had demonstrated that its quality was 
roughly comparable to fully machine-generated terms. The 
advantage of our approach however was the high term 
productivity compared with machine translation, especially 
the assembly of term variants that are rare but useful, 
especially for data entry and text mining. A natural next 
step would be to exploit neural term harvesting approaches 
for additional terminology enrichment. Word embeddings 
might help retrieve new synonyms, but they also will 
require large amounts of training resources, which are 
difficult to acquire in a clinical context, let alone sharable 
among researchers.  

Another strand of future work is the increased 
incorporation of acronyms and other short forms into the 
resource. So far, we have re-used existing acronym lists and 
have manually expanded acronyms from our clinical 
sources, but the ambiguity of two and three character 
acronyms is high. This is the reason why single acronyms 

with four characters and are suppressed in our pipeline, 
whereas longer terms containing them are released, e.g. 
"DM type 1" where sense disambiguation can be expected 
from the local context. 

The benchmarking results provide interesting insights in 
the problems around terminology grounding of clinical 
texts, the peculiarities of a huge terminology like 
SNOMED CT, about the current quality of the German 
interface terminology and finally about the raison d'être of 
terminology translations in general.  

It must be emphasised that the results given in tables 2 and 
3 were not the result of text analysis in a NLP pipeline (for 
which better results should be expected, but of an overly 
simple term matching algorithm). The problem of finding 
the right SNOMED CT code for a passage of clinical text – 
even by terminology experts – was described in depth by 
Miñarro-Gimémez et al. (2018, 2019), who reported an 
astonishingly low inter-annotator agreement of about 40% 
(Krippendorff's ). That a team of nine annotators had 
come up with more than double the numbers of codes for 
the same content (in four languages), compared to a pair of 
coders (for English only) sheds light on the high degree of 
personal discretion involved. Of course, this meant that for 
many chunks of clinical meaning there were many 
annotations with semantically closely related codes, which 
explains the overall low recall, especially in the R1 
scenario. The expert annotation task had also privileged 
SNOMED pre-co-ordinations, e.g. for "Fracture of the neck 
of the femur", which did not match expressions in the text 
like "The neck of the left femur was broken". Our term 
matching text might have matched the single codes "neck", 
"femur", "left", and "broken". However, this phenomenon 
is expected in all scenarios. Another characteristic of the 
corpus, which explains low performance values, is the 
frequency of acronyms and other short forms, e.g. the 
roman numbers "I" to "XII" for the cranial nerves. 

Coming back to the primary purpose of this benchmarking, 
viz. the comparison of the German interface vocabulary 
created by the authors with the nearly one-million English 
term list that comes with the International SNOMED CT 
release (and which includes many close-to-user terms), the 
figures are remarkable insofar the performance of the 
German language scenario reaches 80 to 90% of the 
performance of the English one.  

Finally, the figures on the alternative strategy, viz. 
machine-translating non-English clinical texts to English 
with Google Translate and checking against the original 
English SNOMED CT term list, could be a starting point 
for a radical re-thinking of multilingual text processing. Is 
it still worthwhile developing multilingual resources if 
neural machine translation (even not trained with specific 
clinical text) yields increasingly better results? 
Concentrating human efforts on improving the already very 
rich inventory of tools and resources for English could then 
be a better idea than creating and maintaining language 
resources for a multitude of different languages with 
insufficient financial and human resources.  

Current versions of the resource can be downloaded from 
http://user.medunigraz.at/stefan.schulz/mugit/  
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2Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{leo.bouscarrat, antoine.bonnefoy}@euranova.eu
{leo.bouscarrat, cecile.capponi, carlos.ramisch}@lis-lab.fr

Abstract
Translating biomedical ontologies is an important challenge, but doing it manually requires much time and money. We study the
possibility to use open-source knowledge bases to translate biomedical ontologies. We focus on two aspects: coverage and quality. We
look at the coverage of two biomedical ontologies focusing on diseases with respect to Wikidata for 9 European languages (Czech,
Dutch, English, French, German, Italian, Polish, Portuguese and Spanish) for both ontologies, plus Arabic, Chinese and Russian for the
second one. We first use direct links between Wikidata and the studied ontologies and then use second-order links by going through
other intermediate ontologies. We then compare the quality of the translations obtained thanks to Wikidata with a commercial machine
translation tool, here Google Cloud Translation.

Keywords: biomedical, ontology, translation, wikidata

1. Introduction

Biomedical ontologies, like Orphanet (INSERM, 1999b),
play an important role in many downstream tasks (Andronis
et al., 2011; Li et al., 2015; Phan et al., 2017), especially in
natural language processing (Maldonado et al., 2017; Nayel
and Shashrekha, 2019). Today either the vast majority of
these ontologies are only available in English or their re-
strictive licenses reduce the scope of their usage. There is
nowadays a real focus on reducing the prominence of En-
glish, thus on working on less-resourced languages. To do
so, there is a need for resources in other languages, but the
creation of such resources is time and money consuming.
At the same time, the Internet is also a source of incredi-
ble projects aiming to gather a maximum of knowledge in
a maximum of languages. One of them is the collabora-
tive encyclopedia Wikipedia, opened in 2001, which cur-
rently exists in more than 300 languages. As it contains
mainly plain text, it is hard to use it as a resource as is.
However, several knowledge bases have been built from it:
DBpedia (Lehmann et al., 2015) and Wikidata (Vrandečić
and Krötzsch, 2014). The main difference between these
two knowledge graphs is the update process: while Wiki-
data is manually updated by users, DBpedia extracts its in-
formation directly from Wikipedia. Compared to biomedi-
cal ontologies they are structured using less expressive for-
malisms and they gather information about a larger domain.
They are open-source, thus can be used for any down-
stream tasks. For each entity they have a preferred label,
but sometimes also alternative labels that can be used as
synonyms. For example, the entity Q574227 in Wikidata
has the preferred label 2q37 monosomy in English along
with the alternative labels in English: Albright Hereditary
Osteodystrophy-Like Syndrome and Brachydactyly Men-
tal Retardation Syndrome. Moreover, entities in these
two knowledge bases also have translations in several lan-
guages. For example, the entity Q574227 in Wikidata has
the preferred label 2q37 monosomy in English and the pre-
ferred label Zespół delecji 2q37 in Polish. They also fea-

ture some links between their own entities and entities in
external biomedical ontologies. For example, the entity
Q574227 in Wikidata has a property Orphanet ID (P1550)
with the value 1001.
By using both kinds of resources, biomedical ontologies
and open-source knowledge bases, we could partially en-
rich biomedical ontologies in languages other than English.
As links between the entities of these resources are already
existing, we expect good quality. To further enrich them we
could even look at second-order links since many biomedi-
cal ontologies also contain some links to other ontologies.
The goal of this work is twofold:

• to study the coverage of such open-source collabo-
rative knowledge graphs compared to biomedical on-
tologies,

• to study the quality of the translations using first- and
second-order links and comparing this quality with the
quality obtained by machine translation tools.

This paper is part of a long-term project whose goal is to
work on multilingual disease extraction from news with
strategies based on dictionary expansion. Consequently, we
need a multilingual vocabulary with diseases which are nor-
malized with respect to an ontology. Thus, we focus on one
kind of biomedical ontologies, that is, ontologies about dis-
eases.

