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Introduction

In the proceedings of the first LiNCR (pronounced ‘linker’) workshop in 2018, we stated that the aim of
the workshop was to provide a venue to share and explore a new generation of language resources which
link and aggregate cognitive, behavioural, neuroimaging and linguistic data. Our vision was to provide
a forum for research that leads to the development of methods for the integration of neuro-cognitive
data on language function with linguistic facts, the interpretation of experimental data when linked to
rich linguistic information, and demonstrations of how new insights can be drawn from this powerful
approach in domains such as language learning and neuro-cognitive deficits. We envisioned that there
will be many future LiNCR workshops, just as the current 2nd workshop that we are presenting now.

What we did not foresee, however, was that we won’t be able to meet face-to-face and strengthen our
links during this time of social distancing.

Nevertheless, the eight papers for presentation in this workshop will continue to showcase the innovative
nature and potential for impact of this interdisciplinary and data-driven framework for understanding
language and cognition. Three significant datasets are presented: the Little Prince corpus for neuro-
cognitive studies in 26 languages, sensorimotor norms for Russian, and a dataset for complex emotion
learning. Three papers focus on leveraging neuro-cognitive measurement for language technology, or
vice versa. Finally, two papers deal with practical issues, such as fonts for dyslexia readers and language
models for cloze task answer generation. The eclectic nature of these paper underlines both the vast
frontiers to be explored yet as well as the versatility of linked linguistic and neuro-cognitive resources.

Most of all, we look forward to the third LiNCR to update our new findings, to overcome the temporary
physical distances, and possibly even to show how linked linguistic and neuro-cognitive databases can
shed light on issues related to epidemiology and public health.

Emmanuele Chersoni, Barry Devereux, and Chu-Ren Huang

May 2020
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Abstract
Word embeddings such as Word2Vec not only uniquely identify words but also encode important semantic information about them.
However, as single entities they are difficult to interpret and their individual dimensions do not have obvious meanings. A more
intuitive and interpretable feature space based on neural representations of words was presented by Binder and colleagues (2016) but is
only available for a very limited vocabulary. Previous research (Utsumi, 2018) indicates that Binder features can be predicted for
words from their embedding vectors (such as Word2Vec),  but only looked at the original Binder vocabulary. This paper aimed to
demonstrate that Binder features can effectively be predicted for a large number of new words and that the predicted values are
sensible.  The results supported this,  showing that correlations between predicted feature values were consistent with those in the
original Binder dataset. Additionally, vectors of predicted values performed comparatively to established embedding models in tests of
word-pair semantic similarity. Being able to predict Binder feature space vectors for any number of new words opens up many uses
not possible with the original vocabulary size.

Keywords: Semantics, Word-Embeddings, Interpretation

1. Introduction
One of the biggest challenges in computational linguistics
is finding representations of words that not only uniquely
identify them, but also capture their semantic qualities. A
popular  approach  is  distributional  semantics  (Boleda,
2020),  based  on  the  assumption  that  “a  word  is
characterised by the company it keeps” (Firth, 1957). In
practice this means using the co-occurrences of words in
large  text  corpora  to  derive  word  embeddings  that
represent  their  semantic  meaning (Boleda,  2020).
Utilising  computers  makes  calculating  word  co-
occurrences in large corpora trivial. 
Matrix factorisation approaches such as Latent Semantic
Analysis (Landauer et al,  2011) create a term-document
matrix and from this produce embeddings for individual
words.  Alternative matrices  can represent  term-term co-
occurrences  or  how  often  words  co-occur  in  sliding
window contexts, as is used in the Hyperspace Analogue
to Language (HAL) model (Lund & Burgess, 1996).
More recently, models using neural network architectures
have  proven  effective  for  creating  word  embeddings.
Word2Vec (Mikolov et al, 2013) and GloVe (Pennington.
Socher & Manning, 2014) both create word embeddings
(typically 300 dimensional) which achieved state  of  the
art results in semantic tasks at their time of introduction.
These  models  are  unsupervised;  they  learn  the
embeddings from raw text data.
To  improve  the  embeddings,  some  researchers  have
proposed  infusing  them with  additional explicit  human
semantic knowledge. This has resulted in models such as
Numberbatch  (Speer,  Chin  &  Havasi,  2017),  which
retrofit  the  embeddings  with  information  from  human
created  semantic  networks,  achieving state  of  the  art
results in some tests of semantic meaning (e.g. Speer &
Lowry-Duda, 2017).
A  major  difficulty  with  all  word  embedding  models  is
interpreting  the  vectors  and  validating  the  semantic
information that they capture.  By mapping words into a
vector  space,  the  relative  distance  between  the
embeddings can  be used  to  indicate  semantic  similarity

(Schnabel  et  al,  2015).  This  allows word  vectors  to  be
understood in terms of their position in vector  space in
relation  to  other  vectors,  but  as  individual  objects  in
isolation they are difficult to interpret.  Furthermore, they
offer little insight into how the words are related, just that
certain  words  are  semantically  similar  due  to  their
proximity.
This  paper  proposes  mapping  word  embeddings  into  a
more  interpretable  feature  space,  based  on  the  core
semantic  features  of  words  (Binder  et  al,  2016).
Unfortunately, this feature space currently only exists for
a small 535 word vocabulary seriously limiting its uses.
Whilst previous work (Utsumi, 2018) has shown that it is
possible to derive these feature vectors from embeddings
such  as  Word2Vec,  it  is  still  not  known how well  this
scales to a large number of new words. Three experiments
were  carried  out,  the  first  demonstrating  that  Binder
features  can  be  predicted  from  word  embeddings,  the
second  showing  that  these  predictions  are  sensible  for
large  new  word-sets  and  the  third  evaluating  the
performance of the new embeddings in semantic tasks.
By demonstrating that Binder features can be derived for
any number of new words, this paper hopes to establish it
as a legitimate embedding space.

2. Related Work

2.1 Word Embeddings
Word2Vec, Glove and Numberbatch all represent words
as  vectors.  Word2Vec  uses  a  simple  neural  network  to
predict which words should co-occur in a rolling window
context.  Glove  embeddings  are  derived  from  a  global
word co-occurrence matrix. Glove embeddings have been
shown to slightly outperform Word2Vec embeddings on
certain  semantic  tasks (Pennington.  Socher  & Manning,
2014).  Numberbatch  combines  both  Word2Vec  and
GloVe  embeddings  with  information  from  a  semantic
network  to create  a final  ensemble embedding for  each
word. It uses ConceptNet (Speer, Chin & Havasi, 2017) a
human  created  semantic  network  to  inject  human  level
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semantic information into the embeddings. To do this it
uses a process called retrofitting whereby the vectors of
words  connected  in  the  semantic  network  are  pushed
closer whilst still remaining as close as possible to their
original values.

2.2 Interpreting Embeddings
There  have  been  a  number  of  attempts  to  improve  the
interpretability  of  word  embeddings.  Dimensionality
reduction  techniques  such  as  Principle  Component
Analysis  (PCA)  or  t-Distributed  Neighbour  Stochastic
Embedding  (t-SNE)  allow  the  high  dimensional
embeddings  to  be  visualised  in  lower  two  or  three
dimensional spaces  (Liu et al, 2017). Word embeddings
can then be interpreted in terms of which other words are
visually  close  to  them;  a  human  friendly  method  of
interpretation.
Alternatively,  clustering  methods  can  be  used  to  group
words according  to  their  distances  in vector  space.  The
embeddings  can  then  be  interpreted  in  terms  of  the
clusters created (Zhai, Tan & Choi, 2015).
The  methods  mentioned  so  far  rely  on  the  location  of
word embeddings in their vector space and their relative
distance to other embeddings for them to be interpretable.
Other  methods  try  to  make  the  embeddings  more
interpretable in themselves. Senel et al (2018) identified
110  semantic  categories  of  words  and  developed  word
embeddings  represented  as  weightings  across  these
categories.  Whilst  this  allowed  embeddings  to  be
interpreted in isolation, each embedding was now being
interpreted  in  relation  to  other  ‘complex  concepts’;  the
categories. 
This  actually  relates  to  a  larger  issue  in  semantics,
revolving around how words and concepts are defined. A
common  belief  in  cognitive  linguistics  is  that  people
define concepts in terms of their constituent features (e.g.
Cree  and  McRae,  2003).  However,  these  features
themselves  are  often  complex  concepts  which  must  be
defined in terms of yet more features (Binder et al, 2016).
This makes defining a concept difficult  and, even more
troublingly,  can  result  in  circular  definitions  where
concepts are defined in terms of each other. Whilst efforts
have  been  made  to  identify  a  set  of  primitives:  core
irreducible features of meaning, results have been mixed
(Drobnak, 2009). 

2.3 Reflecting Human Semantic Understanding
Binder  et  al  (2016)  proposed  an  alternative  method  of
defining  concepts  in  terms  of  a  core  set  of  semantic
features.  In  a  meta-study,  they  identified  65  semantic
features  all  thought  to  have  specific  neural  correlates
within the brain.  The features  were  chosen  to represent
different types of meaning in relation to concepts,  from
visual,  to  auditory,  to  tactile  and  emotional.  They  then
asked  human  participants  to  rate  a  collection  of  words
across this feature set with scores from 0-5. For example
when  asked  to  rate  a  word  for  the  feature  ‘Vision’,
participants were asked: ‘To what degree is it something
you can easily see?’. The authors collected scores for 535
words; 434 nouns, 62 verbs and 39 adjectives. They also
made efforts to include words relating to abstract entities

as  well  as  concrete  objects.  Table  1  below  gives  an
example of the mean scores for Vision, Motion and Time
features for the first three words in the Binder dataset.

Word Vision Motion Time Pleasant Angry

mosquito 2.9 3.6 0.3 0.2 2.9

ire 1.1 0.6 0.2 0.1 5.0

raspberry 4.6 0.0 0.5 4.1 0.2

Table 1: Example semantic feature scores (5 of 65) for
three words from Binder et al (2016)

The features that Binder and colleagues proposed are an
attractive  embedding  space  as  it  allows  words  to  be
interpreted individually. Moreover, since each dimension
is interpretable,  how words relate or differ can be seen.
Binder  et  al  demonstrated  that  this  could  be  used  to
differentiate words based on categories, either narrow e.g.
mammals vs fish, or more broad e.g. concrete vs abstract.
Moreover, they identified a number of important uses for
their  feature  space,  including  identifying  feature
importances,  representing  how  abstract  concepts  are
experienced  and  understanding  how  concepts  can  be
combined.
However,  for  the feature  space  to  be useful  it  needs to
cover a decent proportion of the English vocabulary and
they  only  collected  ratings  for  535  words.  Collecting
human  ratings  for  even  a  moderate  coverage  of  the
English vocabulary would be prohibitively expensive and
time consuming. Instead, it may be possible to predict the
feature scores using word embeddings. Abnar et al (2018)
demonstrated  that  word  embeddings  could  be  used  to
predict neural activation associated with concrete nouns.
Since the Binder features are intended to relate to specific
neural  correlates,  the  embeddings  should  be  able  to  be
used  to  predict  them.  In  this  direction,  Utsumi  (2018)
demonstrated  that  Binder  feature  vectors  could
successfully be derived from word embeddings including
Word2Vec  and  GloVe  for  words  within  the  Binder
dataset.  Taking  this  further  and  demonstrating  that  the
features  can  extrapolated  to  any  number  of  new words
with  embeddings  would  massively  expand  the  feature
space vocabulary. Previous studies have shown that it is
possible to extrapolate feature scores for new words using
distributional  embeddings  (e.g.  Mandera,  Kueleers  &
Brysbaert, 2015) albeit for much smaller feature sets.

