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Abstract
Word embeddings such as Word2Vec not only uniquely identify words but also encode important semantic information about them.
However, as single entities they are difficult to interpret and their individual dimensions do not have obvious meanings. A more
intuitive and interpretable feature space based on neural representations of words was presented by Binder and colleagues (2016) but is
only available for a very limited vocabulary. Previous research (Utsumi, 2018) indicates that Binder features can be predicted for
words from their embedding vectors (such as Word2Vec),  but only looked at the original Binder vocabulary. This paper aimed to
demonstrate that Binder features can effectively be predicted for a large number of new words and that the predicted values are
sensible.  The results supported this,  showing that correlations between predicted feature values were consistent with those in the
original Binder dataset. Additionally, vectors of predicted values performed comparatively to established embedding models in tests of
word-pair semantic similarity. Being able to predict Binder feature space vectors for any number of new words opens up many uses
not possible with the original vocabulary size.
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1. Introduction
One of the biggest challenges in computational linguistics
is finding representations of words that not only uniquely
identify them, but also capture their semantic qualities. A
popular  approach  is  distributional  semantics  (Boleda,
2020),  based  on  the  assumption  that  “a  word  is
characterised by the company it keeps” (Firth, 1957). In
practice this means using the co-occurrences of words in
large  text  corpora  to  derive  word  embeddings  that
represent  their  semantic  meaning (Boleda,  2020).
Utilising  computers  makes  calculating  word  co-
occurrences in large corpora trivial. 
Matrix factorisation approaches such as Latent Semantic
Analysis (Landauer et al,  2011) create a term-document
matrix and from this produce embeddings for individual
words.  Alternative matrices  can represent  term-term co-
occurrences  or  how  often  words  co-occur  in  sliding
window contexts, as is used in the Hyperspace Analogue
to Language (HAL) model (Lund & Burgess, 1996).
More recently, models using neural network architectures
have  proven  effective  for  creating  word  embeddings.
Word2Vec (Mikolov et al, 2013) and GloVe (Pennington.
Socher & Manning, 2014) both create word embeddings
(typically 300 dimensional) which achieved state  of  the
art results in semantic tasks at their time of introduction.
These  models  are  unsupervised;  they  learn  the
embeddings from raw text data.
To  improve  the  embeddings,  some  researchers  have
proposed  infusing  them with  additional explicit  human
semantic knowledge. This has resulted in models such as
Numberbatch  (Speer,  Chin  &  Havasi,  2017),  which
retrofit  the  embeddings  with  information  from  human
created  semantic  networks,  achieving state  of  the  art
results in some tests of semantic meaning (e.g. Speer &
Lowry-Duda, 2017).
A  major  difficulty  with  all  word  embedding  models  is
interpreting  the  vectors  and  validating  the  semantic
information that they capture.  By mapping words into a
vector  space,  the  relative  distance  between  the
embeddings can  be used  to  indicate  semantic  similarity

(Schnabel  et  al,  2015).  This  allows word  vectors  to  be
understood in terms of their position in vector  space in
relation  to  other  vectors,  but  as  individual  objects  in
isolation they are difficult to interpret.  Furthermore, they
offer little insight into how the words are related, just that
certain  words  are  semantically  similar  due  to  their
proximity.
This  paper  proposes  mapping  word  embeddings  into  a
more  interpretable  feature  space,  based  on  the  core
semantic  features  of  words  (Binder  et  al,  2016).
Unfortunately, this feature space currently only exists for
a small 535 word vocabulary seriously limiting its uses.
Whilst previous work (Utsumi, 2018) has shown that it is
possible to derive these feature vectors from embeddings
such  as  Word2Vec,  it  is  still  not  known how well  this
scales to a large number of new words. Three experiments
were  carried  out,  the  first  demonstrating  that  Binder
features  can  be  predicted  from  word  embeddings,  the
second  showing  that  these  predictions  are  sensible  for
large  new  word-sets  and  the  third  evaluating  the
performance of the new embeddings in semantic tasks.
By demonstrating that Binder features can be derived for
any number of new words, this paper hopes to establish it
as a legitimate embedding space.