2. Resources and Related Work
There has already been some work trying to use open-
source knowledge bases to translate biomedical ontologies.
Bretschneider et al. (2014) obtain a German-English medi-
cal dictionary using DBPedia. The goal is to perform in-
formation extraction from a German biomedical corpus.
They could not directly use the RadLex ontology (Langlotz,
2006) as it is only available in English. So, they first ex-
tract term candidates in their German corpus. Then, they
try to match the candidates with the pairs in their German-
English dictionary. If a candidate is in the dictionary, they
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Figure 1: Example of first-order link (left) and second-order link (right)

use the translation to match with the RadLex ontology. Fi-
nally, this term candidate alongside with the match in the
RadLex ontology is processed by a human to validate the
matching.
Alba et al. (2017) create a language-independent method to
maintain up-to-date ontologies by extracting new instances
from text. This method is based on a human-in-the-loop
who helps tuning scores and thresholds for the extraction.
Their method requires some “contexts” to start finding new
entities to add to the ontology. To bootstrap the contexts,
they can either ask a human to annotate some data or use
an oracle made by the dictionary extracted from the DBpe-
dia and Wikidata using word matching on the corpus. They
then look for good candidates, i.e., a set of words surround-
ing an item, by looking for elements in similar contexts to
the one found using the bootstrapping. Then, a human-in-
the-loop validates the newly found entities, adding them to
the dictionary if they are correct, or down-voting the con-
text if they are not relevant entities.
Hailu et al. (2014) work on the translation of the Gene On-
tology from English to German and compare three different
approaches: DBpedia, the Google Translate API without
context, and the Google Translate API with context. To
find the terms in DBpedia they use keyword-based search.
After a human evaluation, they find that translations ob-
tained with DBpedia have the lowest coverage (only 25%)
and quality compared to those obtained with Google Trans-
late API. However, to compare the quality of the different
methods they only use the translation of 75 terms obtained
with DBpedia compared to 1,000 with Google Translate
API. They also note that synonyms could be a useful tool
for machine translation and that using keyword-based exact
match query to match the two sources could explain the low
coverage.
Silva et al. (2015) compare three methods to translate
SNOMED CT from English to Portuguese: DBpedia, ICD-
9 and Google Translate. To verify the quality of the dif-
ferent approaches they use the CPARA ontology which has
been hand-mapped to SNOMED CT. It is composed of 191
terms and focused on allergies and adverse reactions. They
detect coverage of 10% with the ICD-9, 37% with DBpedia
and 100% with Google Translate. To compare the quality of
their translations they use the Jaro Similarity (Jaro, 1989).
We elaborate on these ideas by adding some elements. First
of all, compared to Hailu et al. (2014) and Silva et al.
(2015), we use already existing properties to perform the
matching between the biomedical ontology and the knowl-

edge graph, which should improve the quality with regard
to the previous works. We also go further than these first-
order links and explore the possibility of using second-
order links to improve the coverage of the mappings be-
tween the sources. Compared to the same works, we also
present a more complete study, Hailu et al. (2014) only
evaluate on 75 terms and Silva et al. (2015) on 191 terms.
We compare the coverage and quality of the entire biomed-
ical ontology containing 10,444 terms. Furthermore, as we
want to use the result of this work for biomedical entity
recognition, synonyms of entities are really important for
recall and also for normalisation, thus we also quantify the
difference of quantity of synonyms between the original
biomedical ontology and those found with Wikidata.

In this work, as we focus on diseases, we use a free dataset
extracted from Orphanet (INSERM, 1999b) to perform the
evaluation. Orphanet is a resource built to gather and im-
prove knowledge about rare diseases. Through Orphadata
(INSERM, 1999a), free datasets of aggregated data are up-
dated monthly. One of them is about rare diseases, includ-
ing cross-references to other ontologies. The Orphadata
dataset contains the translation of 10,444 entities for En-
glish, French, German, Spanish, Dutch, Italian, Portuguese,
10,418 entities in Polish and 9,323 in Czech. All the trans-
lations have been validated by experts, thus can be used as
a gold standard for multilingual ontology enrichment. One
issue of this dataset is that rare diseases are, by definition,
not well known. Therefore, one may expect a lower cov-
erage than a less focused dataset; thus we propose to also
measure the coverage of another dataset, Disease Ontology
(Schriml et al., 2019). However we cannot use it to evaluate
the translation task as it does not contain translations.

As an external knowledge base, we use Wikidata. It
has many links to external ontologies, especially links to
biomedical ontologies such as wdt:P1550 for Orphanet,
wdt:P699 for Disease Ontology, and wdt:P492 for the On-
line Mendelian Inheritance in Man (OMIM). It is also im-
portant to note that, over the 9 languages we studied, only
the Czech Wikipedia has less than 1,000,000 articles. This
information can be used as a proxy for the completeness of
the information in each language on Wikidata. We prefer it
over DBpedia as we find it easier to use, especially to find
the properties.

As a machine translation tool, we use Google Cloud Trans-
lation. It is a paying service offered by Google Cloud.
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3. Methods and Experiments
In this section, we first define the notations used in this pa-
per, then we describe how we extract the first- and second-
order links from our sources. Afterwards, we describe how
we perform machine translation. The evaluation metrics are
subsequently explained and finally we describe our evalua-
tion protocol.

3.1. Definition and Notations
We define:

• eSi as an entity in the source knowledge base S,
S ∈ [O,W,B] where O is Orphanet, W is WikiData
and B are all the other external biomedical ontologies
used. An entity is either a concept in an ontology or
in a knowledge graph.

• ES = {eSi }i=1...|ES | is the set of all the entities in the
source S.

• E = EO ∪ EW ∪ EB is the set of all the entities in
all the sources.

• Ll(e) is the preferred label of the entity e in the
language l, or ∅ if there is no label in this language.

• Ll(e) represents all the possible labels of the entity
e in the language l or ∅ if there is no label in this
language. Furthermore, Ll(e) ∈ Ll(e)

• T is a set of links, such that t ∈ T with
t = (esi , e

s′
j ), s 6= s′.

• G = (E, T ) is an undirected graph.

• V(ei) = {ej ∈ E|∃t ∈ T, t = (ei, ej)}, defines the
set of all the neighbours of the entity ei.

• W(e) = {v ∈ V(e)|v ∈ W}, defines the set of all the
neighbours that are in Wikidata of the entity e.

• MT ({s1, ..., sn}, l) is a function that returns the la-
bels {s1, ..., sn} translated from English to the lan-
guage l thanks to Google Cloud Translation.