3. Experiment 1: Predicting Semantic
Features

3.1 Introduction
The  purpose  of  this  first  experiment  was  to  determine
whether  the  values  of  the  65 semantic  features  from
Binder  et  al  (2016)  could  be  derived from  word
embeddings in line with Utsumi (2018). A wider range of
regression models (five) were tested  plus the previously
untested  Numberbatch  embeddings  were  included.  As
Numberbatch  embeddings  combine  both  GloVe  and
Word2Vec and include extra human semantic knowledge,
it is expected that they should perform best.
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Figure 1: Mean (left) and standard deviation (right) of R-squared scores for six of the 65 Binder semantic features across
the 100 test sets. Different models are compared horizontally

3.2 Data
Scores for 535 words across the 65 semantic features were
retrieved from Binder et al (2016). Pre-trained Word2Vec
(Google, 2013), GloVe (Pennington, Socher & Manning,
2014)  and  Numberbatch  (Speer,  Chin  & Havasi,  2017)
embeddings  (all  300  dimensional)  were  retrieved  from
their  respective  online  sources.  Numberbatch  retrofits
Word2Vec and GloVe embeddings with information from
the ConceptNet knowledge-base.

3.3 Method
Five different types of regression model were compared
using  GloVe  embeddings:  linear  regressor  (LR),  ridge
regressor (Ridge), random forest regressor (RF), k-nearest
neighbours regressor (k-NN) and a 4-layer neural network
regressor  (NN).  Each  word  in  the  dataset  had  a  value
between 0-5 for each of the 65 semantic features  and a
300 dimensional word embedding. The word embeddings
were fed into the models as the independent variables with
the semantic features as the dependent variables. Separate
regression models were trained for each of the features.

For  evaluation,  models  were  trained  on a  subset  of  the
data and their predictions evaluated on a hold-out test set.
Because the dataset was fairly small, especially in relation
to the number of independent variables (300), there was a
risk  of  overfitting  and  therefore  it  was  important  to
maximise the training set size. However, having a test set
too small may not appropriately test the models across a
representative  sample.  Utsumi (2018) tackled this using
leave-one-out  cross  validation.  In  this  paper,  a
bootstrapping method was used instead. 95% of the data
was  committed  for  training,  and  the  remaining  5% for
testing, but it  was repeated  over 100 randomly selected
train-test  set  splits.   This  allowed  a  large  training  set
whilst  testing over  a  large  representative  sample of  the
words  overall.  The  mean  and  standard  deviation  of  the
results could be calculated across the 100 test sets and this
also allowed significance  testing to compare the model.
To ensure fairness, all models were evaluated on the same
random 100 train-test splits.

The  three  different  types  of  word  embeddings:
Word2Vec,  GloVe  and  Numberbatch  were  compared
using the same method as above.

R-squared was used as the evaluation metric as it was the
most intuitive to understand. A Wilcoxon Ranks-sums test

was carried out (recommended by Demsar, 2006) to com-
pare the performance of the different models and embed-
dings.

3.4 Results
Figure 1 above gives the mean R-squared and standard de-
viations across and six of the 65 features for test set. The 
six features chosen for Figure 1 represent a mix of con-
crete and more abstract Binder features.

Table 2 gives the overall mean and standard deviation of
test set R-squared scores for each model. 

Model Mean R-sq. Sd.

Linear Regression 0.03 0.35

Ridge 0.29 0.22

Random Forest 0.41 0.10

k-Nearest Neighbours 0.51 0.13

Neural Network 0.61 0.11

Table 2: Mean and standard deviation of R-squared scores
across all semantic features for the different models.

Table 3 below gives the mean and standard deviation of 
test set R-squared scores for the different embedding 
types using the neural network model (best performing 
model).

Embedding Mean R-sq. Sd.

Word2Vec 0.60 0.12

GloVe 0.61 0.10

Numberbatch 0.65 0.09

Table 3: Overall R-squared mean and standard deviation
of different word embeddings

3.5 Discussion
The  aim  of  this  experiment  was  to  determine  whether
semantic feature values from Binder et al (2016) could be
derived from word embeddings.  In  line with the results
from Utsumi (2018),  this was fairly successful  with the
best  model  (Neural  Network)  achieving  an  average  R-
squared of 0.61 across the semantic features,  with some
features up to ~0.8. Like Utsumi found, there was quite a
lot  of  variation  in  how  well  the  feature  values  were
predicted, with some such as ‘Slow’ achieving a relatively
low  average  R-squared  (~0.3).  Like  Utsumi,  certain
groups of features  tended to perform better than others.
For example, sensorimotor features such as Toward and
Away were more poorly predicted from the embeddings.

3



However,  overall  this suggests that  for  many features  a
substantial  proportion  of  the  variance  in  human  ratings
can be derived from word embeddings.

The  Neural  Network  model  was  the  best  performing
overall,  significantly  better  (p<0.01)  than  the  next  best
performing (k-NN). It was also more consistent than the
k-NN model, achieving a lower standard deviation for the
features  on average.  The linear  regression model’s poor
performance  may  have  been  due  to  overfitting  as  the
Ridge regression performed significantly better (p<0.01).

Of  the  word  embeddings,  Numberbatch  (not  previously
tested  in  the  Utsumi  paper)  performed  the  best  (0.65),
significantly  better  than  both  Word2Vec  and  GloVe
(p<0.01  for  both).  This  is  perhaps  not  surprising  as
Numberbatch  encourages  words  connected  in  a
knowledge graph to have similar vectors, and these words
will likely also share semantic features.

4. Experiment 2: Predicting Semantic
Features for a Larger Vocabulary

4.1 Introduction
Experiment 1 demonstrated that Binder et al (2016) style
semantic  features  could  be  predicted  from  word
embeddings  (albeit  with  varying  success  across  the
features).  However,  for this to be useful, it  is important
that  the  features  can  be  predicted  for  a  much  larger
vocabulary. Unfortunately, ground truth human ratings for
the 65 features only exist for the small Binder et al (2016)
dataset, which makes evaluating the predicted scores for
new words difficult. Having human scorers evaluate the
predicted feature values for new words would be slow and
expensive.
One  way  to  overcome  this  would be  to  look  at  the
correlations between the semantic features in the human
rated Binder dataset and check that they remain consistent
for predicted values in a much larger dataset. Binder et al
(2016) demonstrated that certain semantic features tended
to correlate with each-other across words in their word-
set. This pattern of correlations between features should
remain  consistent  within  a  much  larger  word-set.
Therefore,  predicting  the  semantic  values  from  word
embeddings  for  a  new  larger  word-set  of  previously
unseen  words,  should  give  the  same  or  very  similar
pattern of correlation between the semantic features if the
predicted values as sensible.
However,  what  if  the  Binder  word-set  is  not  a  good
representation  of  the  wider  English  vocabulary?  As
mentioned in the introduction the vast majority of words
in the Binder set are nouns, with relatively few verbs or
adjectives.  The between feature correlations may remain
consistent but the predicted semantic values may not be
sensible  when  expanding  to  a  larger  new wordset  with
greater variety of words. Fortunately, much larger datasets
of human rated words do exist,  but  for  a much smaller
(and  slightly  different)  set  of  semantic  features.  The
Lancaster Sensorimotor norms (LSN) (Lynott et al, 2019)
is  a  dataset  of  nearly  40,000  words  rated  across  11

features by human participants. Some of the features such
as Vision and Taste are very close to features from Binder
et al (2016) and all of the words from Binder dataset are
included in the larger LSN dataset. 
Using the Binder word-set which has human ratings for all
of  the  65  Binder  features  and  11  LSN  features,  the
correlations between the LSN and Binder features can be
calculated.  Then,  if  the  Binder  Semantic  features  are
predicted for the larger LSN word-set, it can be checked
whether these correlations remain consistent with the LSN
features.  Since  human  ratings  exist  for  the  11  LSN
features in this larger word-set, it ‘grounds’ the results. If
the pattern of correlations remains consistent, it suggests
that  the  predicted  semantic  feature  values  for  the  new
words are sensible.

4.2 Data
The LSN dataset (Lynott et al, 2019) was obtained from
their online repository. It consists of  39,707 words rated
along 11 features between 0-3. 

Numberbatch word embeddings and the Binder et
al (2016) dataset from experiment 1 were used again.

4.3 Method
First, the Pearson’s correlation was calculated between all
65 semantic  features  in the Binder et  al  (2016) dataset,
creating  a  65×65  correlation  matrix.  Using  the  neural
network  regression  model  trained  in  experiment  1  and
using Numberbatch embeddings, values for the 65 Binder
semantic  features  across  the  39,707  words  in  the  LSN
dataset were predicted. The Pearson’s correlation between
the predicted 65 semantic features across these new words
(excluding those also present in the Binder word-set) was
calculated, creating another 65×65 correlation matrix. As
a numerical measure of similarity, each of the 65 Binder
semantic  features  was represented  as  a  65  dimensional
vector of correlations to all other features, including itself
(its row in the correlation matrix). For each feature,  the
cosine  similarity  was  measured  between  its  correlation
vector  from the Binder  word-set and LSN  word-set  (ie.
‘Vision’ Binder vector and ‘Vision’ LSN vector). Under
perfect circumstances, the similarity would be 1 indicating
identical  vectors.  For  comparison,  cosine  similarity  of
correlation  vectors  for  mismatched  features  from  the
Binder and LSN word-set were calculated (e.g. ‘Vision’
and ‘Shape’). It would be expected that these would give a
cosine similarity much lower than 1.
The same procedure as above was used for comparing the
11 LSN features to the 65 Binder features. Each of the 11
LSN features was represented as a 65 dimensional vector
of  correlations  with  the  65  Binder  features.  For  each
feature  the cosine similarity between their  vectors  from
the  Binder  and  LSN  dataset  were  calculated.  For
comparison, the cosine similarity between each of the 11
LSN feature’s correlation vectors from the Binder dataset
and  every  other  feature’s  LSN  dataset  vectors  were
calculated.  
Additionally, a correlation heat-map was created between
the  features  for  the  Binder  and  LSN  word-sets  each
separately and then plotted for visual inspection.
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Figure 2: Correlations between the 11 LSN features and 65 Binder semantic features for the Binder word-set (top) and
LSN word-set (bottom)

4.4 Results
Table 4 below gives the mean cosine similarity between
the same feature correlation vectors from the Binder and
LSN word-sets and between different feature vectors.

Cosine Sim Mean Cosine Sim S.d.

Same Feature 0.985 0.008

Different Features 0.063 0.490

Table 4: Binder semantic feature correlation vector cosine
similarities between the Binder and LSN word-sets

Figure  2  above  gives  the  heat-maps  for  correlations
between the 11 LSN features and 65 Binder features for
the Binder word-set (top) and LSN word-set (bottom).

4.5 Results
Table 4 below gives the mean cosine similarity between
the same feature correlation vectors from the Binder and
LSN word-sets and between different feature vectors.

Cosine Sim Mean Cosine Sim S.d.

Same Feature 0.985 0.008

Different Features 0.063 0.490

Table 4: Binder semantic feature correlation vector cosine
similarities between the Binder and LSN word-sets

Figure  2  above  gives  the  heat-maps  for  correlations
between the 11 LSN features and 65 Binder features for
the Binder word-set (top) and LSN word-set (bottom).
Table 5 gives the mean cosine similarity of LSN feature
correlation  vectors  between  the  Binder  and  LSN word-
sets.