2. Related Work

2.1 Word Embeddings
Word2Vec, Glove and Numberbatch all represent words
as  vectors.  Word2Vec  uses  a  simple  neural  network  to
predict which words should co-occur in a rolling window
context.  Glove  embeddings  are  derived  from  a  global
word co-occurrence matrix. Glove embeddings have been
shown to slightly outperform Word2Vec embeddings on
certain  semantic  tasks (Pennington.  Socher  & Manning,
2014).  Numberbatch  combines  both  Word2Vec  and
GloVe  embeddings  with  information  from  a  semantic
network  to create  a final  ensemble embedding for  each
word. It uses ConceptNet (Speer, Chin & Havasi, 2017) a
human  created  semantic  network  to  inject  human  level
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semantic information into the embeddings. To do this it
uses a process called retrofitting whereby the vectors of
words  connected  in  the  semantic  network  are  pushed
closer whilst still remaining as close as possible to their
original values.

2.2 Interpreting Embeddings
There  have  been  a  number  of  attempts  to  improve  the
interpretability  of  word  embeddings.  Dimensionality
reduction  techniques  such  as  Principle  Component
Analysis  (PCA)  or  t-Distributed  Neighbour  Stochastic
Embedding  (t-SNE)  allow  the  high  dimensional
embeddings  to  be  visualised  in  lower  two  or  three
dimensional spaces  (Liu et al, 2017). Word embeddings
can then be interpreted in terms of which other words are
visually  close  to  them;  a  human  friendly  method  of
interpretation.
Alternatively,  clustering  methods  can  be  used  to  group
words according  to  their  distances  in vector  space.  The
embeddings  can  then  be  interpreted  in  terms  of  the
clusters created (Zhai, Tan & Choi, 2015).
The  methods  mentioned  so  far  rely  on  the  location  of
word embeddings in their vector space and their relative
distance to other embeddings for them to be interpretable.
Other  methods  try  to  make  the  embeddings  more
interpretable in themselves. Senel et al (2018) identified
110  semantic  categories  of  words  and  developed  word
embeddings  represented  as  weightings  across  these
categories.  Whilst  this  allowed  embeddings  to  be
interpreted in isolation, each embedding was now being
interpreted  in  relation  to  other  ‘complex  concepts’;  the
categories. 
This  actually  relates  to  a  larger  issue  in  semantics,
revolving around how words and concepts are defined. A
common  belief  in  cognitive  linguistics  is  that  people
define concepts in terms of their constituent features (e.g.
Cree  and  McRae,  2003).  However,  these  features
themselves  are  often  complex  concepts  which  must  be
defined in terms of yet more features (Binder et al, 2016).
This makes defining a concept difficult  and, even more
troublingly,  can  result  in  circular  definitions  where
concepts are defined in terms of each other. Whilst efforts
have  been  made  to  identify  a  set  of  primitives:  core
irreducible features of meaning, results have been mixed
(Drobnak, 2009). 

2.3 Reflecting Human Semantic Understanding
Binder  et  al  (2016)  proposed  an  alternative  method  of
defining  concepts  in  terms  of  a  core  set  of  semantic
features.  In  a  meta-study,  they  identified  65  semantic
features  all  thought  to  have  specific  neural  correlates
within the brain.  The features  were  chosen  to represent
different types of meaning in relation to concepts,  from
visual,  to  auditory,  to  tactile  and  emotional.  They  then
asked  human  participants  to  rate  a  collection  of  words
across this feature set with scores from 0-5. For example
when  asked  to  rate  a  word  for  the  feature  ‘Vision’,
participants were asked: ‘To what degree is it something
you can easily see?’. The authors collected scores for 535
words; 434 nouns, 62 verbs and 39 adjectives. They also
made efforts to include words relating to abstract entities

as  well  as  concrete  objects.  Table  1  below  gives  an
example of the mean scores for Vision, Motion and Time
features for the first three words in the Binder dataset.

Word Vision Motion Time Pleasant Angry

mosquito 2.9 3.6 0.3 0.2 2.9

ire 1.1 0.6 0.2 0.1 5.0

raspberry 4.6 0.0 0.5 4.1 0.2

Table 1: Example semantic feature scores (5 of 65) for
three words from Binder et al (2016)