3.2. Gathering Links between Entities
3.2.1. First-Order Links
The first step of our method consists in gathering all the
information about the sources. To obtain the gold transla-
tions, we use Orphadata. We collected all the JSON files
from their website1 on January 15, 2020. We extract the

1http://www.orphadata.org/cgi-bin/rare_
free.html

OrphaNumber, the Name, the SynonymList and the Exter-
nalReferenceList of each element in the files.
For WikiData we use the SPARQL endpoint2. We query
all the entities having a property OrphaNumber wdt:P1550,
and, for these entities, we obtain all their preferred labels
(rdfs:label) and synonyms (skos:altLabel), corresponding
to EO

i in the 9 European languages included in Orphanet.
The base aggregator of the synonyms uses a comma to sep-
arate them. In our case, this error-prone because the comma
can also be part of the label, for example one of the alterna-
tive label of the entity Q55786560 is 49, XXXYY syndrome.
We needed to concatenate the synonyms with another sym-
bol3. Thanks to the property which gives the Orphanum-
ber of the related entity in Orphanet we can create links
t = (eO, eW ) between an entity eWi in Wikidata and and
entity eOi in Orphanet.
The mapping is then trivial, as we have the OrphaNum-
ber in the two sources. On the left of Figure 1 we can
see that the entity Q1077505 in Wikidata has a property
Orphanet ID with the value 99827, thus we can create
t = (Q1077505W , 99827O). Nonetheless, the mapping is
not always unary, because several Wikidata entities can be
linked to the same Orphanet entity.
Formally, the set of Orphanet entities with at least one first-
order link is:

EF = {e ∈ EO|∃w ∈W, (e, w) ∈ T}
3.2.2. Second-Order Links
Orphanet provides some external references to auxiliary
ontologies. We add these references to our graph: t =
(eO, eB) ∈ T . Even if there are already first-order links
between Orphanet and Wikidata, we cannot ensure that all
the entities are linked. To improve the coverage of trans-
lations, we can use second-order links, creating an indirect
link when entities from Wikidata and Orphanet are linked
to the same entity in a third external source B. For exam-
ple, on the right of Figure 1, we extract the link between
the entity Q1495005 of Wikidata and the entity 121270 of
OMIM. We also extract from Orphanet that the entity 1551
of Orphanet is link to the same entity of OMIM. Therefore,
as a second-order relation, the entity Q1495005 of Wikidata
and the entity 1551 of Orphanet are linked.
The objective is to find some links t′ = (eW , eB) where
∃v ∈ V(eB) and v ∈ EO. Consequently, we are looking
for links between entities from Wikidata and the external
biomedical ontologies, whenever the entity in the external
biomedical ontology already has a link with an entity in
Orphanet.
For that purpose, we extract all the links between Wiki-
data and the external biomedical ontologies in the same
fashion as from Orphanet, using the appropriate Wiki-
data properties. In the previous example, we create
links (Q1495005W , OMIM : 121270B) ∈ T and
(1551O, OMIM : 121270B) ∈ T .

2https://query.wikidata.org/sparql can be
queried with the interface https://query.wikidata.
org/

3We made a package to extract entities from Wiki-
data: https://github.com/euranova/wikidata_
property_extraction
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We can now map Wikidata and Orphanet using second-
order links. This set of links is denoted as:

C = {e ∈ EO|∃(w, b) ∈ EW × EB ,

(e, b) ∈ T, (w, b) ∈ T}
We also define the set of all the second-order linked
Wikipedia entities of a specific Orphanet entity:

C(eO) = {w ∈ EW |∃b ∈ EB , (e, b) ∈ T, (w, b) ∈ T}

3.3. Machine Translation
We use Google Cloud Translation as a machine translation
tool to translate the labels of the ontology from English to a
target language. As we want to have the same entities in the
test set as for Wikidata, for each language we only translate
the Orphanet entities which have at least one first-order link
to an entity in Wikidata with a label in the target language.
So for an entity e, for the language l the output of Google
Cloud Translation is:

MT (Len(e), l)

3.4. Definition of Evaluation Metrics
In this section, we define the different evaluation metrics
that are used to evaluate the efficiency of the method.

3.4.1. Coverage Metric
To estimate the coverage of Wikipedia on a biomedical on-
tology we use the following metric:

Coverage(E1, E2, l) =
|{e ∈ E1|Ll(e) 6= ∅}|
|{e′ ∈ E2|Ll(e′) 6= ∅}|

where E1 and E2 are sets of entities.

3.4.2. Jaro Similarity and n-ary Jaro
In order to evaluate the quality of the translations, we fol-
low Silva et al. (2015) choosing the Jaro similarity, which
is a type of edit distance. We made this choice as we are
looking at entities. Whereas other measures such as BLEU
(Papineni et al., 2002) are widely used for translation tasks,
they have been designed for full sentences instead of rela-
tively short ontology labels. The Jaro Similarity is defined
as:

J(s, s′) =
1

3

(
m

| s | +
m

| s′ | +
m− t

m

)
s, s′ ∈ {a, ..., z}∗

with s and s′ two strings, | s | the length of s, t is half
the number of transpositions, m the number of matching
characters. Two characters from s and s′ are matching if
they are the same and not further than max(|s|,|s′|)

2 −1. The
Jaro Similarity ranges between 0 and 1, where the score is
1 when the two strings are the same.
However, since one Orphanet entity may have several
neighbour Wikidata entities, we cannot use the Jaro simi-
larity directly. We choose to use the max, for considering
the quality of the closest entity:

Jmax (s, [s1, ..., sn]) = max
s′∈[s1,...,sn]

J(s, s′)

3.4.3. Quality Metrics
From assessing the quality of the translations, we create 4
different measures with different goals. For each entity in
each language, there is a preferred label Ll(e) and a list
of all the possible labels Ll(e). All of the metrics range
between 0 and 1, the higher the better.

Mpl (e, [e1, ..., en], l) = Jmax (Ll(e), [Ll(e1), ..,Ll(en)])

Mbl (e, [e1, ..., en], l) = Jmax

(
Ll(e),

n⋃

i=1

Ll(ei)

)

Mmbl (e, [e1, ..., en], l) = mean
s∈Ll(e)

Jmax

(
s,

n⋃

i=1

Ll(ei)

)

MMbl (e, [e1, ..., en], l) = max
s∈Ll(e)

Jmax

(
s,

n⋃

i=1

Ll(ei)

)

Mpl , for principal label, compares the preferred labels
from Orphanet and Wikidata. This number is expected to
be high, but as there is no reason that Wikidata and Or-
phanet use the same preferred label, we do not expect it to
be the highest score. Nonetheless, as Wikidata is a collabo-
rative platform, a score of 1 on a high number of entities in
a different language could also indicate that the translations
come from Orphanet.
Mbl, for best label, compares the preferred label from Or-
phanet against all the labels in Wikidata. The goal here is
to verify that the preferred label of Orphanet is available in
Wikidata.
Mmbl, for mean best label, takes the average of the similar-
ity of one label in Orphanet against all the labels in Wiki-
data. This score can be seen as a completeness score, it
evaluates the ability of finding all the labels of Orphanet in
Wikidata.
MMbl, for max best label, takes the maximum of the sim-
ilarity of one label in Orphanet against all the labels in
Wikidata. The question behind this metric is: Do we have
at least one label in common between Orphanet and Wiki-
data? A low score here could mean that the relation is erro-
neous. We expect a score close to 1 here.
We used the same measures for the machine-translated
dataset, however, the difference between Mpl and Mbl
is expected to be smaller, as we are sure that the preferred
label from the translated dataset is the translation of the pre-
ferred label from Orphanet.
To obtain a score for these measures on the entire dataset,
we compute the average of the scores over all Orphanet en-
tities.