Cosine Sim Mean Cosine Sim S.d.

Same Feature 0.94 0.04

Different Features -0.02 0.56

Table 5: LSN feature correlation vector cosine similarities
between the Binder and LSN word-sets

4.6 Discussion
Table 4 shows that the mean cosine similarity is very high
(almost  1)  for  correlation  vectors  of  the  same semantic
feature  in  the  Binder  and  LSN  word-sets.  This  is
compared  to  the  very  low  (almost  0)  cosine  similarity
between the correlation vectors of different features from
the Binder and LSN word-sets. This demonstrates that the
patterns  of  correlations  between  the  65  Binder  features
remained  fairly  consistent  in  the  larger  LSN  word-set
where  the  values  had  been  predicted  using  the  neural
network model.
For the 11 LSN features,  the heat-maps show a similar
pattern of correlations for the features between the Binder
and LSN word-sets. The colours are slightly less intense
in  the  LSN  word-set  suggesting  the  correlations  are
slightly weaker. However, this would be expected due to
noise  from errors  in  predicting  the  feature  values.  The
mean cosine similarity is very high (nearly 1) for feature
correlation  vectors  matched  across  the Binder and LSN
word-sets and almost 0 for non-matching features.
Together these results suggest that the values predicted for
the  65  semantic  features  from  word  embeddings  are
sensible even in a large and diverse new vocabulary such
as the LSN word-set.

5. Experiment 3: Validation of the New
Feature Space

5.1 Introduction
Experiments 1 and 2 demonstrated that the values of 65
semantic  features  could  be  successfully  predicted  from
word embeddings, and that these appear to be consistent
across a large vocabulary of previously unseen words.
Whilst this new feature space is not intended to replace
existing  embeddings  (in  fact  since  it  is  purely  derived
from them it  almost  certainly  contains  less  information
about the words) it is still important to demonstrate that it
does capture sufficient semantic information.
One of  the  most  common methods for  validating  word
embeddings  is  using  semantic  similarity  datasets.
Typically, these datasets contain pairs of words which are
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Figure 3: Predicted Semantic Features of words ‘law’ and ‘lawyer’

 rated  for  semantic  similarity  by  human  participants.
Cosine similarity between word embeddings can be used
as a measure of their semantic similarity according to the
embedding model. Well  performing models should give
cosine  similarities  between  words  in  the  pairs  that
correlate closely to the human ratings.
In the Binder feature space, each word can be represented
as a 65 dimensional vector with a value for each of the
semantic features.  For new words,  these vectors  can be
created by predicting the values for each of the semantic
features,  similar  to  in  experiments  1  and  2.  The cosine
similarity between these vectors can then be calculated as
a measure  of  semantic  similarity.  The aim of this  final
experiment  was to  validate the  similarity  measurements
between the  predicted  vectors  against  human ratings of
similarity.

5.2 Data
Three  different  word  similarity  datasets  were  used:
Wordsim-353  (Gabrilovich,  2002),  Simlex-999  (Hill,
Reichart  &  Korhonen,  2015)  and  Verbsim  (Yang  and
Powers,  2006).  The  same  pre-trained  Word2Vec,
Numberbatch  and  GloVe  embeddings  as  experiment  1
were used. The same neural network trained on the Binder
et al (2016) dataset as experiments 1 & 2 was used.

5.3 Method
A vocabulary was created consisting of all words from the
three similarity datasets. Using the trained neural network 
model and the Numberbatch vectors for the words, values 
for the 65 semantic features were predicted for the words 
in the vocabulary. This resulted in a 65 dimensional vec-
tor for each of the words, where for each word each di-
mension was the value of each semantic feature for that 
word.
For each of the similarity datasets, the cosine similarity 
was calculated between the semantic feature vectors of the
words in each pair. The cosine similarity was also calcu-
lated for the Word2Vec, GloVe and Numberbatch embed-
dings as a comparison.
Spearman’s rank correlation was used as it compares the 
similarity rankings of the word pairs between the human 
ratings and the ratings derived from the embeddings.

5.4 Results
Table  6  below  gives  the  Spearman’s  rank  coefficient
between the word embedding cosine similarity ratings and
the ground truth human ratings across the three different
word pair datasets.

Embeddings WordSim353 SimLex999 SimVerb

Word2Vec 0.69 0.44 0.36

GloVe 0.72 0.41 0.28

Numberbatch 0.83 0.63 0.57

Predicted Binder 0.47 0.54 0.46

Table 6: Spearman’s Rank correlation between model and
human similarity ratings for different word-pair datasets

Whilst Numberbatch embeddings performed best on all 
datasets, the predicted feature embeddings performed 
fairly well, beating Word2Vec and GloVe on two of the 
three datasets. However, the predicted embeddings 
performed particularly poorly on the Wordsim-353 
dataset, performing the worse by far.

5.5 Discussion

At first, the particularly poor performance of the predicted
semantic vectors on the Wordsim-353 dataset seems 
discouraging. However, the Wordsim dataset has received
criticism for containing a high proportion of word pairs 
rated high in similarity through association (e.g. law and 
lawyer) rather than pure semantic meaning (Hill et al, 
2015). Since the predicted Binder semantic embedding 
space defines words in terms of semantic features, it is 
understandable that it would not capture similarity due to 
association as associated words do not necessarily share 
core features. The SimLex-999 dataset was specifically 
designed to avoid word pairs with high ratings due to 
association. The better performance of the predicted 
feature embeddings on this dataset indicates that the poor 
performance on the Wordsim dataset was likely due to 
these association word pairs.

The performance of the predicted embeddings on the 
SimVerb dataset is also encouraging seeing as there were 
relatively few verbs in the Binder et al (2016) dataset used
for training the prediction model. And it indicates that the 
model should be suitable for predicting semantic features 
for new verbs.

Figure 3 above illustrates how two words with high 
human rated similarity due to association (law and 
lawyer) are represented by the predicted feature vectors. 
In this embedding space it can be seen that they are 
considered very different. Lawyer appears to be 
represented as a human concrete object: a person as a 
professional lawyer. The law on the other hand appears to 
be a more abstract concept (as indicated by the very low
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 scores across all visual, auditory and sensorimotor 
features). By these senses the concepts are very different, 
even though to a human they may seem very similar due 
to their high association.

Finally, whether word similarity datasets are the best way 
to evaluate word embedding semantics is debatable. 
Faruqui et al (2016) provide several shortcomings of word
similarity tests for evaluating word embeddings. In light 
of this, the poorer performance of the Binder embeddings 
may not mean they do not hold important semantic 
information

6. General Discussion
The  aim  of  this  research  was  to  demonstrate  that  the
Binder  semantic  feature  space  for  words  can  be
extrapolated to a much larger vocabulary of words using
word  embeddings.  This  was  important  as  the  Binder
word-set is limited to only 535 words.
In line with Utsumi (2018),  Experiment 1 demonstrated
that  Binder  features  can  be  derived  from  word
embeddings,  with  the  previously  untested  Numberbatch
embeddings  giving  the  best  performance.  Like  in  the
Ustumi  paper,  a  neural  network  architecture  model
performed  best.  Experiment  2  demonstrated  that  the
predicted values  for  a large set  of  new words appeared
sensible,  with  the  internal  correlations  between  the
features  remaining  consistent  with  human  rated  words.
Finally,  experiment  3  showed that  this  new embedding
space retains important semantic information about words,
performing  comparatively  to  established  embedding
models.  However,  it  does  not  capture  associations
between words well which may be an important aspect of
semantic similarity that it fails on.
The purpose of mapping words to this new feature space
is  not  to  replace  existing  embedding  models,  but  to
provide an alternative way to view word embeddings. As
Figure  3,  on  the  previous  page,  illustrates  the  words
represented  in  this  feature  space  are  quite  easy  to
interpret.  Furthermore,  the  semantic  features  that  either
differentiate or liken words can easily be identified. The
fact  that  this  feature  space  can  be  fully  derived  from
existing word embeddings such as Numberbatch, suggests
that  this  semantic  information  is  all  present  within  the
word  embeddings.  However,  the  range  in  explained
variance between the predicted features does suggest that
some  semantic  information  is  better  captured  by  word
embeddings  than  other.  This  is  something  that  Utsumi
(2018) investigated in greater detail.
Finally,  being  able  to  predict  the  feature  values  from
existing word embeddings allows the Binder feature space
to  be  extrapolated  to  a  much  larger  vocabulary.  This
makes many of the uses for the feature space, outlined in
Binder et al (2016), more realistic as their original dataset
was too limited in size.
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Abstract 
Texts comprise a large part of visual information that we process every day, so one of the tasks of language science is to make them 
more accessible. However, often the text design process is focused on the font size, but not on its type; which might be crucial especially 
for the people with reading disabilities. The current paper represents a study on text accessibility and the first attempt to create a research-
based accessible font for Cyrillic letters. This resulted in the dyslexic-specific font, LexiaD. Its design rests on the reduction of inter-
letter similarity of the Russian alphabet. In evaluation stage, dyslexic and non-dyslexic children were asked to read sentences from the 
Children version of the Russian Sentence Corpus. We tested the readability of LexiaD compared to PT Sans and PT Serif fonts. The 
results showed that all children had some advantage in letter feature extraction and information integration while reading in LexiaD, but 
lexical access was improved when sentences were rendered in PT Sans or PT Serif. Therefore, in several aspects, LexiaD proved to be 
faster to read and could be recommended to use by dyslexics who have visual deficiency or those who struggle with text understanding 
resulting in re-reading.  

Keywords: dyslexia, font, eye movements 

1. Introduction 
1.1 Dyslexia 
Dyslexia is one of the most common reading disabilities in 
children. Some estimations show the incidence of dyslexia 
to be 4-10% (Castles et al., 2010). In Russia, 5-10% of 
children suffer from dyslexia (Kornev, 2003). 
Most definitions of dyslexia fall into two approaches: 
pedagogical and clinical/psychological. In this paper, we 
follow the second approach, meaning that dyslexia is a 
persistent, selective inability to master reading skills in the 
presence of optimal learning conditions, despite a sufficient 
level of intellectual development and no impairments of 
auditory or visual analyzers (Kornev, 2003). 
One of the theories trying to explain this phenomenon - the 
theory of phonological deficit in reading - is associated 
with the lack of formation of speech processes (Ramus et 
al., 2003). In this case, the problem of mastering the skill 
of sound-letter reading is due to the inability of the child to 
establish a link between the auditory and self-spoken 
speech, and, accordingly, between oral speech and writing. 
In turn, the theory of visual deficiency in reading explains 
dyslexia by dysfunction of the visual system (Stein & 
Walsh, 1997), which is responsible for visual recognition 
and controls eye movements (Stein, 2018). Dyslexics 
indicate the following problems in reading: letters in the 
words change places or are blurred, and the lines of the text 
shift. Studies indicate that oculomotor activity of children 
with and without dyslexia have quantitative and qualitative 
differences (Pavlidis, 1981). 
In this work, the theory of visual deficiency is of particular 
interest, since such visual difficulties in reading were not 
only subjectively described by dyslexics but also 
objectively proved in some studies (Mueller & 
Weidemann, 2012). It was shown that a letter in a word is 
recognized by its distinctive features. Since the distinctive 
letter elements and text appearance in general depend on 
the font type, it is an important criterion for identifying 
letters in the process of reading.  