The features that Binder and colleagues proposed are an
attractive  embedding  space  as  it  allows  words  to  be
interpreted individually. Moreover, since each dimension
is interpretable,  how words relate or differ can be seen.
Binder  et  al  demonstrated  that  this  could  be  used  to
differentiate words based on categories, either narrow e.g.
mammals vs fish, or more broad e.g. concrete vs abstract.
Moreover, they identified a number of important uses for
their  feature  space,  including  identifying  feature
importances,  representing  how  abstract  concepts  are
experienced  and  understanding  how  concepts  can  be
combined.
However,  for  the feature  space  to  be useful  it  needs to
cover a decent proportion of the English vocabulary and
they  only  collected  ratings  for  535  words.  Collecting
human  ratings  for  even  a  moderate  coverage  of  the
English vocabulary would be prohibitively expensive and
time consuming. Instead, it may be possible to predict the
feature scores using word embeddings. Abnar et al (2018)
demonstrated  that  word  embeddings  could  be  used  to
predict neural activation associated with concrete nouns.
Since the Binder features are intended to relate to specific
neural  correlates,  the  embeddings  should  be  able  to  be
used  to  predict  them.  In  this  direction,  Utsumi  (2018)
demonstrated  that  Binder  feature  vectors  could
successfully be derived from word embeddings including
Word2Vec  and  GloVe  for  words  within  the  Binder
dataset.  Taking  this  further  and  demonstrating  that  the
features  can  extrapolated  to  any  number  of  new words
with  embeddings  would  massively  expand  the  feature
space vocabulary. Previous studies have shown that it is
possible to extrapolate feature scores for new words using
distributional  embeddings  (e.g.  Mandera,  Kueleers  &
Brysbaert, 2015) albeit for much smaller feature sets.

3. Experiment 1: Predicting Semantic
Features

3.1 Introduction
The  purpose  of  this  first  experiment  was  to  determine
whether  the  values  of  the  65 semantic  features  from
Binder  et  al  (2016)  could  be  derived from  word
embeddings in line with Utsumi (2018). A wider range of
regression models (five) were tested  plus the previously
untested  Numberbatch  embeddings  were  included.  As
Numberbatch  embeddings  combine  both  GloVe  and
Word2Vec and include extra human semantic knowledge,
it is expected that they should perform best.



3

Figure 1: Mean (left) and standard deviation (right) of R-squared scores for six of the 65 Binder semantic features across
the 100 test sets. Different models are compared horizontally

3.2 Data
Scores for 535 words across the 65 semantic features were
retrieved from Binder et al (2016). Pre-trained Word2Vec
(Google, 2013), GloVe (Pennington, Socher & Manning,
2014)  and  Numberbatch  (Speer,  Chin  & Havasi,  2017)
embeddings  (all  300  dimensional)  were  retrieved  from
their  respective  online  sources.  Numberbatch  retrofits
Word2Vec and GloVe embeddings with information from
the ConceptNet knowledge-base.

3.3 Method
Five different types of regression model were compared
using  GloVe  embeddings:  linear  regressor  (LR),  ridge
regressor (Ridge), random forest regressor (RF), k-nearest
neighbours regressor (k-NN) and a 4-layer neural network
regressor  (NN).  Each  word  in  the  dataset  had  a  value
between 0-5 for each of the 65 semantic features  and a
300 dimensional word embedding. The word embeddings
were fed into the models as the independent variables with
the semantic features as the dependent variables. Separate
regression models were trained for each of the features.

For  evaluation,  models  were  trained  on a  subset  of  the
data and their predictions evaluated on a hold-out test set.
Because the dataset was fairly small, especially in relation
to the number of independent variables (300), there was a
risk  of  overfitting  and  therefore  it  was  important  to
maximise the training set size. However, having a test set
too small may not appropriately test the models across a
representative  sample.  Utsumi (2018) tackled this using
leave-one-out  cross  validation.  In  this  paper,  a
bootstrapping method was used instead. 95% of the data
was  committed  for  training,  and  the  remaining  5% for
testing, but it  was repeated  over 100 randomly selected
train-test  set  splits.   This  allowed  a  large  training  set
whilst  testing over  a  large  representative  sample of  the
words  overall.  The  mean  and  standard  deviation  of  the
results could be calculated across the 100 test sets and this
also allowed significance  testing to compare the model.
To ensure fairness, all models were evaluated on the same
random 100 train-test splits.

The  three  different  types  of  word  embeddings:
Word2Vec,  GloVe  and  Numberbatch  were  compared
using the same method as above.

R-squared was used as the evaluation metric as it was the
most intuitive to understand. A Wilcoxon Ranks-sums test

was carried out (recommended by Demsar, 2006) to com-
pare the performance of the different models and embed-
dings.