3.5. Protocol
The first step of our experiments is the extraction of first-
order and second-order links from Wikidata and Orphanet
as explained in 3.2.. Once these links are available, we
study them, starting with their coverage. To evaluate
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Mpl Mbl Mmbl MMbl
Lang 1st W 1+2nd W GCT 1st W 1+2nd W GCT 1st W 1+2nd W GCT 1st W 1+2nd W GCT
EN 85.5 87.5 N/A 91.5 92.1 N/A 84.1 80.5 N/A 97.3 96.6 N/A
FR 85.3 82.4 89.8 87.4 84.2 90.5 75.7 69.3 90.1 94.1 89.1 97.7
DE 77.1 67.8 80.5 79.1 70.3 81.6 67.5 60.9 83.4 88.7 79.0 95.4
ES 81.3 70.1 92.5 84.4 73.0 93.0 68.7 58.4 90.2 91.7 89.1 98.3
PL 78.0 63.8 82.0 82.0 61.3 83.2 66.6 55.9 85.0 90.7 77.3 95.7
IT 79.4 66.7 88.4 82.4 68.8 89.5 69.1 58.5 88.1 90.5 77.4 97.2
PT 79.9 64.9 83.6 82.1 66.5 87.6 73.7 60.8 68.4 93.5 83.5 93.3
NL 72.9 59.1 88.0 75.6 60.9 88.7 65.8 55.1 89.9 86.5 71.4 97.2
CS 76.3 52.8 81.9 79.1 54.9 83.3 67.5 52.3 85.4 88.7 68.8 95.3

Table 1: Scores of the different methods with the different metrics in function of the languages. 1st W represents the
quality of the first-order links with Wikidata, 1+2nd W the first and second-order links, and GCT the translations obtained
by Google Cloud Translation.

the coverage of Wikidata for each language, we compute
Coverage(EF , EO, l) for the 9 languages. We also com-
pute Coverage(C,EO, l) for second-order links. As Or-
phanet is focused on rare diseases, we do not expect a high
coverage in Wikidata. To verify this hypothesis, we do the
same evaluation on the Disease Ontology, which does not
focus on rare diseases.
Then, we study the quality of the different methods. We ap-
ply the 4 quality metrics defined in 3.4.3. for each language
on each method:

• First-order links: mean
eO∈EF

(M(eO,W(eO), l)

• Second-order links: mean
eO∈C

(M(eO, C(eO), l)

• Machine translation:
mean
eO∈EF

(M(eO,MT (LeO (l), l), l)

Finally, we look at the number of labels we can obtain for
both sources.

• Orphanet: mean
e∈EF

| Ll(e)|

• Wikidata: mean
e∈EF

∑
w∈W(e)

| Ll(w)|

• GCT: mean
e∈EF

|MT (Len(e), l)|

The number of synonyms of an entity e in a language l is:
| Ll(e)|, and we also remove the duplicates. We then aver-
age this over all the entities which are in a first-order link
and in Wikidata and Orphanet.

4. Results
In this part, we first present the results on the coverage of
Wikipedia on Orphanet, then we present the quality of the
translation. Afterwards, we show results about the number
of synonyms in both sources and finally we discuss these
results.4

4The results can be reproduced with this code: https://
github.com/euranova/orphanet_translation

4.1. Coverage
4.1.1. Orphanet
First, we evaluate the coverage for each language, i.e., the
percentage of entities in Orphanet which have at least one
translation in Wikidata.
The Orphadata dataset contains translations of English,
French, German, Spanish, Dutch, Italian, Portuguese, Pol-
ish and Czech. For Wikidata, the results depend on the
language as not all the entities have translations in every
language.

Language Orphanet Wikidata (%)
English 10,444 8,870 (84.9%)
French 10,444 5,038 (48.2%)
German 10,444 1,946 (18.6%)
Spanish 10,444 1,565 (15.0%)
Polish 10,171 1,329 (13.1%)
Italian 10,444 1,175 (11.3%)
Portuguese 10,444 921 (8.8%)
Dutch 10,444 888 (8.5%)
Czech 9,323 452 (4.8%)

Table 2: Number of translated entities in Orphanet and
number of Orphanet entities having at least one translation
in Wikidata with first-order links. The percentage of cover-
age is shown in parentheses.

As we can see in Table 2 that coverage depends on the lan-
guage. The coverage of English gives us the amount of
entities from Orphanet having at least one link with Wiki-
data. Here, we have 84.9% of the entities which are already
linked to at least one entity in Wikidata. It means that the
property of the OrphaNumber is widely used. We can also
note that the French Wikidata seems to carry more infor-
mation about rare diseases than the German Wikipedia. In-
deed French and German Wikipedias have approximately
the same global size5, but the German Wikidata contains
much less information about rare diseases.

5As of the 6th February 2020: https://meta.
wikimedia.org/wiki/List_of_Wikipedias
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Language Cov 1st (%) Cov 1st+2nd (%)
English 8,870 (84.9%) 9,317 (89.2%)
French 5,038 (48.2%) 7,922 (75.9%)
German 1,946 (18.6%) 6,350 (60.8%)
Spanish 1,565 (15.0%) 6,122 (58.6%)
Polish 1,329 (13.1%) 5,797 (57.0%)
Italian 1,175 (11.3%) 5,715 (54.7%)
Portuguese 921 (8.8%) 5,016 (48.0%)
Dutch 888 (8.5%) 5,081 (48.6%)
Czech 452 (4.8%) 3,180 (34.1%)

Table 3: Coverage in terms of number and percentage of en-
tities in Wikidata linked to Orphanet using first-order links
(Cov 1st) and first- plus second-order links (Cov 1st+2nd).

The next question is the quantity of new links we can obtain
by gathering second-order links.
Table 3 shows that the second-order links improve the cov-
erage. For English, the improvement is small. Thus, for
all the other languages, second-order links really help to
increase the coverage. It seems to be a good help for
average-resourced languages. We have used ICD-10, Med-
ical Subject Heading (MeSH), Online Mendelian Inheri-
tance in Man (OMIM), and, Unified Medical Language
System (UMLS) as auxiliary ontologies.

4.1.2. Disease Ontology
Even if the coverage for Orphanet in English is already
high, Orphanet is focused on rare diseases, which is really
specific. This specificity could have an impact on the cov-
erage as Wikidata is not made by experts. To verify if the
specificity of this ontology has an influence on coverage,
we have also looked at another biomedical ontology on dis-
eases, Disease Ontology. It is also about diseases but does
not focus on rare disease. Thus, this difference in generality
is expected to have an impact on the coverage.
The Disease Ontology contains 12,171 concepts. We plan
to use it for future works on other languages: Arabic,
Russian and Chinese. These three languages also have
Wikipedias with more than 1,000,000 articles on which we
could rely.
As expected, this less expert ontology seems to have bet-
ter coverage than Orphanet. Table 4 shows that, even if the
coverage for all the languages is better than for Orphanet,
the difference is not the same for all the languages. Espe-
cially, Spanish has a coverage in Disease Ontology superior
to that in Orphadata by more than 11%. We do not have an
explanation for these differences.
We do not compute the second-order links for Disease On-
tology because 97.2% of the Orphanet entities are already
linked using first-order links.