1.2 Fonts 
Different types of fonts are divided into groups according 
to the presence of serifs (serif - Times New Roman, sans 

serif - Arial) and letter width (monospaced - Courier, 
proportional - Arial). Most research in the field of font 
readability for Latin alphabet aims to determine which font 
type is easier to read. 
At the moment there is no consensus on whether serifs 
affect font perception. Some studies show that there is no 
effect of serifs on font perception (e.g. Perea, 2013), others 
show that serifs slow down the processes of reading and 
character recognition since serifs create visual noise that 
complicates letter identification process (Wilkins et al., 
2007). However, sans serif fonts are agreed to be 
recognized faster (Woods et al., 2005). The advantage of 
sans serif font is also noted in the study (Lidwell et al., 
2010), which demonstrated that the absence of serifs 
increases text readability for participants with reading 
disabilities. 
Although there are quite few works looking at serifs, 
studies comparing monospaced (all letters have the same 
width) and proportional (width of a letter depends on its 
geometric shape) fonts are in abundance. Monospaced 
fonts are known for worsening recognition process, and the 
recommendations of designers urge to avoid such fonts 
(Rello & Baeza-Yates, 2013).  
Latin alphabet has been studied extensively, which is not 
the case for Cyrillic letters. One of the studies (Alexeeva & 
Konina, 2016) presented the participants Courier New 
letters in two conditions - in isolation and as part of a 
sequence – and built the first confusion matrix for Russian. 
Further exploration (Alexeeva et al., 2019) revealed that 
typeface does influence letter recognition: letters written in 
proportional Georgia are more intelligible than the ones 
written in monospaced Courier New.  

1.2.1 Recommendations 
There are barely any font recommendations for people with 
reading disabilities. The British Dyslexia Association 
advises to use sans serif fonts (Arial, Comic Sans) and to 
avoid fancy options (italics, decorative fonts) but doesn’t 
specify reasons of why these fonts are suggested. Sans serif 
fonts as dyslexic-friendly were also mentioned in (Evett & 
Brown, 2005; Lockley, 2002). 
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1.3 The problem and the principle for our 
solution 

Since font influences success of letter recognition inside a 
word, we assume that a properly designed font will 
facilitate letter recognition, both for people with normal 
reading skills and dyslexics. 
Although many Latin-based dyslexia-friendly fonts are of 
frequent use (i.e. Dyslexie, OpenDyslexic, Sylexiad, Read 
Regular), empirical studies failed to prove that these fonts 
have any effect on reading for dyslexics (Rello & Baeza-
Yates, 2013; Wery & Diliberto, 2017; Kuster et al., 2017). 
In fact, designers of those fonts were inspired by their own 
reading difficulties and did not perform any objective inter-
letter similarity pretests.   
In our project, we made the first attempt to design dyslexia-
friendly font for the Russian alphabet. To avoid past 
mistakes, we developed our font, LexiaD, on the grounds 
of empirical results. Namely, we conducted a preliminary 
eye-tracking study where letter confusions were identified. 
The reduction of inter-letter similarity in LexiaD was the 
main principle that guided type designers we worked with 
— M. Golovatyuk and S. Rasskazov. 

1.4 LexiaD 
The main idea of LexiaD was to make all letters as 
dissimilar as possible, following the previous study 
(Alexeeva & Konina, 2016). For example, letters т and г 
that are frequently confused in other fonts were designed as 
т and г, in a way they are handwritten. Here are the most 
important LexiaD features: 
• It is proportional and sans serif, since it was found that 

serifs and monospace complicate reading (see 1.2 
Fonts). 

• It is designed for 14 plus pins, since it is more 
convenient for children with and without dyslexia to 
work with a larger font (O’Brien et al., 2005; Wilkins 
et al., 2007).  

• The amount of white inside letters and in between 
varies, and the distance between lines is double line 
spacing. It was shown that increased distance between 
letters and words, and an increase in the amount of 
white facilitates text perception by dyslexics (Zorzi et 
al., 2012).  

• As for the exact features, the designers changed similar 
elements in the letters, made each letter in the new font 
as different as possible from the other, but easy to read: 

o "Recognizable clues", emphasizing 
individual characteristics of letters. 

o Extended letters that help distinguish certain 
characters from others. 

o Thickening of horizontals and diagonals of 
letters, which visually distinguishes 
characters from others. 

Figure 1 shows the Russian alphabet rendered in LexiaD. 

Figure 1: The Russian alphabet in LexiaD font 
 

 
1 “They say that summer will be hot” 

2. Methodology 
The purpose of this study is to assess the readability of the 
first special Cyrillic font LexiaD by dyslexic children and 
children without dyslexia, specifically, to compare LexiaD 
to PT Sans and PT Serif - modern open license fonts that 
were specifically designed to render Russian and other 
Cyrillic-based alphabets, and are claimed to be one of best 
sans serif and serif typefaces (Farář, 2011).  
Figure 2 shows all three used fonts for the purpose of visual 
comparison. 

Figure 2: An example sentence in LexiaD, PT Sans and 
PT Serif fonts1 

 
Since each letter in LexiaD has its own characteristics and 
a minimum number of elements similar to other letters, it 
was assumed that the sentences presented in this font will 
be read faster than in PT Sans or PT Serif. Also, a number 
of comprehension errors in LexiaD will be less or equal to 
that in PT Sans or PT Serif. Readability was tested with an 
eye-tracker.  

2.1 Participants 
We recruited 3rd and 4th-grade children with and without 
dyslexia (9-12 age-old).  
Dyslexic children were students of public schools in 
Moscow (further “PT Sans/LexiaD” part) and 
St.Petersburg (further “PT Serif/LexiaD” part). Children in 
Moscow were diagnosed with dyslexia according to the 
adapted requirements of Neuropsychological Test Battery 
(Akhutina et al., 2016) by Svetlana Dorofeeva, Center for 
Language and Brain, HSE Moscow. The Test took about 2 
hours to complete, therefore only 6 dyslexics (3 boys) 
participated in PT Sans/LexiaD part of the study. Children 
in St. Petersburg were recruited via speech remediation 
school №3; 31 children (26 boys) participated in PT 
Serif/LexiaD part.  
Non-dyslexic children were students of public school 
№491. 22 of them (8 boys) participated in PT Sans/LexiaD 
part, and 25 of them (13 boys) – in the PT Serif/LexiaD 
part. None of them had any language impairments.  
All participants had (a) normal level of intellectual 
development; (b) normal vision; (c) no comorbid diagnoses 
(e.g., autism), and (d) were naive to the purpose of the 
experiment. 

2.2 Materials and design 
We used the Children version of the Russian Sentence 
Corpus (Korneev et al., 2018), consisting of 30 sentences 
(ranged in length from 6 to 9 words, with the total number 
of 227 words). For each word in the corpus, word 
frequencies and word length were calculated. Frequencies 
were determined using a subcorpus of children's texts from 
1920 to 2019 of the Russian National Corpus 
(http://ruscorpora.ru, comprising more than 4 million 
tokens).  
Half of the sentences were presented in PT Sans or PT Serif 
(depending on the part of the study, see 2.1 Participants) 
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and the other half – in LexiaD. In the PT Sans/LexiaD part 
sentences in PT Sans were rendered in 21 pt, and sentences 
in LexiaD – in 26 pt, whereas in the PT Serif/LexiaD part 
sizes of 17 pt and 21 pt were used respectively. In both 
cases the physical height of each font pair was equal. Size 
differences were due to different distances from a 
participant to a monitor that depended on the workplace 
provided. 
The order of fonts, order of sentences and distribution of 
sentences between the fonts were random for each child.  
Three practice sentences were presented at the beginning of 
the experiment. To ensure that participants were paying 
attention to the task, 33% of the sentences were followed 
by a two-choice comprehension question; the response was 
registered by the keyboard. Sentences and questions were 
typed in black on a white background.  

2.3 Equipment 
SR Research EyeLink 1000 plus camera mounted eye-
tracker was used to record eye movements. The recording 
of eye movements was carried out in monocular mode, 
every 1 ms. The experiment was created using the 
Experiment Builder software developed by SR Research. 

2.4 Procedure 
Participants were instructed to read the sentences 
attentively. A head restraint was used to minimize head 
movements. The initial calibration procedure lasted 
approximately 5 min, and calibration accuracy was 
checked prior to every trial in the experiment. After reading 
each sentence, a participant pressed a key button to 
continue. 

3. Results 
3.1 Data analysis 
Eye movements are described by fixations and saccades: 
fixations occur when eyes are relatively stable (and intake 
of visual information occurs), and saccades — when eyes 
move rapidly from one text region to another.  
In this study, fixations under 80 ms within one character of 
the next or previous fixation were combined with the 
respective fixation. Remaining fixations under 80 ms as 
well as fixations before and after a blink were discarded. 
The first and last words in every sentence were excluded 
from the analyses.  
Following standard practices in eye movement research 
(Rayner, 1998), we examined two measures of initial 
processing time for the corpus words: first-fixation 
duration (FFD, the duration of the first fixation on a word 
independent of the number of fixations that were made on 
the word), gaze duration (GD, the sum of all fixations on a 
word before moving the eyes off that word), and one 
measure of late processing: total viewing time (TVT, the 
sum of all fixations on a word including fixations while re-
reading). FFDs and GDs were measured even if a word was 
at first skipped and then fixated (6% in PT Sans/LexiaD 
and 7% in the PT Serif/LexiaD. The words that are 
completely skipped were discarded from the analysis (9% 
in PT Sans/LexiaD and 8% in the PT Serif/LexiaD).  
It is claimed (Liversedge et al., 2011) that earlier reading 
measures reflect early stages of cognitive processing (e.g. 
feature extraction and lexical access) whereas effects 
associated with later stages of processing (e.g. discourse 
processing and recovering after a syntactic or semantic 

disruption) affect later reading time measures. It is also 
believed that optimal fixation location is a center of the 
word (Nuthmann et al., 2005) as this position makes all or 
most of the letters clearly visible. Therefore, if a fixation 
lands far from the center (e.g. due to a motor error), then 
not all letter visual information will be extracted fully, and 
most likely a refixation will be made. Therefore, we assume 
that first fixation duration is primarily related to feature 
extraction, gaze duration mainly reflects lexical access, and 
total viewing time captures text integration. 
We performed two (generalized) linear mixed effects 
analyses ((G)LMM) using the lme4 package in R to assess 
the effect of font and participant group (with / without 
dyslexia) on each of the eye movement measures 
(dependent variables) and comprehension accuracy. 
Controlled effects — word length and word frequencies — 
and two-way interactions between all factors were included 
in the analyses. We explored the data from the PT 
Sans/LexiaD in the first analysis, and the data from the PT 
Serif/LexiaD — in the second one.  
To ensure a normal distribution of model residuals, 
durations (FFD, GD, and TVT) were log-transformed. 
Binary dependent variables (accuracy) were fit with 
GLMMs with a logistic link function. Font and Participant 
group factors were coded as sliding contrasts (with LexiaD 
and dyslexics as a reference level, respectively).  
The lmerTest package in R was used to estimate the p-
values. Step procedure was conducted for optimal model 
selection. Results for all models are indicated in Tables 1, 
2, 3 and 4 below (significant effects are in bold). 
 