3.4 Results
Figure 1 above gives the mean R-squared and standard de-
viations across and six of the 65 features for test set. The 
six features chosen for Figure 1 represent a mix of con-
crete and more abstract Binder features.

Table 2 gives the overall mean and standard deviation of
test set R-squared scores for each model. 

Model Mean R-sq. Sd.

Linear Regression 0.03 0.35

Ridge 0.29 0.22

Random Forest 0.41 0.10

k-Nearest Neighbours 0.51 0.13

Neural Network 0.61 0.11

Table 2: Mean and standard deviation of R-squared scores
across all semantic features for the different models.

Table 3 below gives the mean and standard deviation of 
test set R-squared scores for the different embedding 
types using the neural network model (best performing 
model).

Embedding Mean R-sq. Sd.

Word2Vec 0.60 0.12

GloVe 0.61 0.10

Numberbatch 0.65 0.09

Table 3: Overall R-squared mean and standard deviation
of different word embeddings

3.5 Discussion
The  aim  of  this  experiment  was  to  determine  whether
semantic feature values from Binder et al (2016) could be
derived from word embeddings.  In  line with the results
from Utsumi (2018),  this was fairly successful  with the
best  model  (Neural  Network)  achieving  an  average  R-
squared of 0.61 across the semantic features,  with some
features up to ~0.8. Like Utsumi found, there was quite a
lot  of  variation  in  how  well  the  feature  values  were
predicted, with some such as ‘Slow’ achieving a relatively
low  average  R-squared  (~0.3).  Like  Utsumi,  certain
groups of features  tended to perform better than others.
For example, sensorimotor features such as Toward and
Away were more poorly predicted from the embeddings.
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However,  overall  this suggests that  for  many features  a
substantial  proportion  of  the  variance  in  human  ratings
can be derived from word embeddings.

The  Neural  Network  model  was  the  best  performing
overall,  significantly  better  (p<0.01)  than  the  next  best
performing (k-NN). It was also more consistent than the
k-NN model, achieving a lower standard deviation for the
features  on average.  The linear  regression model’s poor
performance  may  have  been  due  to  overfitting  as  the
Ridge regression performed significantly better (p<0.01).

Of  the  word  embeddings,  Numberbatch  (not  previously
tested  in  the  Utsumi  paper)  performed  the  best  (0.65),
significantly  better  than  both  Word2Vec  and  GloVe
(p<0.01  for  both).  This  is  perhaps  not  surprising  as
Numberbatch  encourages  words  connected  in  a
knowledge graph to have similar vectors, and these words
will likely also share semantic features.

4. Experiment 2: Predicting Semantic
Features for a Larger Vocabulary

4.1 Introduction
Experiment 1 demonstrated that Binder et al (2016) style
semantic  features  could  be  predicted  from  word
embeddings  (albeit  with  varying  success  across  the
features).  However,  for this to be useful, it  is important
that  the  features  can  be  predicted  for  a  much  larger
vocabulary. Unfortunately, ground truth human ratings for
the 65 features only exist for the small Binder et al (2016)
dataset, which makes evaluating the predicted scores for
new words difficult. Having human scorers evaluate the
predicted feature values for new words would be slow and
expensive.
One  way  to  overcome  this  would be  to  look  at  the
correlations between the semantic features in the human
rated Binder dataset and check that they remain consistent
for predicted values in a much larger dataset. Binder et al
(2016) demonstrated that certain semantic features tended
to correlate with each-other across words in their word-
set. This pattern of correlations between features should
remain  consistent  within  a  much  larger  word-set.
Therefore,  predicting  the  semantic  values  from  word
embeddings  for  a  new  larger  word-set  of  previously
unseen  words,  should  give  the  same  or  very  similar
pattern of correlation between the semantic features if the
predicted values as sensible.
However,  what  if  the  Binder  word-set  is  not  a  good
representation  of  the  wider  English  vocabulary?  As
mentioned in the introduction the vast majority of words
in the Binder set are nouns, with relatively few verbs or
adjectives.  The between feature correlations may remain
consistent but the predicted semantic values may not be
sensible  when  expanding  to  a  larger  new wordset  with
greater variety of words. Fortunately, much larger datasets
of human rated words do exist,  but  for  a much smaller
(and  slightly  different)  set  of  semantic  features.  The
Lancaster Sensorimotor norms (LSN) (Lynott et al, 2019)
is  a  dataset  of  nearly  40,000  words  rated  across  11