4.2. Quality
The next question concerns the quality of the translations
obtained. We can expect high-quality translations from
Google Cloud Translation, but to what extent? We also
want to compare the quality of translations obtained from
Wikidata using first-order and second-order links. The on-
tology we use is heavily linked directly to Wikidata, but

Language Wikidata (%)
English 11,833 (97.2%)
French 7,156 (58.8%)
Spanish 3,178 (26.1%)
Arabic 2,507 (20.6%)
German 2,500 (20.5%)
Italian 2,098 (17.2%)
Polish 1,869 (15.3%)
Chinese 1,789 (14.7%)
Portuguese 1,748 (14.3%)
Russian 1,706 (14.0%)
Dutch 1,650 (13.6%)
Czech 1,001 (8.2%)

Table 4: Number of entities in Disease Ontology translated,
number of Disease Ontology entities having at least one
translation in Wikidata with first order links and the per-
centage of coverage.

this is not the case for all the ontologies. For ontologies
with lower first-order coverage, one could expect higher in-
crease of the second-order coverage as observed in Table
3.
The first line of Table 1 shows the matching between the
English labels of the entities of Orphanet and Wikidata.
Mbl and MMbl are interesting here as they can be used
as an indicator of a good match. A score of 1 means that
one of the labels of Wikidata is the same as the preferred
label from Orphanet (Mbl) or one of the labels from Or-
phanet (MMbl). Considering that the scores are close to 1,
the matching seems to be good.
In Table 1 we can see that Google Cloud Translation gives
the best translations when evaluated with the Jaro Simi-
larity. Nonetheless, there are still some small dissimilar-
ities depending on the languages, it seems to works well
for Spanish and less well for German and Polish. We can
also note that for Portuguese, if the preferred label is well
translated (Mpl ,Mbl), it is less the case for the synonyms
(Mmbl).
Then, the first-order links from Wikidata have also some
satisfactory results, there are also dissimilarities between
the languages. Especially, first-order links seem to work
better than the average in French. Compared to second-
order links, first-order links are always better and the de-
crease in quality between both is substantial. Some noise is
probably added by the intermediate ontologies.

4.3. Synonyms
Hailu et al. (2014) suggests that synonyms play an im-
portant role in translation. Therefore, in addition to high-
quality translation, we are also interested in a high number
of synonyms. In our case, the synonyms are the different la-
bels available for each language for Orphanet and Wikidata,
and the translations of the English labels for Google Cloud
Translation. We want to evaluate the richness of each meth-
ods in terms of numbers of synonyms. For a fair compar-
ison, for each language we only work on the subset where
the entities in Wikidata have at least one label in the evalu-
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ated language.

Lang Orphanet Wiki 1st Wiki 1+2nd GCT
EN 2.3 5.8 166.77 2.3
FR 2.36 1.49 10.59 2.39
DE 2.56 1.84 5.93 2.65
ES 2.26 2.61 9.50 2.39
PL 2.54 2.01 6.88 2.65
IT 2.36 1.85 3.50 2.5
PT 1.62 1.60 2.40 2.41
NL 2.6 1.74 3.74 2.48
CS 2.2 1.74 1.71 2.13

Table 5: Average number of labels in the different sources
in function of the language. For Orphanet we only use the
subset of entities linked to entities in Wikidata with at least
one label in the studied language. For Google Cloud Trans-
lation, it is the translation of the English labels of Orphanet.

Table 5 shows that generally Orphanet seems to have more
synonyms than Wikidata when using first-order links only.
And the fact GCT has more synonyms means that Orphanet
has more labels in English than in other languages on the
studied subset for majority language, except Dutch and
Czech. Thus, this is not the case in English. For this lan-
guage Wikidata is more diverse.
When using first and second-order links, the number of syn-
onyms is much higher, especially for English. This is re-
lated to the fact that second-order links add many new rela-
tions. This new relations always have labels in English but
not always habe labels in other languages.

5. Discussion
Regarding coverage, in terms of entities only, the coverage
of first-order links is already high for Orphanet and Dis-
ease Ontology, respectively 84.9% and 97.2% (for English
as, in our case, all the entities have English labels). The
issue comes from the labels: even if Wikidata is multilin-
gual, in our study we see that the information is mainly in
English and French, but for the other studied languages the
results are substantially worse. All the entities with a link
have labels in English, more than half have labels in French
and then for German, only around 20% of the 8,870 linked
entities in Wikidata have at least one label in German. The
languages we study are among the most used languages in
Wikipedia. Thus, it is already an important amount of en-
tities that could have their labels translated from English
to another of these languages. As Wikidata is a collabo-
rative project, this number should only increase over time.
Second-order links help a lot for languages other than En-
glish.
Regarding quality, Google Cloud Translation is the best
method. Compared to the results obtained by Silva et al.
(2015) on the translation of a subpart of MeSH in Por-
tuguese, the quality of the label translations seems to have
greatly improved. Then translations obtained through first-
order links are not so distant from Google Cloud Trans-
lation. However, the quality of the translations obtained
through second-order links has a substantial difference with

the translation coming from first-order links. Thus, we can
expect Google Cloud Translation to have an advantage as
Orphanet is primarily maintained in English and French
and then translated by experts to other languages. Even
if Google Cloud Translation is not free, translating the en-
tirety of the English labels of Orphanet would only cost
around 16$ with the pricing as of February 6, 2020.
For the synonyms, as Orphanet seems to have more labels
in English than in the other languages, translating all the la-
bels from English to the different languages allows having
more synonyms than Orphanet in other languages. More-
over, Wikidata is poorer in terms of synonyms than Or-
phanet except for English. This is interesting as Google
Cloud Translation seems to perform good translations, and
having more synonyms in English also means that if we
translate them with Google Cloud Translation we could
have also more synonyms in other languages. It is also im-
portant to note that Google Cloud Translation only provides
one translation by label. Second-order links also bring
many more synonyms for all the languages, but especially
for those which have a larger Wikidata.

6. Conclusions and Future Work
One of the limitations of this work concerns information
that was not used. Especially in Orphanet and Wikidata,
when an entity is linked to another ontology, there is addi-
tional information about the nature of the link, for example,
whether it is an exact match or a more general entity. We
did not use at all this information and it could be used to
improve the links we create. Wikidata also contains more
information about the entities than just the labels, e.g., Jiang
et al. (2013) extracts multilingual textual definitions.
We also focus our study on one type of biomedical entities,
diseases. The results of this work may not be generalized to
all types of entities. Hailu et al. (2014) have found equiv-
alent results for the translation of the Gene Ontology be-
tween English and German, but Silva et al. (2015) did not
find the same results on their partial translation of MeSH.
Another limitation is our study about synonyms. Hav-
ing the maximum number of synonyms is useful for entity
recognition and normalization. Thus, here we only have
quantitatively studied the synonyms, and have not explored
their quality and diversity. First- and second-order link ex-
traction from Wikidata seems to be a good method to have
more synonyms. A further assessment with an expert that
could validate the synonyms could be interesting.
Furthermore, as we are interested in entity recognition, a
low coverage on the ontology is not correlated with a low
coverage for entities in a corpus. In Bretschneider et al.
(2014), by only translating a small sub-part of an ontology
they could improve the coverage of the entities in their cor-
pus by a high margin. It will be interesting to verify this on
a dataset on disease recognition.
To summarize, as of now, Google Cloud Translate seems
to be the best way to translate an ontology about diseases.
If the ontology does not have many synonyms, Wikidata
could be a way to expand language-wise the ontology.
Wikidata also contains other information about its entities
which could be interesting, but have not been used in this
study such as symptoms and links to Wikipedia pages.
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Abstract
Pre-trained text encoders have rapidly advanced the state-of-the-art on many Natural Language Processing tasks. This paper presents
the use of transfer learning methods applied to the automatic detection of codes in radiological reports in Spanish. Assigning codes to
a clinical document is a popular task in NLP and in the biomedical domain. These codes can be of two types: standard classifications
(e.g. ICD-10) or specific to each clinic or hospital. In this study we show a system using specific radiology clinic codes. The dataset is
composed of 208,167 radiology reports labeled with 89 different codes. The corpus has been evaluated with three methods using the
BERT model applied to Spanish: Multilingual BERT, BETO and XLM. The results are interesting obtaining 70% of F1-score with a
pre-trained multilingual model.