 PT Sans / LexiaD PT Serif / LexiaD 
First Fixation Duration (FFD) 

Optimal 
model 

log(FFD) ~ font + group + log(freq) 
+ (1 + font | subj) + (1 + group | word) 

log(FFD) ~ font + log(freq) + length 
+ font:log(freq) + (1 + font | subj) + 
(1 + group | word) 

Predictors Model estimates Model estimates 
b SE t p b SE t p 

Font 0.06 0.018   3.27   0.003 0.02 0.018   0.97    0.334 
Group -0.25  0.070  -

3.58   
0.001     

Log(freq) -0.02 0.003  -
5.44  

<0.001 -0.02   0.003 -
7.48 

<0.001 

Length     <0.01   0.003 -
2.54    

0.012    

Font:log 
(freq) 

    <0.01   0.004 2.43    0.015 

 
Table 1: Fixed effect results for first fixation duration. 

 
 PT Sans / LexiaD PT Serif / LexiaD 

Gaze Duration (GD) 
Optimal 
model 

log(GD) ~ font + group + log(freq) 
+ length + font:log(freq) + (1 + 
group | word) +  (1 | subj) + (1 | 
trial)  

log(GD) ~ font + group + log(freq) + 
length + font:log(freq) + 
group:log(freq) + (1 + font | subj) + (1 | 
word)  

Predictor
s 

Model estimates Model estimates 
b SE t p b SE t p 

Font -
0.0
8  

0.03
2 

-
2.5
6    

0.010  -0.05 0.0241 -2.18   0.030 

Group -
0.6
0  

0.12
7 

-
4.7
8  

<0.00
1 

- 0.03 0.098 -2.74   0.008 

Log(freq) -
0.0
5 

0.00
7 

-
7.8
4 

<0.00
1 

-0.07 0.006 -
10.8
1   

<0.00
1 

Length 0.0
8   

0.00
8 

9.4
2   

<0.00
1 

0.07 7.076e
-03   

9.70   <0.00
1 

Font:log 
(freq) 

0.0
1 

0.00
7 

2.0
9    

0.037 <0.0
1   

0.005 1.99   0.047 

Group:log 
(freq) 

    0.02   0.005 4.21 <0.00
1 

 
Table 2: Fixed effect results for gaze duration. 
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 PT Sans / LexiaD PT Serif / LexiaD 
Total Viewing Time (TVT) 

Optimal 
model 

log(TVT) ~ font + group + log(freq) 
+ length ) + font:log(freq) + 
group:length + (1 + font | subj) +  (1 
| word) + (1 | trial) 

log(TVT) ~ font + group + log(freq) 
+ length + font:lengh + group:length 
+ group:log(freq)+ (1 + font | subj) + 
(1 | word) + (1 | trial)  

Predictor
s 

Model estimates Model estimates 
b SE t p b SE t p 

Font -
0.0
7 

0.032 -2.10 0.039 <0.0
1 

0.037  2.6
3   

0.009 

Group -
0.0
6 

0.181  -3.08 0.004 -0.33  0.118   -
2.8
2   

0.006 

Log(freq) -
0.0
7  

0.008 -8.17 <0.00
1 

-0.08 0.008 -
9.8
3   

<0.00
1 

Length 0.1
0  

<0.00
1  

10.2
8   

<0.00
1 

0.08 <0.00
1 

8.5
2 

<0.00
1 

Font:log 
(freq) 

0.0
2 

0.006 3.65 <0.00
1 

    

Font: 
length 

    -0.01 0.005 -
2.6
2   

0.009 

Group: 
Length 

-
0.0
5 

0.008 -6.71 <0.00
1 

-0.02 0.007 -
2.6
2   

0.009 

Group: 
log 
(freq) 

    -0.02 0.006 2.9
9   

0.003 

 
Table 3: Fixed effect results for total viewing time. 

 
 PT Sans / LexiaD PT Serif / LexiaD 

Accuracy (ACC) 
Optimal 
model 

ACC ~ font + group + font:group+ 
(1 + font | subj) + (1 | trial) 

ACC ~ font + group + font:group+ (1 
+ font | subj) + (1 | trial) 

Predictors Model estimates Model estimates 
b SE z p b SE z p 

Font 0.81      1.215   0.67     0.503 0.34     0.460    0.74     0.461 
Group 0.65      0.824  0.79    0.428 0.05     0.370   0.14    0.885 
Font: 
group 

-
0.67      

1.608 -
0.42     

0.675 0.02     0.702    0.03     0.978 

 
Table 4: Fixed effect results for accuracy. 

 

3.2 Effects of LexiaD 
3.2.1 PT Sans/LexiaD 
There was a robust effect of font on FFD: readers fixated 
longer on words in PT Sans (348 ms) than on words in 
LexiaD (325 ms).  
Effect of font was significant for GD but invertedly: words 
in LexiaD were fixated at longer (532 ms) than words in PT 
Sans (491 ms). Also, there was a significant interaction 
between font and word frequency, meaning the advantage 
of the LexiaD for high-frequency words and the 
disadvantage — for low-frequency ones.  
For TVT, readers fixated significantly longer on words in 
LexiaD (676 ms) than on words in PT Sans (643 ms). There 
was also a significant interaction between font and word 
frequency, again meaning the advantage of the LexiaD for 
high-frequency words and the disadvantage — for low-
frequency ones.  
We did not find an effect of font on comprehension 
accuracy. 

3.2.2 PT Serif/LexiaD 
There was no main effect of font on FFD (342 ms in LexiaD 
and 344 ms in PT Serif), but we found a significant 
interaction between font and word frequency, meaning the 
advantage of LexiaD for high-frequency words and no 
effect — for low-frequency ones.  
Effect of font was significant for GD but invertedly: words 
in LexiaD were fixated at longer (480 ms) than words in PT 
Serif (454 ms). Also, there was a significant interaction 
between font and word frequency, meaning no effect for 

high-frequency words and the disadvantage — for low-
frequency ones.  
For TVT, readers fixated significantly longer on words in 
PT Serif (679 ms) than on words in LexiaD (620 ms). Also, 
there was a significant interaction between font and word 
length, meaning the advantage of the LexiaD for short and 
medium-length words and the disadvantage — for long 
words.  
Here again, we did not find an effect of font on 
comprehension accuracy. 

3.3 Other noteworthy effects 
In almost all fixation measures (except FFD in PT 
Serif/LexiaD) dyslexic people showed salient disadvantage 
compared to normal reading children (PT Sans/LexiaD — 
FFD: 399 ms vs. 293 ms, GD: 755 ms vs. 368 ms., TVT: 
884 ms vs. 497 ms; PT Serif/LexiaD: FFD: 391 ms vs. 291 
ms, GD: 546 ms vs. 397 ms., TVT: 771 ms vs. 546 ms). 
However, there was no effect of the group on 
comprehension accuracy: dyslexics answered questions 
roughly as well as children without dyslexia (PT 
Sans/LexiaD — 88% vs. 94%, PT Serif/LexiaD — 92% vs. 
92%,). This means that such children just need more time 
to succeed in reading tasks. 
Besides, we received benchmark effects of frequency and 
length that let us reassure that our data sets are valid: 
readers fixated longer on low-frequency (in FFD, GD and 
TVT) and long words (in GD and TVT) independent of the 
font. See the same results for adults (Laurinavichyute et al., 
2019) and for second-grade children (Korneev et al., 2018) 
without reading problems. 

4. Discussion 
Results of FFD and TVT showed that LexiaD is more 
readable than PT Sans and PT Serif. But this effect is 
weaker or absent for low-frequency or long words.  
FFD results show that if a word is familiar to a reader, then 
LexiaD helps to quickly extract visual information at hand, 
for it outperformed the other two fonts. However, if a word 
is low-frequent, then PT Serif facilitates recognition, 
whereas PT Sans slows it down (with LexiaD in between). 
The disadvantage of LexiaD for low-frequency words 
compared to PT Serif could be due to unfamiliarity with 
this font. Therefore, LexiaD and PT Serif are better than PT 
Sans for feature extraction for both dyslexic and non-
dyslexic children. To understand which of two remaining 
fonts is more effective, we have to conduct a replication 
experiment with adolescents or adults with or without 
reading impairments. In that case, it will be possible to 
increase the number of sentences to read, so that 
participants will have a chance to get used to some non-
typical forms of LexiaD letters. Besides, oculomotor 
control of those groups is more accurate, meaning that they 
tend to fixate on the center of a word where more features 
are available.  
We suggest that the effect found for TVT is related to text 
integration stage. Specifically, LexiaD helps to recover 
from comprehension failure quicker and to integrate a word 
in the mental representation of the text faster (as TVT 
includes fixations that not only occur during the first 
encounter of a word but also after rereading). For long 
words the effect is absent, but this time it happens with PT 
Sans. This presumably means that sans serif fonts at hand 
are more effective for thoughtful reading or reading more 
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difficult texts for any readers. Likewise, the disadvantage 
of LexiaD for long words could be due to unfamiliarity with 
this font.  
As for the GD, the experiment revealed that LexiaD is 
clearly worse than PT Sans and PT Serif fonts. Gaze 
duration is typically considered the best measure of 
processing time for a word (Rayner et al., 2003) and 
assumed to reflect lexical access — orthographic, 
phonological and semantic processing of a word. 
Apparently, for these stages of word processing fonts with 
more familiar letter shapes are more effective, as it is easy 
to convert graphemes to phonemes. To test this assumption, 
it is necessary to recruit dyslexics with different causes of 
its occurrence. LexiaD should work even worse if the main 
cause of dyslexia is phonological processing, but if primary 
deficiency is due to poor visual processing, LexiaD should 
outperform other fonts even in gaze duration.   
To get an idea on the number of words and/or participants 
to be included in the new experiments, we conducted the 
power analysis for the font effect using powerSim and 
powerCurve functions from the library simr in R (Green & 
MacLeod, 2016). The number of simulations was equal to 
200. The output is presented in Table 5.     
 

 
PT Sans / LexiaD  

 

Measures [ms] Simulation parameters and estimates 
diff power [%] N-part N-words 

FFD 23 92 24 128 
GD 41 75.5 28 178 
TVT 33  51.5 45 296 

 
PT Serif / LexiaD 

 

Measures [ms] Simulation parameters and estimates 
diff power [%] N-part N-words 

FFD 2 22.0 >112 (31%)a >296 (24%)a 
GD 26 67.5 76 233 
TVT  59 86.5 49 100 

 
Table 5: Power analyses simulations results 

 
Note. Diff – absolute observed difference between fonts; N-
part – the number of participants that should be included in 
the future experiments to keep the power above the 80% 
threshold (while the number of words is the same as in the 
present experiment); N-words2 – the number of words that 
should be included in the future experiments to keep the 
power above the 80% threshold (while the number of 
participants is the same as in the present experiment). 
aMore than 112 subjects or 296 words are needed to reach 
power of 80%. To figure out the exact number more 
subjects and words are to be explored. However, due to 
time-consuming procedure max 112 subjects and 296 
words were simulated. Numbers in brackets represent max 
power that was reached when 112 subjects or 296 words 
were simulated. 
 