features by human participants. Some of the features such
as Vision and Taste are very close to features from Binder
et al (2016) and all of the words from Binder dataset are
included in the larger LSN dataset. 
Using the Binder word-set which has human ratings for all
of  the  65  Binder  features  and  11  LSN  features,  the
correlations between the LSN and Binder features can be
calculated.  Then,  if  the  Binder  Semantic  features  are
predicted for the larger LSN word-set, it can be checked
whether these correlations remain consistent with the LSN
features.  Since  human  ratings  exist  for  the  11  LSN
features in this larger word-set, it ‘grounds’ the results. If
the pattern of correlations remains consistent, it suggests
that  the  predicted  semantic  feature  values  for  the  new
words are sensible.

4.2 Data
The LSN dataset (Lynott et al, 2019) was obtained from
their online repository. It consists of  39,707 words rated
along 11 features between 0-3. 

Numberbatch word embeddings and the Binder et
al (2016) dataset from experiment 1 were used again.

4.3 Method
First, the Pearson’s correlation was calculated between all
65 semantic  features  in the Binder et  al  (2016) dataset,
creating  a  65×65  correlation  matrix.  Using  the  neural
network  regression  model  trained  in  experiment  1  and
using Numberbatch embeddings, values for the 65 Binder
semantic  features  across  the  39,707  words  in  the  LSN
dataset were predicted. The Pearson’s correlation between
the predicted 65 semantic features across these new words
(excluding those also present in the Binder word-set) was
calculated, creating another 65×65 correlation matrix. As
a numerical measure of similarity, each of the 65 Binder
semantic  features  was represented  as  a  65  dimensional
vector of correlations to all other features, including itself
(its row in the correlation matrix). For each feature,  the
cosine  similarity  was  measured  between  its  correlation
vector  from the Binder  word-set and LSN  word-set  (ie.
‘Vision’ Binder vector and ‘Vision’ LSN vector). Under
perfect circumstances, the similarity would be 1 indicating
identical  vectors.  For  comparison,  cosine  similarity  of
correlation  vectors  for  mismatched  features  from  the
Binder and LSN word-set were calculated (e.g. ‘Vision’
and ‘Shape’). It would be expected that these would give a
cosine similarity much lower than 1.
The same procedure as above was used for comparing the
11 LSN features to the 65 Binder features. Each of the 11
LSN features was represented as a 65 dimensional vector
of  correlations  with  the  65  Binder  features.  For  each
feature  the cosine similarity between their  vectors  from
the  Binder  and  LSN  dataset  were  calculated.  For
comparison, the cosine similarity between each of the 11
LSN feature’s correlation vectors from the Binder dataset
and  every  other  feature’s  LSN  dataset  vectors  were
calculated.  
Additionally, a correlation heat-map was created between
the  features  for  the  Binder  and  LSN  word-sets  each
separately and then plotted for visual inspection.



5

Figure 2: Correlations between the 11 LSN features and 65 Binder semantic features for the Binder word-set (top) and
LSN word-set (bottom)

4.4 Results
Table 4 below gives the mean cosine similarity between
the same feature correlation vectors from the Binder and
LSN word-sets and between different feature vectors.

Cosine Sim Mean Cosine Sim S.d.

Same Feature 0.985 0.008

Different Features 0.063 0.490

Table 4: Binder semantic feature correlation vector cosine
similarities between the Binder and LSN word-sets

Figure  2  above  gives  the  heat-maps  for  correlations
between the 11 LSN features and 65 Binder features for
the Binder word-set (top) and LSN word-set (bottom).

4.5 Results
Table 4 below gives the mean cosine similarity between
the same feature correlation vectors from the Binder and
LSN word-sets and between different feature vectors.

Cosine Sim Mean Cosine Sim S.d.

Same Feature 0.985 0.008

Different Features 0.063 0.490

Table 4: Binder semantic feature correlation vector cosine
similarities between the Binder and LSN word-sets

Figure  2  above  gives  the  heat-maps  for  correlations
between the 11 LSN features and 65 Binder features for
the Binder word-set (top) and LSN word-set (bottom).
Table 5 gives the mean cosine similarity of LSN feature
correlation  vectors  between  the  Binder  and  LSN word-
sets.