Keywords: Transfer Learning, BERT Model, Spanish Radiological Reports, CT Scanning

1. Introduction
Radiology reports are text records taken by radiologists that
detail the interpretation of a certain imaging modality exam
including a description of radiological findings that could
be the answer to a specific clinical question (patient’s symp-
toms, clinical signs or specific syndromes). Structured text
information in image reports can be applied in many scenar-
ios, including clinical decision support (Demner-Fushman
et al., 2009), detection of critical reports (Hripcsak et al.,
2002), labeling of medical images (Dreyer et al., 2005;
Hassanpour et al., 2017; Yadav et al., 2013), among other.
Natural language processing (NLP) has shown promise in
automating the classification of free narrative text. In the
NLP area this process is named Automatic Text Classifica-
tion techniques (ATC). ATC is an automated process of as-
signing set of predefined categories to plain text documents
(Witten and Frank, 2002).
The health care system employs a large number of catego-
rization and classification systems to assist data manage-
ment for a variety of tasks, including patient care, record
storage and retrieval, statistical analysis, insurance and
billing (Crammer et al., 2007; Scheurwegs et al., 2017;
Wang et al., 2016). One of these classification systems
is the International Classification of Diseases, Ten Ver-
sion (ICD-101). In 2017 a challenge was born at CLEF
where the aim of the task was to automatically assign ICD-
10 codes to the text content of death certificates in dif-
ferent languages such as English, French (Névéol et al.,
2017), Hungarian, Italian (Névéol et al., 2018) or German
(Dörendahl et al., 2019).
Regarding ATC, many techniques have been applied and
studied. In traditional machine learning the most common
algorithms known in the radiology community are: Naive
Bayes, decision trees, logistic regression and SVM (Wang
and Summers, 2012; Wei et al., 2005; Perotte et al., 2014).
On the other hand, Recurrent Neural Networks (RNN) are

1https://icd.who.int/browse10/2016/en

used for sequence learning, where both input and output
are word and label sequences, respectively. There are sev-
eral studies related to RNN using Long Short-Term Mem-
ory (LSTM) (Tutubalina and Miftahutdinov, 2017) or CNN
with an attention layer (Mullenbach et al., 2018). Finally,
researchers have shown the value of transfer learning —
pre-training a neural network model on a known task and
then performing fine-tuning — using the trained neural net-
work as the basis of a new purpose-specific model. BERT
model is one of the best known models nowadays. BERT
has also been used for multi-class classification with ICD-
10 (Amin et al., 2019) obtaining good results with minimal
effort.
This study is in the initial phase and it is focuses on au-
tomatic code assignment in Spanish, so it can also be an
automatic multi-class classification task. The main contri-
butions of this paper can be summarized as follows:

• We analyse the performance of the three transfer learn-
ing architectures using the BERT models in Spanish:
Multilingual BERT, BETO and XLM.

• We achieve encouraging results for a collection of
Spanish radiological reports.

• We also investigate the fine-tuning parameters for
BERT, including pre-process of long text, layerwise
learning rate, batch sizes and number of epochs.

2. Medical collection
Dataset is composed of 208,167 anonymized Computed
Tomography (CT) examinations. This clinical corpus has
been provided by the HT médica. Each report contains rel-
evant information such as: reason for consultation, infor-
mation regarding the hospital where the CT scan was con-
ducted, type of scan (contrast or non-contrast), and location
of the scan (body part).
Each radiology report requires a unique code from the 89
available codes. These labels are assigned according to
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the area where the scan was performed, the type of con-
trast (contrast or non-contrast) and other clinical indications
such as fractures, trauma, inflammation, tumors, and so on.
Figure 1 shows the most common codes in the dataset and
the number of documents in which each label appears. We
can see that the TX4, TC4 and TX5 codes are the ones that
appear most frequently in the corpus.

Figure 1: Most common labels and their frequency in the
collection.

A weakness of the collection is that the text written by the
specialists is in capital letters. Therefore, we pre-process
the text by changing it to lower case.

Training, dev and test set The dataset was divided up to
carry out the experimentation: 60% of the collection was
used for the training set (124,899 documents), the develop-
ment set was composed of 41,6434 documents (20%) and
the remaining 20% for the test set (41,634 documents).
The sections of the CT examinations considered for this
study were: the reason for the consultation, the location
of the scan and the type of contrast used, avoiding hospital
information because most of the examinations were done in
the same hospital.

3. Code assignment methods
Transfer learning (Thrun, 1996) is an approach, by which
a system can apply knowledge learned from previous tasks
to a new task domain. This theory is inspired from the idea
that people can intuitively use their previously learned ex-
perience to define and solve new problems.
For the automatic assignment of codes in Spanish, we have
applied three transfer learning approaches based on BERT2.
BERT (Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2018) is designed to pre-train deep

2https://github.com/google-research/bert

bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers.
BERT uses a popular attention mechanism called trans-
former (Vaswani et al., 2017) that takes into account the
context of words.
As a result, the pre-trained BERT model can be fine-tuned
with just one additional output layer to create a multi-class
classification model. This layer assigns a single code to a
document.
In order to categorize radiology reports in Spanish, we have
used three pre-trained models described below:

Multilingual (henceforth, M-BERT) follows the same
model architecture and training procedure as BERT using
data from Wikipedia in 104 languages (Pires et al., 2019).
In M-BERT, the WordPiece modeling strategy allows the
model to share embedding across languages.

BETO is a BERT model trained on a big Spanish corpus.
BETO3 is of size similar to a BERT for English and was
trained with the Whole Word Masking technique (Cui et
al., 2019).

XLM uses a pre-processing technique and a dual-
language training mechanism with BERT in order to learn
relations between words in different languages (Lample and
Conneau, 2019). XLM presents a new training technique
of BERT for multilingual classification tasks and the use of
BERT as initialization of machine translation models.
In this study we show the performance of two XLM mod-
els: XLM trained with 17 languages (XLM-17) and trained
with 100 languages (XLM-100)

4. Experiments and evaluation
4.1. Fine-tuning pre-trained parameters
In this step, we need to make decisions about the hyperpa-
rameters for the BERT model.
We use the BERT model with a hidden size of 768, 12
transformer blocks and 12 self-attention heads. For the op-
timizer, we leverage the adam optimizer which performs
very well for NLP data and for BERT models in particular.
For the purposes of fine-tuning, the authors recommend
choosing from the following values: batch size, learning
rate, max sequence and number of epoch. Table 4.1. illus-
trates the hyperparameters and their tested options, finally
in each column we can see the model used and its selected
parameter.

4.2. Results
In this section we present the results obtained by applying
each BERT model. Since the corpus of radiological reports
is in Spanish, we have applied the available models for this
language in transfer learning.
The metrics used to carry out the experiments are the mea-
sures popularly known in the NLP community, namely
macro-precision, macro-recall and macro-averaged F1-
score.
Table 2 shows the results achieved and we can see that the
results are encouraging, having a large list of codes to as-
sign. XLM gets the best results by upgrading to BETO and

3https://github.com/dccuchile/beto
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Parameter Options M-BERT BETO XLM-100 XLM-17
Batch size [16, 32, 64] 32 16 16 16
Max sequence [256, 512] 256 256 256 256
Learning rate [2e-5, 3e-5] 3e-5 2e-5 2e-5 2e-5
Epoch [3, 4, 5] 4 5 5 5

Table 1: Hyperparameters tested and options chosen in each model.