5.  Conclusion 
In conclusion, LexiaD proved to be faster to read in several 
aspects and could be recommended to use by dyslexics with 
visual deficiency or those who struggle with text 
understanding resulting in re-reading.  
Finally, we compiled a corpus of eye movements of 3-4 
grade children with or without reading difficulties. This 

 
2 Except for the first and the last words in stimuli, and skipped words, that 
are not usually included in the analysis.  

corpus let us not only evaluate the readability of the 
developed font but also explore the influence of linguistic 
features like length and frequency on eye movements (see 
3.3 Other noteworthy effects). This resource can also be 
used for investigating higher linguistic levels, for instance, 
whether auxiliary parts of speech cause difficulties in 
reading among dyslexic and non-dyslexic children. The 
corpus is available at https://osf.io/fjs5a.  
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Abstract
NLP models are imperfect and lack intricate capabilities that humans access automatically when processing speech or reading a text.
Human language processing data can be leveraged to increase the performance of models and to pursue explanatory research for a better
understanding of the differences between human and machine language processing. We review recent studies leveraging different types
of cognitive processing signals, namely eye-tracking, M/EEG and fMRI data recorded during language understanding. We discuss the
role of cognitive data for machine learning-based NLP methods and identify fundamental challenges for processing pipelines. Finally,
we propose practical strategies for using these types of cognitive signals to enhance NLP models.
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1. Introduction
Machine learning methods for natural language process-
ing (NLP) are imperfect and still lack the intricate capa-
bilities that humans access automatically when processing
speech or reading a text. For instance, humans are able
to resolve coreferences and to perform natural language
inference, while machine learning methods are not nearly
as good (Wang et al., 2019). Human language processing
data can be recorded and used to increase the performance
of NLP models and to pursue explanatory research in un-
derstanding which ”human-like” skills our models are still
missing.
Linking brain activity and machine learning can increase
our understanding of the contents of brain representations,
and consequently in how to use these representations to un-
derstand, improve and evaluate machine learning methods
for NLP. Our aim in this paper is to find common patterns
and approaches that have been implemented successfully
when leveraging human language processing signals for
NLP. The main objective is to guide researchers when nav-
igating the challenges that are unavoidable when working
with cognitive data sources.
In recent years, an increasing number of studies using
human language processing for improving and evaluating
NLP models have emerged. However, consistent practices
in pre-processing, feature extraction, and using the human
data in the models have not yet been established. Physio-
logical and neuroimaging data is inherently noisy and may
also be subject to idiosyncrasy, which makes it more diffi-
cult to effectively apply machine learning algorithms. For
example, in eye-tracking, an extended fixation duration in-
dicates more complex cognitive processing, but it is not ob-
vious which process is occurring. Brain imaging signals
help to better locate cognitive processes in the brain, but it
is difficult to disentangle the signal pertinent to the task of
interest from the noise related to other cognitive processes
which are irrelevant for language processing (e.g., motor
control, vision, etc.).
In this paper, we review recent NLP studies leveraging dif-

ferent types of human language processing signals, namely
eye-tracking, electroencephalography (EEG), magnetoen-
cephalography (MEG), and functional magnetic resonance
imaging (fMRI) recorded during language understanding.
We discuss the role of cognitive data for machine learning-
based NLP methods and identify fundamental challenges
for processing pipelines. Based on this discussion, we pro-
pose practical strategies for using these types of cognitive
signals to augment NLP models. Finally, we explore the
ethical considerations of working with human data in NLP.

2. Cognitive signals
In this section, we introduce eye-tracking, EEG, MEG and
fMRI as recording techniques of cognitive signals. We de-
scribe the technical details and methodological challenges
for each technique and discuss how the signals have been
used to improve NLP models.

2.1. Eye-tracking
Eye-tracking signals are recorded with a device that tracks
the eye movements in a non-intrusive way, most commonly
using infra-red light and a camera. Depending on the sam-
pling rate of the recording device, it provides very fine-
grained temporal records of one or both eyes.
When a skilled reader reads, the eyes move rapidly from
one word to the next, sequentially fixating through the text.
Some words are not fixated at all due to an intricate inter-
play of preview and predictability effects, and some words
are fixated several times due to factors such as syntactic re-
analysis. The fact that some words are fixated several times
makes it possible to study several stages of linguistic cogni-
tive processing. Early gaze measures capture lexical access
and early syntactic processing and are based on the first
time a word is fixated. Late measures reflect the late syn-
tactic (re-)processing and general disambiguation. These
features occur in words that are fixated more than once.
Around 10–15% of the fixations are regressions, where the
eye focus jumps back to re-read a part of the text.
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NLP task Earliest reference
Part-of-speech tagging Barrett et al. (2016a)
Sentiment analysis Mishra et al. (2017b)
Named entity recognition Hollenstein & Zhang (2019)
Relation detection Hollenstein et al. (2019a)
Sarcasm detection Mishra et al. (2016)
Multiword expressions Rohanian et al. (2017)
Referential/non-referential it Yaneva et al. (2018)
Coreference resolution Cheri et al. (2016)
Sentence compression Klerke et al. (2016)
Predicting misreadings Bingel et al. (2018)
Predicting native language Berzak et al. (2017)
Predicting language proficiency Kunze et al. (2013)
Dependency parsing Strzyz et al. (2019)
Text summarization Xu et al. (2009)

Table 1: Overview of NLP tasks where eye movements
showed improvements along with the earliest reference.

Each fixation lasts on average around 200 ms, but the
variation is large and the duration of each fixation has
shown to be reliably linked to many word attributes:
syntactic, semantic, and discourse-related. The fixation
duration can thus be taken as a proxy for cognitive pro-
cessing. It is out of the scope of this paper to dig into
experimental findings, but Rayner (1998) provides an
extensive survey. This psycholinguistic line of research
has established a range of eye movement features enabling
the study of both early and late cognitive textual processing.

Eye-tracking signals in NLP
Eye movement data has successfully been leveraged to im-
prove a wide range of NLP tasks on several text levels, from
part-of-speech tagging (Barrett et al., 2016a) to text sum-
marization (Xu et al., 2009). Table 1 shows an overview of
the earliest references for each NLP task.
In NLP, the eye tracking signal can be incorporated
into models by using the scanpath which denotes the
entire fixation trajectory over a text span. Scanpaths
can reveal syntactic re-analysis, text difficulty, and other
comprehension problems. Larger-scale computational
approaches include Klerke et al. (2018), Von der Malsburg
and Vasishth (2011), Wallot et al. (2015). Furthermore,
Mishra et al. (2017a) learned the gaze representation in a
convolutional neural network directly from the scanpath
instead of manually selecting features. This might be a
promising approach to increase the amount of gaze data
available for training and avoid feature engineering.

Challenges in recording eye tracking signals
While low-cost eye-trackers and webcam-based software
(e.g., Papoutsaki et al. (2016)) have recently entered the
market, performance evaluations have shown that low
cost models have a much higher data loss (Funke et al.,
2016). Dalmaijer (2014) and Gibaldi et al. (2017) find
accuracy and precision acceptable but they mention the
low sampling rate as a constraint for research. Reading
research using eye movements are dependent on high
sampling rate and good – not just acceptable – accuracy
and precision. While lower precision can be compensated
for with larger font sizes and using only the central part

of the screen, it does not seem like the current low-cost
models are recommendable for reading research due to
these factors. Especially when building a large corpus it is
worth considering that any validity or reliability loss such
as systematic bias (for example, degrading in precision and
accuracy towards the periphery of the screen), as well as
unsystematic bias (low data quality due to low sampling
rate or large data loss), will propagate to all works using
this resource.

2.2. EEG & MEG
The electrical activity of neurons in the brain produces cur-
rents spreading through the head. These currents also reach
the scalp surface, and the resulting voltage fluctuations
on the scalp can be recorded as the electroencephalogram
(EEG). The neuronal currents inside the head produce
magnetic fields which can be measured above the scalp
surface as the magnetoencephalogram (MEG). EEG signals
reflect electrical brain activity with millisecond-accurate
temporal resolution, but poor spatial resolution. Magnetic
fields are less distorted than electric fields by the skull and
scalp, which results in a better spatial resolution for MEG.

EEG & MEG signals in NLP
EEG signals have achieved fairly good results for classify-
ing mental tasks (e.g., Zhang et al. (2018)) or text difficulty
(Chen et al., 2012). Moreover, Parthasarathy and Busso
(2017) presented a multi-task learning architecture for clas-
sifying emotions from auditory EEG stimulus. Addition-
ally, Murphy and Poesio (2010) detect semantic categories
(i.e. types of nouns, binary classification) from simultane-
ous EEG and MEG recordings, and found MEG to be more
informative for this specific task.
However, there is not much work in higher-level semantic
or syntactic NLP tasks with larger number of classes due
to the low signal-to-noise ratio. Hollenstein et al. (2019a)
achieved only modest improvements when using EEG data
for sentiment analysis, relation extraction and named entity
recognition. For a review on the use of EEG signals for
different classification tasks, including an overview of the
ML methods, the artifact pre-processing strategies, and the
input features, see Craik et al. (2019).
Further, there has been some work in understanding the
parallels between machine and EEG language processing
signals. For instance, Hale et al. (2018) showed that neural
grammar models are able to learn some of the language
processing effects that are manifested in EEG. Moreover,
Wehbe et al. (2014b) were the first to align word-by-word
MEG activity with embeddings from a recurrent neural
language model. Schwartz et al. (2019) use MEG and
fMRI to fine-tune a BERT language model (Devlin et al.,
2019) and showed that the relationship between language
and brain activity learned by BERT during this fine-tuning,
transfers across multiple participants and performs well on
downstream NLP tasks. In a similar fashion, Toneva and
Wehbe (2019) compare and interpret word and sequence
embeddings from various recent language models on
word-by-word MEG and fMRI recordings.
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Challenges in processing EEG & MEG signals
MEG and EEG data contain a large ratio of noise as well
as signals from other non-language-related processes, but
syntactic and semantic text processing is also known to con-
tribute to the signal. Since EEG merely records signals on
the brain surface, it is difficult to draw conclusions about
which brain regions are more or less helpful for NLP mod-
els. MEG allows to localize the magnetic fields to their
sources within the brain with good spatial resolution.
The main challenge lies in cleaning the M/EEG recordings
and extracting only the signals containing language pro-
cessing information. First, artifacts from motor and ocu-
lar activities have to be removed. Recently, these tedious
manual inspection and cleaning steps have been automa-
tized (e.g., Pedroni et al. (2019)), and efforts to unfold
the electrophysiological responses from overlapping, con-
tinuous stimuli are being introduced (Ehinger and Dimigen,
2019).
Neuroscientists have studied in detail how to filter the
M/EEG data based on certain effects occurring during lan-
guage understanding, and the activity occurring in certain
frequency bands. Two popular ways to analyze the EEG
signal are power spectrum analysis and event-related po-
tentials (ERPs).
In power spectrum analyses, the average power of a signal
in a specific frequency range is computed. The EEG signal
is decomposed into functionally distinct frequency bands.
These frequency ranges, which are fixed ranges of wave
frequencies and amplitudes over a time scale, are known
to correlate with certain cognitive functions. Theta activity
(4–8 Hz) reflects cognitive control and working memory
(Williams et al., 2019); alpha activity (8–12 Hz) has been
related to attentiveness (Klimesch, 2012); beta frequen-
cies (12–30 Hz) affect decisions regarding relevance, for
instance, in term relevance tasks for information retrieval
(Eugster et al., 2014): and gamma-band activity (30–100
Hz) has been used to detect emotions (Li and Lu, 2009).
Hypotheses about the role of the various M/EEG frequency
bands in language processing and more general cognitive
function are a first step, but more work is needed to estab-
lish stronger hypotheses linking language to specific fre-
quencies (Alday, 2019).
Secondly, ERPs are measured brain responses that are the
direct result of a specific sensory, cognitive, or motor event.
For instance, the N400 component, which peaks ∼400ms
after the onset of the stimulus, is part of the normal brain
response to words and other meaningful stimuli (Kutas and
Federmeier, 2000). Brouwer et al. (2017) presented a
neuro-computational model based on recurrent neural net-
works, that successfully simulates the N400 and P600 am-
plitude in language comprehension. To the best of our
knowledge, it has not yet been studied how useful ERP
features are for improving natural language understanding
tasks.