Cosine Sim Mean Cosine Sim S.d.

Same Feature 0.94 0.04

Different Features -0.02 0.56

Table 5: LSN feature correlation vector cosine similarities
between the Binder and LSN word-sets

4.6 Discussion
Table 4 shows that the mean cosine similarity is very high
(almost  1)  for  correlation  vectors  of  the  same semantic
feature  in  the  Binder  and  LSN  word-sets.  This  is
compared  to  the  very  low  (almost  0)  cosine  similarity
between the correlation vectors of different features from
the Binder and LSN word-sets. This demonstrates that the
patterns  of  correlations  between  the  65  Binder  features
remained  fairly  consistent  in  the  larger  LSN  word-set
where  the  values  had  been  predicted  using  the  neural
network model.
For the 11 LSN features,  the heat-maps show a similar
pattern of correlations for the features between the Binder
and LSN word-sets. The colours are slightly less intense
in  the  LSN  word-set  suggesting  the  correlations  are
slightly weaker. However, this would be expected due to
noise  from errors  in  predicting  the  feature  values.  The
mean cosine similarity is very high (nearly 1) for feature
correlation  vectors  matched  across  the Binder and LSN
word-sets and almost 0 for non-matching features.
Together these results suggest that the values predicted for
the  65  semantic  features  from  word  embeddings  are
sensible even in a large and diverse new vocabulary such
as the LSN word-set.

5. Experiment 3: Validation of the New
Feature Space

5.1 Introduction
Experiments 1 and 2 demonstrated that the values of 65
semantic  features  could  be  successfully  predicted  from
word embeddings, and that these appear to be consistent
across a large vocabulary of previously unseen words.
Whilst this new feature space is not intended to replace
existing  embeddings  (in  fact  since  it  is  purely  derived
from them it  almost  certainly  contains  less  information
about the words) it is still important to demonstrate that it
does capture sufficient semantic information.
One of  the  most  common methods for  validating  word
embeddings  is  using  semantic  similarity  datasets.
Typically, these datasets contain pairs of words which are
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Figure 3: Predicted Semantic Features of words ‘law’ and ‘lawyer’

 rated  for  semantic  similarity  by  human  participants.
Cosine similarity between word embeddings can be used
as a measure of their semantic similarity according to the
embedding model. Well  performing models should give
cosine  similarities  between  words  in  the  pairs  that
correlate closely to the human ratings.
In the Binder feature space, each word can be represented
as a 65 dimensional vector with a value for each of the
semantic features.  For new words,  these vectors  can be
created by predicting the values for each of the semantic
features,  similar  to  in  experiments  1  and  2.  The cosine
similarity between these vectors can then be calculated as
a measure  of  semantic  similarity.  The aim of this  final
experiment  was to  validate the  similarity  measurements
between the  predicted  vectors  against  human ratings of
similarity.

5.2 Data
Three  different  word  similarity  datasets  were  used:
Wordsim-353  (Gabrilovich,  2002),  Simlex-999  (Hill,
Reichart  &  Korhonen,  2015)  and  Verbsim  (Yang  and
Powers,  2006).  The  same  pre-trained  Word2Vec,
Numberbatch  and  GloVe  embeddings  as  experiment  1
were used. The same neural network trained on the Binder
et al (2016) dataset as experiments 1 & 2 was used.

5.3 Method
A vocabulary was created consisting of all words from the
three similarity datasets. Using the trained neural network 
model and the Numberbatch vectors for the words, values 
for the 65 semantic features were predicted for the words 
in the vocabulary. This resulted in a 65 dimensional vec-
tor for each of the words, where for each word each di-
mension was the value of each semantic feature for that 
word.
For each of the similarity datasets, the cosine similarity 
was calculated between the semantic feature vectors of the
words in each pair. The cosine similarity was also calcu-
lated for the Word2Vec, GloVe and Numberbatch embed-
dings as a comparison.
Spearman’s rank correlation was used as it compares the 
similarity rankings of the word pairs between the human 
ratings and the ratings derived from the embeddings.

5.4 Results
Table  6  below  gives  the  Spearman’s  rank  coefficient
between the word embedding cosine similarity ratings and
the ground truth human ratings across the three different
word pair datasets.