Pre-trainined Model Precision Recall F1-score
M-BERT 65.41 62.07 62.33
BETO 69.86 65.34 66.34
XLM-100 75.05 69.10 70.64
XML-17 74.83 69.79 70.84

Table 2: Results obtained for code assignment in radiolog-
ical reports.

M-BERT. XLM mixes several languages but it is enough to
learn in the radiology reports and to detect the correct code.
XLM-100 obtains the best precision (75%) and XLM-17
the best recall (69.7%). The best F1-score was also ob-
tained with XLM-17 getting 70%.
Performing a brief analysis of the mislabeled codes, we
found that the 23 worst-labeled codes had 2,443 documents
to be trained, which is 1.96% of the total training set. In ad-
dition, the average number of training documents is 106, so
they do not have enough information to learn. According
to the evaluation of each code, Figure 2 shows the number
of codes and their result ranges using the F1 score.
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Figure 2: Results obtained in the F1-score and number of
codes evaluated.

5. Limitations and future work
Our project is in a beginner’s state and has limitations that
need to be improved in the future. The limitations we found
are shown below:

• Occasionally, the texts of the radiological reports are
longer than allowed in the BERT model (max se-
quence of 512).

• The texts provided by the specialists are in capital let-
ters, we pre-process the text by changing it to lower
case.

• There are codes with few examples for training, so the
system fails to classify.

We plan to make future improvements to the automatic
classification system. These improvements can be summa-
rized in the following points:

• We will perform a deep error analysis and see the be-
havior of each model applied to our corpus.

• We will analyze why XLM has achieved better re-
sults than BETO, being XLM trained for different lan-
guages.

• Strategies with embeddings to obtain the representa-
tion vector of each word will be used in future work.

• We will make changes to the model, for example,
adding new layers or concatenating new features ex-
tracted from the corpus.

• We will improve BERT’s vocabulary to find
more words related to the biomedical domain.
BioBERT (Lee et al., 2019) currently exists for
English, we could make an adaptation or create a
similar model with Spanish.

• There are parts of the text that are more important than
others, for example the location of the exploration, in
the future we plan to detect these features so that the
model learns better.

6. Conclusion
In this study we conducted a multi-class task to detect codes
in radiology reports written in Spanish. We have carried
out experiments that are the state-of-the-art pre-training for
NLP: BERT model. We apply different approaches using
this model such as Multilingual BERT, BETO and XLM.
Recent advances in transfer learning model have opened
another way to extract features and classify medical docu-
ments. We have a collection of over 200,000 CT scans and
each text can have 89 possible codes. Each code is associ-
ated with the document for a reason. The most important
reasons include: location of the body where the CT scan
was performed or a previous finding or disease.
Using the XLM algorithm trained with 17 different lan-
guages we obtain a 70% of F1-score, detecting that the
worst predictions are those codes that have scarce examples
to train.
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This study is at an early stage so we have described limi-
tations and future work to further improve the code assign-
ment task.
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Abstract
The Platform for Automated extraction of animal Disease Information from the web (PADI-web) is an automated system which
monitors the web for detecting and identifying emerging animal infectious diseases. The tool automatically collects news via customised
multilingual queries, classifies them and extracts epidemiological information. We detail the processing of multilingual online sources
by PADI-web and analyse the translated outputs in a case study.

Keywords: Animal health, Web monitoring, Text mining, Multilingual

1. Introduction
The timely detection of (re)emerging animal infectious dis-
eases worldwide is a keystone for risk assessment and risk
management regarding both human and animal health. Tra-
ditional surveillance relies on official notifications from in-
tergovernmental organisations such as the World Organi-
sation for Animal Health (OIE) and the Food and Agri-
culture Organization of the United Nations (FAO). While
these systems provide verified and structured information,
they are prone to notification delays and are not appropri-
ate to detect new threats. To enhance early detection per-
formances, surveillance activities increasingly integrate un-
structured data from informal sources such as online news
(Bahk et al., 2015). The daily curation and analysis of web-
based information are time-consuming. Thus, several sys-
tems were designed to automatize the monitoring of online
sources regarding a wide range of health threats, such as
MedISys (Mantero et al., 2011), HealthMap (Freifeld et al.,
2008), GPHIN (Blench, 2008), ProMED (Madoff, 2004)
or PADI-web (Valentin et al., 2020). PADI-web1 (Platform
for Automated extraction of Disease Information from the
web) is an automated system dedicated to the monitoring
of online news sources for the detection of animal health
infectious diseases. PADI-web was developed to suit the
need of the French Epidemic Intelligence System (FEIS,
or Veille sanitaire internationale in French), which is part
of the animal health epidemiological surveillance Platform
(ESA Platform). The tool automatically collects news with
customised multilingual queries, classifies them and ex-
tracts epidemiological information. In this paper, we de-
scribe how the PADI-web pipeline processes multilingual
textual data. We also provide a case study to highlight
the added-value of integrating multiple languages for web-
based surveillance.

2. Multilingual news processing
PADI-web pipeline includes four consecutive steps (Figure
1), extensively detailed elsewhere (Valentin et al., 2020):

1https://padi-web.cirad.fr/en/

data collection, data processing, data classification and in-
formation extraction.

2.1. Data collection
PADI-web collects news articles from Google News on a
daily basis, through two types of customised really simple
syndication (RSS) feeds (Arsevska et al., 2016). Disease-
based feeds target specific monitored diseases, thus they
contain disease terms such as avian flu or African swine
fever. To be able to detect emerging threats or undiag-
nosed diseases, PADI-web also relies on symptom-based
RSS feeds. These feeds consist of combinations of symp-
toms and species (hosts), for instance, abortions AND cows.
To retrieve non-English sources, we also implemented non-
English feeds by translating existing ones in other lan-
guages. The languages were selected to target risk areas
regarding specific diseases (e.g. we integrated RSS feeds
in Arabic for monitoring foot-and-mouth disease in en-
demic countries). To translate the disease terms, we used
Agrovoc2, a controlled vocabulary developed by the Food
and Agriculture Organization (FAO).

2.2. Data processing
PADI-web fetches all the news webpages retrieved by the
RSS feeds. The title and text of each news article are
cleaned to remove irrelevant elements (pictures, ads, hy-
perlinks, etc.). The language of the source is detected using
the langdetect python library. All non-English news arti-
cles are translated into English using the Translator API of
the Microsoft Azure system 3.