2.3. FMRI
FMRI is a neuroimaging technique that measures brain ac-
tivity by the changes in the oxygen level of the blood. This
technique relies on the fact that cerebral blood flow and
neuronal activation are coupled: When a brain area is in

use, blood flow to that area increases.
FMRI produces 3D scans of the brain with high spatial res-
olution of the signal. For statistical analyses, the brain scan
is fragmented into voxels which are cubes of constant size.
The signal is interpreted as an activation value for every
voxel. The number of voxels varies depending on the pre-
cision of the scanner and the size and shape of the partic-
ipant’s brain. The voxel location can be identified with 3-
dimensional coordinates, but the signal is commonly pro-
cessed as a flattened vector which ignores the spatial rela-
tionships between the voxels. This rather naive modeling
assumption simplifies the signal, but might lead to cogni-
tively and biologically implausible findings.
Most publicly available fMRI datasets have already under-
gone common statistical filters. These pre-processing steps
correct for motion of the participant’s head, account for
different timing of the scan slices and adjust linear trends in
the signal (Wikibooks, 2020). In addition, the scans of the
individual brains (which vary in size and shape) need to be
aligned with a standardized template to group voxels into
brain regions and allow for comparisons across subjects.
Researchers using datasets that have been collected and
published by another lab should be aware of the effect
of these probabilistic corrections. They are necessary to
further analyze the signal, but might also systematically
add noise to the data and lead to misinterpretations.

FMRI signals in NLP
In their pioneering work, Mitchell et al. (2008) measure the
brain signal of nine human participants who are instructed
to think about a concept. They average the signal for each
of the 60 concepts over multiple trials. Their analysis re-
sults indicate that it is possible to distinguish between the
correct and a random scan by computationally modeling
the relations between concepts. Their dataset has become
an evaluation benchmark to compare the cognitive plausi-
bility of different word representation models (Fyshe et al.,
2014; Søgaard, 2016; Abnar et al., 2018; Anderson et al.,
2017; Bulat et al., 2017). The presentation of individual
concepts has the advantage that the signal can be directly
linked to the experimental stimulus, but the experimental
setup is very artificial compared to authentic language pro-
cessing scenarios. Recently, fMRI datasets involving more
naturalistic language stimuli such as sentences (Pereira et
al., 2018) and even full stories (Wehbe et al., 2014a; Bren-
nan, 2016; Huth et al., 2016; Dehghani et al., 2017) have
been recorded and facilitate contextualized modeling of
language processing.1

Besides using fMRI signals to better understand and eval-
uate the structure of computational models of language,
the signal has also been used to directly improve the
performance on NLP tasks. Bingel et al. (2016) enrich
a model for PoS induction with fMRI signals, Li et al.
(2018) perform pronoun resolution, and Vodrahalli et al.
(2018) classify movie scene annotations. Recently, Toneva
and Wehbe (2019) showed that when the language model
BERT (Devlin et al., 2019) is fine-tuned to align with brain
recordings, it performs better at syntactic tasks such as

1Not all of these datasets are publicly available.
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subject-verb agreements. These result indicate a transfer of
knowledge from human language processing to NLP tasks.
So far, the reported improvements are very small and have
not yet been verified on other datasets.

Challenges in processing fMRI signals
As it takes several seconds to complete a full scan of the
brain, the measured brain response cannot provide high
temporal resolution. In addition, the hemodynamic re-
sponse to a stimulus can only be measured with a de-
lay of several seconds (Miezin et al., 2000) and it decays
slowly. As a consequence, it is not possible to directly
align fMRI responses with single words when they are pre-
sented as continuous stimuli. The delay can be modeled
using hemodynamic response functions or more complex
modeling techniques, but they do not work equally well in
all areas of the brain (Shain et al., 2019). It has not yet
been investigated conclusively whether the fMRI signal is
temporally fine-grained enough to detect syntax process-
ing signals in the human brain. Gauthier and Levy (2019)
showed experiments where only local grammatical depen-
dencies can be decoded. However, Brennan et al. (2016)
showed that for the right features (i.e. a count of tree nodes
in a probabilistic context-free grammar model) fMRI is fast
enough. More recent NLP studies avoid word-level align-
ment of fMRI data and analyse longer sequences of words
instead (Schwartz et al., 2019; Abnar et al., 2019).
The large number of voxels in the fMRI representation
leads to a very high-dimensional signal, but the number
of stimuli is usually very small for machine learning stan-
dards. In order to fit a model, the dimensionality of the
signal needs to be reduced because analysis methods such
as correlation or similarity metrics often lead to unintuitive
results when applied in high-dimensional spaces (Aggarwal
et al., 2001). From a processing perspective, data-driven
dimensionality reduction methods on the training set are
most attractive because they can work on the raw signal
and do not rely on theory-driven assumptions (Kriegesko-
rte et al., 2006). Examples are classification metrics such
as explained variance which capture how much informa-
tion a voxel contributes to a specific task (as in LaConte et
al. (2003) and Michel et al. (2011)). Another option are
dimensionality reduction methods such as principal com-
ponent analysis which reduce the dimensions while retain-
ing most of the variance between responses (Gauthier and
Levy, 2019).
Unfortunately, existing fMRI datasets for language pro-
cessing are not yet large enough to enable direct represen-
tation learning, for example using autoencoders (Huang et
al., 2017; Rowtula et al., 2018). Instead, the signal is of-
ten restricted to voxels that fall within a pre-selected set of
regions. These regions are commonly selected in a theory-
driven manner based on neurolinguistic studies (Brennan et
al., 2016; Wehbe et al., 2014a). Fedorenko et al. (2010)
proposed a method to selects regions of interest function-
ally, i.e. pooling of data from corresponding functional re-
gions across subjects. For instance, Abnar et al. (2019)
only include the voxels from the top k regions that are most
similar across different subjects given the same stimuli.
Due to the technical requirements, fMRI studies mostly use

only a small set of stimuli which makes it hard to eval-
uate the effect size and the generalizability of the results
(Hamilton and Huth, 2018). Minnema and Herbelot (2019)
perform experiments with additional data, which also lead
to the conclusion that there is simply not enough training
data available yet to learn a precise mapping. Furthermore,
experimental results are commonly not validated on addi-
tional datasets to ensure a more robust evaluation (Beinborn
et al., 2019).

3. General challenges
When we want to use cognitive signals to improve our com-
putational models, we are facing multiple modeling deci-
sions. In this section, we discuss the advantages and dis-
advantages of each recording modality of cognitive signal,
the aspects to consider when choosing a dataset, as well
as which features can be extracted from the cognitive data,
and finally, how they can be included in machine learning
models and how these should be evaluated. The decision
of which type of signal to work with and which dataset to
use depend strongly on the type of research questions that
we would like to address. In this section, we provide some
guidelines on how to approach these decisions.

3.1. Choosing the type of cognitive signals
An important aspect to take into account when choosing
a type of cognitive signal is the linguistic level on which
the signals are required: from word level, over phrase and
sentence level to discourse level. Due to the low tempo-
ral resolution and the hemodynamic lag of fMRI, it is more
appropriate to use eye-tracking or EEG of MEG data to ex-
tract word-level signals in continuous stimuli. Moreover, if
using multiple datasets from the same recording modality,
it is crucial to ensure proper pre-processing has been con-
ducted on the datasets, or to apply the same pre-processing
steps to all datasets.
Eye-tracking, as an indirect metric of cognitive load during
the different stages of reading processing, has numerous ad-
vantages. It is an accessible method to record millisecond-
accurate eye movements and has successfully been lever-
aged to improve a wide range of NLP tasks on different
text processing levels (see Table 1 for an overview). While
the improvements on precision and recall are modest, they
are consistent across tasks. The impressive body of psy-
cholinguistic research, a range of established metrics, and
the intuitive linking from features to words speak in favour
of using eye-tracking for NLP.
EEG is another recording technique with very high tem-
poral resolution (i.e. resulting in multiple samples per sec-
ond). However, as the electrodes measure electrical activity
at the surface of the brain – through the bone – it is diffi-
cult to know exactly in which brain region the signal orig-
inated. EEG signals have been used frequently for classi-
fication in brain-computer-interfaces (e.g., classifying text
difficulty for speech recognition (Chen et al., 2012)), but
have rarely been used to improve NLP tasks (Hollenstein et
al., 2019a). Moreover, there are still many open questions
regarding which EEG features are most appropriate, and
not much EEG data from naturalistic reading is yet openly
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available. MEG, however, yields better temporal and spa-
tial resolution, which makes is very suitable for NLP. Un-
fortunately not many MEG datasets from naturalistic stud-
ies are currently available.
Finally, the fMRI signal exhibits opposite characteristics.
Due to the precise 3D scans, the spatial resolution is very
high; but, since it takes a few seconds to produce a scan
over the full brain, the temporal resolution is very low. Re-
cently, fMRI data has become popular in NLP to evaluate
neural language models (e.g., Schwartz et al. (2019)) and to
improve word representations (Toneva and Wehbe, 2019).
It is useful to leverage fMRI signals if the localization of
cognitive processes plays an important role and to investi-
gate theories about specialized processing areas. Unfortu-
nately fMRI scans are less accessible and more expensive.
Evidently, human language processing recordings are very
noisy. Therefore, if possible it is advisable to work with
multiple datasets of the same modality, or to work with
multiple modalities to achieve more robust results.
It is insightful to run experiments on multiple cognitive
datasets of the same modality. This ensures that the NLP
models are not merely picking up on the noise in the cog-
nitive data, but actually learning from language process-
ing specific signals. For instance, Hollenstein and Zhang
(2019) combine gaze feature from three corpora, and Men-
sch et al. (2017) learn a shared representation across many
fMRI datasets.
Working with data from multiple modalities is also rec-
ommendable. For instance, Schwartz et al. (2019) used
both MEG and fMRI data to inform language representa-
tions, and were able to show how using both modalities
simultaneously improves their predictions. Furthermore,
Hollenstein et al. (2019b) presented a framework for cog-
nitive word embedding evaluation, where embeddings are
evaluated by predicting eye-tracking, EEG and fMRI sig-
nals from 15 different datasets. Their results show clear
correlations between these three modalities. Barrett et al.
(2018b) combined eye-tracking features with prosodic fea-
tures, keystroke logs from different corpora, and pre-trained
word embeddings for part-of-speech induction and chunk-
ing. Several methods were used to project the features into
a shared feature space and canonical correlation analysis
yielded the best results (Faruqui and Dyer, 2014).
Some studies provide data from multiple modalities
recorded at different times on different subjects, but on the
same stimulus: For example, the UCL corpus (Frank et al.,
2013) contains self-paced reading times and eye-tracking
data, and was later extended with EEG data (Frank et al.,
2015). Similarly, self-paced reading times and fMRI were
recorded for the Natural Stories Corpus (Futrell et al., 2018;
Shain et al., 2019); EEG and fMRI were recorded for the
Alice corpus (Brennan et al., 2016; Hale et al., 2018).
For some sources, data from co-registration studies is avail-
able, which means two modalities were recorded simul-
taneously during the same experiment. This has become
more popular, since all three modalities are complemen-
tary in terms of temporal and spatial resolution as well
as the directness in the measurement of neural activity
(Mulert, 2013). Recent reports attest to the feasibility of
co-registration studies for studying the neurobiology of nat-

ural reading (see Kandylaki and Bornkessel-Schlesewsky
(2019) for a review). For example, eye-tracking and EEG
recorded concurrently during reading (Dimigen et al., 2011;
Henderson et al., 2013; Hollenstein et al., 2018; Hollen-
stein et al., 2019c) and concurrent eye-tracking and fMRI
(Henderson et al., 2015; Henderson et al., 2016). Using
data from co-registration studies in NLP allows for compar-
ison on the same language stimuli, on the same population,
and on the same language understanding task, where only
the recording method differs.
Finally, the presented recording modalities of cognitive sig-
nals in this paper are complementary to each other, the in-
formation provided by each modality adds to the full pic-
ture. Hence, whether co-registration studies are leveraged
or simply data from multiple sources and multiple modal-
ities, it is highly recommendable to test all experiments
to improve NLP models on more than one dataset and/or
modality.