Embeddings WordSim353 SimLex999 SimVerb

Word2Vec 0.69 0.44 0.36

GloVe 0.72 0.41 0.28

Numberbatch 0.83 0.63 0.57

Predicted Binder 0.47 0.54 0.46

Table 6: Spearman’s Rank correlation between model and
human similarity ratings for different word-pair datasets

Whilst Numberbatch embeddings performed best on all 
datasets, the predicted feature embeddings performed 
fairly well, beating Word2Vec and GloVe on two of the 
three datasets. However, the predicted embeddings 
performed particularly poorly on the Wordsim-353 
dataset, performing the worse by far.

5.5 Discussion

At first, the particularly poor performance of the predicted
semantic vectors on the Wordsim-353 dataset seems 
discouraging. However, the Wordsim dataset has received
criticism for containing a high proportion of word pairs 
rated high in similarity through association (e.g. law and 
lawyer) rather than pure semantic meaning (Hill et al, 
2015). Since the predicted Binder semantic embedding 
space defines words in terms of semantic features, it is 
understandable that it would not capture similarity due to 
association as associated words do not necessarily share 
core features. The SimLex-999 dataset was specifically 
designed to avoid word pairs with high ratings due to 
association. The better performance of the predicted 
feature embeddings on this dataset indicates that the poor 
performance on the Wordsim dataset was likely due to 
these association word pairs.

The performance of the predicted embeddings on the 
SimVerb dataset is also encouraging seeing as there were 
relatively few verbs in the Binder et al (2016) dataset used
for training the prediction model. And it indicates that the 
model should be suitable for predicting semantic features 
for new verbs.

Figure 3 above illustrates how two words with high 
human rated similarity due to association (law and 
lawyer) are represented by the predicted feature vectors. 
In this embedding space it can be seen that they are 
considered very different. Lawyer appears to be 
represented as a human concrete object: a person as a 
professional lawyer. The law on the other hand appears to 
be a more abstract concept (as indicated by the very low
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 scores across all visual, auditory and sensorimotor 
features). By these senses the concepts are very different, 
even though to a human they may seem very similar due 
to their high association.

Finally, whether word similarity datasets are the best way 
to evaluate word embedding semantics is debatable. 
Faruqui et al (2016) provide several shortcomings of word
similarity tests for evaluating word embeddings. In light 
of this, the poorer performance of the Binder embeddings 
may not mean they do not hold important semantic 
information

6. General Discussion
The  aim  of  this  research  was  to  demonstrate  that  the
Binder  semantic  feature  space  for  words  can  be
extrapolated to a much larger vocabulary of words using
word  embeddings.  This  was  important  as  the  Binder
word-set is limited to only 535 words.
In line with Utsumi (2018),  Experiment 1 demonstrated
that  Binder  features  can  be  derived  from  word
embeddings,  with  the  previously  untested  Numberbatch
embeddings  giving  the  best  performance.  Like  in  the
Ustumi  paper,  a  neural  network  architecture  model
performed  best.  Experiment  2  demonstrated  that  the
predicted values  for  a large set  of  new words appeared
sensible,  with  the  internal  correlations  between  the
features  remaining  consistent  with  human  rated  words.
Finally,  experiment  3  showed that  this  new embedding
space retains important semantic information about words,
performing  comparatively  to  established  embedding
models.  However,  it  does  not  capture  associations
between words well which may be an important aspect of
semantic similarity that it fails on.
The purpose of mapping words to this new feature space
is  not  to  replace  existing  embedding  models,  but  to
provide an alternative way to view word embeddings. As
Figure  3,  on  the  previous  page,  illustrates  the  words
represented  in  this  feature  space  are  quite  easy  to
interpret.  Furthermore,  the  semantic  features  that  either
differentiate or liken words can easily be identified. The
fact  that  this  feature  space  can  be  fully  derived  from
existing word embeddings such as Numberbatch, suggests
that  this  semantic  information  is  all  present  within  the
word  embeddings.  However,  the  range  in  explained
variance between the predicted features does suggest that
some  semantic  information  is  better  captured  by  word
embeddings  than  other.  This  is  something  that  Utsumi
(2018) investigated in greater detail.
Finally,  being  able  to  predict  the  feature  values  from
existing word embeddings allows the Binder feature space
to  be  extrapolated  to  a  much  larger  vocabulary.  This
makes many of the uses for the feature space, outlined in
Binder et al (2016), more realistic as their original dataset
was too limited in size.
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