2.3. Data classification
To select the relevant news (i.e. the news describing a cur-
rent outbreak as well as prevention and control measures,

2http://aims.fao.org/vest-registry/
vocabularies/agrovoc

3https://azure.microsoft.com/
en-gb/services/cognitive-services/
translator-text-api/
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Figure 1: PADI-web pipeline

preparedness, socioeconomic impacts, etc.), PADI-web re-
lies on an automated classifier developed with a supervised
machine learning approach. The training dataset consists
in a corpus of 600 annotated pieces of news labelled by an
epidemiology expert (200 relevant news articles and 400 ir-
relevant news articles). Using the scikitlearn python library,
several models from different families are trained:

– Linear classifiers: Logistic Regression, Gaussian and
Multinomial Naive Bayes

– Support vector machines: Linear Support Vector Ma-
chine (Linear SVM)

– Decision tree: Random Forest
– Quadratic classifiers: Quadratic Discriminant Analy-

sis
– Instance-based learning models: K-nearest neighbor

learner
– Neural networks: Multilayer Perceptron

The model obtaining the highest mean accuracy score along
the 5-fold cross-validation scheme is subsequently used to
classify each new retrieved article. Currently, Random For-
est (composed of 50 trees with a maximum depth of 12) and
the Multilayer Perceptron are the best classifiers, obtaining
an average accuracy score of 0.944 ± 0.01 (Table 1).

Classifier Average accuracy
score

Standard deviation

Multilayer Perceptron 0.944 0.01

Random Forest 0.944 0.01

Linear SVM 0.935 0.02

Quadratic Discriminant Analysis 0.905 0.01

Gaussian Naive Bayes 0.896 0.01

K-nearest neighbor learner, K=2 0.896 0.04

Logistic Regression 0.881 0.04

Multinomial Naive Bayes 0.867 0.04

Table 1: Results of the relevance classification in terms of av-
erage accuracy score, for different classifiers.

2.4. Information extraction
The extraction of epidemiological information relies on
a combined method founded on rule-based systems and
data mining techniques (Arsevska et al., 2018). Diseases,
hosts and symptoms are extracted using a list of terms of

disease names, hosts and clinical signs. To obtain our list
of terms, we use BioTex (Lossio-Ventura et al., 2014),
a tool for automatic extraction of biomedical terms from
free text, as detailed elsewhere (Arsevska et al., 2016).
Locations are identified by matching the text with location
names from the GeoNames gazetteer (Ahlers, 2013) and
dates with the rule-based HeidelTime system (Strotgen and
Gertz, 2010). The number of cases is extracted from a list
of regular expressions matching numbers in numerical or
textual form. A confidence index is automatically assigned
to the extracted entities to reflect the probability that
they correspond to the desired piece of epidemiological
information.

The models for classification (Section 2.3.) and informa-
tion extraction (Section 2.4.) tasks have been learnt with
labeled data in English. English is a ”bridge-language”
(or ”pivot language”) for PADI-web. In this context, a
translation method has been applied for non-English news
before using the classification and information extraction
algorithms of the PADI-web pipeline.

3. Case study
We conducted a preliminary case study to evaluate the pro-
cessing of non-English sources by PADI-web.

3.1. Methods
We extracted the translated news articles from PADI-web
database from 01 July 2019 to 31 July 2019 (1 month pe-
riod). We manually reviewed each news to select the ones
containing an animal disease event. An event corresponds
to the occurrence of a disease at a specific location and date.
Then, we compared the detected events with official events
extracted from the FAO Emergency Prevention System for
Priority Animal and Plant Pests and Disease (EMPRES-
i)4. This system receives information from different offi-
cial data sources, such as governments or OIE, and is a
global reference database for animal diseases. We calcu-
lated the delay between the official notification and the de-
tection by PADI-web (corresponding to the publication date
of the news article). The events present in online news but
absent from the official database are considered as unof-
ficial (they cannot be verified). For both official and un-
official events detected by non-English sources, we deter-

4http://empres-i.fao.org/eipws3g/.
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Disease Country (no of events) Source languagea Detected in English news Range of detection delays (days)b

African swine fever

Bulgaria (n=1) TR, IT yes -10

China (n=6) FR, KO, ZH-CN yes - 12 to 1

Laos (n=1) ZH-CN no 5

Slovakia (n=1) DE, IT, ZH-CN yes 0

Avian influenza

Denmark (n=1) KO no 4

Mexico (n=1) KO no 1

Taiwan (n=2) KO no -12 to -2

Foot-and-mouth disease Morocco (n=1) AR, FR no -5 to 0

Table 2: Official events detected by non-English sources.
aLanguages: AR: Arabic, DE: German, FR: French, IT: Italian, KO: Korean, TR: Turkish, ZH-CN: Chinese.
b Lag between the official notification and the detection by PADI-web.

mined if they were also detected by English news retrieved
by PADI-web during the same period.

3.2. Results and discussion
From 01 July 2019 to 31 July 2019, PADI-web retrieved
104 online news, among which 47 online news contained
one or several animal disease events. The remaining 57
news were related to control measures (n=34), outbreak
follow-up (n=6), human disease outbreak (n=7), disease
awareness (n=2), or were irrelevant (n=8). The low number
of irrelevant news (8/104) indicates that the classification
module was able to perform well on translated news.
The information extraction module extracted 93 disease en-
tities, 218 host entities, 47 dates, 584 locations, 125 symp-
toms and 45 numbers of cases. PADI-web detected 14 dis-
tinct official events from 35 non-English online news (Table
2), involving 3 diseases and 8 countries. English-news did
not detect six out of 14 events. The events were detected up
to 12 days before their official notification. Besides, PADI-
web discovered 5 unofficial events from 12 non-English on-
line news (Table 3.), among which 4 were not detected by
English-news.

Disease Country
(no of events)

Source
(languagea)

Detected in
English news

Anthrax Guinea (n=1) FR no

Eastern equine encephalitis USA (n=1) IT yes

Foot-and-mouth disease Morocco (n=1) AR, FR no

Lumpy skin disease Kazakhstan (n=1) RU no

Peste des petits ruminants Algeria (n=1) FR no

Table 3: Unofficial events detected by non-English sources.
aLanguages: AR: Arabic, FR: French, IT: Italian, RU: Russian.

During one-month, the non-English sources increased both
the sensitivity and the timeliness of PADI-web in detecting
official events. This is consistent with the fact that local
sources are more reactive in reporting outbreaks from their
area or country. The added value of integrating multilingual
sources was also highlighted by an in-depth comparison of
event-based tools in the human health domain (Barboza et
al., 2014).

During the manual analysis, we found out that two dis-
eases were wrongly translated. The most frequent errors
occurred when translating African swine fever from sev-
eral languages. We found the following wrong expressions:
African swine plague, African pig plague, plague of pig,
African wild boar plague. In one piece of Chinese news,
the translated form was swine fever in Africa, which led to
the detection of a false location (Africa). Errors also oc-
curred in its acronyms translation (ASP instead of ASF).
From Russian news, lumpy skin disease was translated as
nodular dermatitis. Many animal disease names consist in
a combination of host, symptom and location terms. Thus,
they are prone to translation errors which should be taken
into account to avoid impacting the performances of mon-
itoring tools. Translated texts underline the limits of rely-
ing on vocabulary matching for entity recognition. Exist-
ing NER models based on machine learning do not include
domain-specific entities such as diseases and hosts. How-
ever, the python package spaCy allows adding new classes
to the default entities, by training its existing model with
new labelled examples. Such an approach could enhance
the detection of out of vocabulary terms produced by trans-
lation.

4. Conclusion
We described how we integrated multilingual sources in
the existing PADI-web system. The preliminary evaluation
yielded promising results regarding the added-value of in-
tegrating non-English news to web-based surveillance. In
future work, we will conduct a more in-depth analysis of
the translated outputs in terms of sensitivity and timeliness,
and we will evaluate the quality of the geographical entities
after applying the translation task. Besides, we aim to im-
prove the detection of named entities such as disease names
by training NER models.
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