3.2. Selecting a dataset
Datasets of human language processing signals should be
chosen based on the research question. It is important to
decide whether controlled experiments with clearly distin-
guishable conditions are required, for instance, if infrequent
linguistic phenomena are of interest, or if natural stimuli
are favorable to analyze real-world language (Hamilton and
Huth, 2018).
As a example for controlled settings, Mitchell et al. (2008)
recorded fMRI data from a isolated word stimuli of 60 con-
crete nouns. In reading studies, serial presentation of words
has often been applied, where one word is presented at the
time on the screen (e.g., Wehbe et al. (2014a), Frank et
al. (2015)). In an EEG dataset provided by Broderick et
al. (2018), the participants also read sentences presented
word-by-word. Half of the sentences ended with a congru-
ent word and the other half with an incongruent word, so
that the difference in the N400 components could be ana-
lyzed. This manipulation facilitates the processing and iso-
lation of the cognitive signals, but it does not reflect pro-
cesses of natural reading, in which the reader has access to
full sentences or texts.
Due to the different scopes in experimental research and
NLP, it is seldom possible to directly draw conclusions
concerning features from these studies to NLP: Speaking
in broad terms, psycholinguistic and neurolinguistic stud-
ies provide evidence of human cognitive processing of text
or speech primarily through controlled experiments. The
experiment as well as the textual stimulus are carefully de-
signed in order to isolate a specific cognitive process. Data-
driven NLP works towards enabling computers to under-
stand and manipulate naturally-occurring human language
through machine learning models based on huge corpora.
The phenomena that NLP models aim to model are typi-
cally much broader and less well-defined than what is ex-
amined in psycholinguistic studies.
Recently, it has become more common to implement
naturalistic reading experiments (Hamilton and Huth,
2018). Naturalistic reading denotes self-paced reading of
naturally-occurring text without any specific task or reading
constraints, such as limiting the preview of the following
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words. This allows subjects to read at their own speed and
results in different reading times between subjects, which
calls for more elaborate pre-processing. Naturalistic read-
ing studies diverge from tightly controlled experimental de-
signs and allow the participants to read continuous stimuli,
i.e. full sentences or paragraphs spanning multiple lines
on the screen. In addition to the more natural setting, a
big advantage is the possibility to study linguistic phenom-
ena on different levels (e.g., phonemes, syllables, words,
phrases, sentences, discourse), which unfold at different
timescales in the same naturalistic stimulus such as a story.
Moreover, naturalistic experimental designs, which use lan-
guage within the rich context of stories, audiobooks, and
dialogues, produce results which are more easily generaliz-
able to everyday language use (Kandylaki and Bornkessel-
Schlesewsky, 2019). Since generalizability of results is one
of the main objectives in experimental science, the potential
importance of increased ecological validity in naturalistic
experiment paradigms is undeniable.
An example for the use of continuous, naturalistic stimuli
is the dataset by Hollenstein et al. (2018). They recorded
eye-tracking and EEG signals of participants silently read-
ing full real-world sentences. In Broderick et al. (2018)
and Shain et al. (2019) subjects listen to full stories during
EEG and fMRI recordings, respectively. In addition to
the studies mentioned in this paper, a collection of openly
available cognitive datasets useful for NLP in various
languages can be found online.2

Multilingual neurolinguistics
The majority of research in NLP, as well as most of the
available cognitive data sources is in English. However, it
is well known that language processing between native and
foreign language speakers differs in the active brain regions
(Perani et al., 1996). Moreover, second language learners
exhibit different reading patterns than native speakers (Dus-
sias, 2010).
Eye-tracking and fMRI studies on bilingualism suggest
that, although the same general structures are active for
both languages, differences within these general structures
are present across languages and across levels of process-
ing (Marian et al., 2003; Dehghani et al., 2017). In an effort
to promote eye-tracking research of bilingual reading, Cop
et al. (2017) provide an English-Dutch eye-tracking corpus
tailored to analyze the bilingual reading process.
Further, there are even differences in the processing
of dialects and standard variations, e.g., Lundquist and
Vangsnes (2018) for Norwegian dialects and Stocker and
Hartmann (2019) for variations of German. Hence, it is
not only important to take language-specific aspects into
account in the NLP methods, but it is crucial to account for
these differences in human language processing. It remains
an open questions how many of the referenced studies in
this paper would generalize to other languages.

3.3. Extracting features
This section covers different approaches to find the most
meaningful features from human language processing

2https://github.com/norahollenstein/cognitiveNLP-
dataCollection

recordings.
NLP studies that leverage human gaze signals from reading
mostly use a broad range of established features, encom-
passing both early and late measures of cognitive process-
ing. These features are then used in machine learning sys-
tems to learn patterns. Barrett et al. (2016a) use 22 features
for part-of-speech induction, Hollenstein and Zhang (2019)
use 17 features for named entity recognition, and Strzyz et
al. (2019) use 12 features for dependency parsing. Studies
that systematically test different combinations of features,
generally reveal that using a broad range of established fea-
tures, such as first, mean and total fixation duration, yield
the largest improvements (Barrett et al., 2016a; Yaneva et
al., 2018; Hollenstein and Zhang, 2019; Rohanian et al.,
2017).
Most studies combine linguistic features with gaze features
(e.g., Rohanian et al. (2017) and Yaneva et al. (2018)). Fur-
ther, Barrett et al. (2016a) use word frequency and word
length features in combination with eye-tracking features,
because the two properties explain much of the variance in
fixation duration (Just and Carpenter, 1980; Levy, 2008).
Results by Demberg and Keller (2008) and Lopopolo et al.
(2019) showed a relation between regression features and
the syntactic structure of sentences: About 40% of regres-
sions land on target words engaged in dependency relations.
Moreover, many other properties such as transitional prob-
abilities or age of acquisition could also be used. In Hol-
lenstein and Zhang (2019) and Barrett et al. (2018b), gaze
features are combined with pre-trained word embeddings to
improve performance.
All these works, however, rely on rather heavy feature engi-
neering. Contrariwise, these features can also be predicted
from text: Hahn and Keller (2016) presented an unsuper-
vised neural model of human reading by predicting the fix-
ations within sentences. Similarly, Matthies and Søgaard
(2013) predict skipping probabilities across multiple read-
ers. Moreover, Singh et al. (2016) introduced a method
where eye movements are learned in order to alleviate the
need to get the task data annotated with eye movements. A
similar approach is also used by Long et al. (2019). Com-
parably, fMRI signals have been predicted from language
model representations, e.g., Rodrigues et al. (2018) and
Abnar et al. (2018).
In general, feature engineering for M/EEG and fMRI data
is more a matter of dimensionality reduction. For instance,
most studies leveraging M/EEG data for NLP average the
signals over all electrodes or sensors (e.g., Wehbe et al.
(2014b)). Moreover, methods such as principal component
analysis are often used to reduce the dimensions of both
M/EEG and fMRI data. In the case of fMRI data, we
mention several strategies for voxel selection in Section
2.3. to reduce the number of dimensions. For M/EEG
signals, it is also possible to work with frequency band
features or ERPs based on neurolinguistic findings (see
Section 2.2.). However, these features have not yet been
explored in detail to improve NLP tasks.

Aggregating features
Controlled psycholinguistic studies include multiple sub-
jects to obtain significant differences considering the effect
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sizes of interest (Vasishth et al., 2018). In many NLP stud-
ies that use eye movements as word representations, eye
movement metrics are averaged over several readers argu-
ing for more stability and less noise, but most studies are
limited by number of words and readers in the provided
corpora (Rohanian et al., 2017; Yaneva et al., 2018; Mishra
et al., 2017b; Hollenstein et al., 2019a). But how many sub-
jects are required to obtain a robust average signal for NLP?
Gaze annotation can never be a gold annotation, irrespec-
tive of the number of readers. It is intrinsically noisy and
there is no uniquely correct reading pattern. Skilled readers
will exhibit a more idiosyncratic reading behaviour under
similar conditions. Language learners or readers with read-
ing impairments will exhibit a noisier signal, that is difficult
to use in NLP (Bingel et al., 2018). Takmaz et al. (2019)
compared aggregated gaze features and sequential features
for generating image captions.
Hollenstein et al. (2019a) used eye movement and EEG
features to improve named entity recognition, relation
classification and sentiment classification. They showed
that averaging over ten skilled native readers is able to
diminish the noise and variability between subjects, to the
extent where the average worked almost as good as the best
individual reader, for both gaze and EEG models. While
subject variability is even larger in fMRI signals, averaging
over participants can help to avoid overfitting (Bingel et
al., 2016). Moreover, Schwartz et al. (2019) showed how
a language model fine-tuned with fMRI brain activity data
transfers across multiple participants.

Word-level signals
In some studies, averages of gaze features over word types
have been used to alleviate the need of having gaze data
at test time, and even achieved better results than token-
level features (Barrett et al., 2016a; Hollenstein and Zhang,
2019). Klerke and Plank (2019) analyzed this in detail for
PoS tagging and found that content words are especially
sensitive to type-level gaze features.
For recordings of continuous stimuli, the EEG samples
have to be mapped to the points in time where a word (or
phrase) was heard or read. Hauk and Pulvermüller (2004)
presented evidence that lexical access from written word
stimuli is an early process that follows stimulus presenta-
tion by less than 200 ms. Between 200-500ms, the word’s
semantic properties are processed (Wehbe et al., 2014b).
Moreover, Dimigen et al. (2011) studied the linguistic ef-
fects of eye movements and EEG signal co-registration in
natural reading and showed that they accurately represent
lexical processing. This suggest that, in the case of read-
ing, the brain processes words when they are fixated for
the first time, so that by mapping the EEG samples to the
corresponding reading times it is possible to extract word-
level EEG features. In combination with the eye-tracking,
the high sampling rate of EEG allows us to get a defin-
able signal for each token. In case of listening, the EEG
signals can simply be mapped to the timestamps of the ut-
terances. Analogous to the type aggregation approach de-
scribed for eye-tracking signals, token-level EEG and fMRI
features can be aggregated on word type level (Hollenstein
et al., 2019a; Bingel et al., 2016). This eliminates the need

of recorded data at test time, however the results are more
promising for eye-tracking data than for brain activity.
In the case of fMRI, however, extracting token-level or
type-level signals from continuous stimuli is less recom-
mendable. A few studies have extracted token-level fea-
tures from scans of a few seconds of duration. Bingel et
al. (2016) computed individual word features for PoS in-
duction by accounting for the hemodynamic delay using a
Gaussian sliding window over a certain time window. Hol-
lenstein et al. (2019b) also account for this delay when
extraction word-level features, and then average the word
features over multiple trials from different contexts. It is
difficult to quantify how much of the information of sin-
gle word processing is captured in these signals. In fMRI
studies, models are most often trained separately for each
subject due to the large individual differences. It is, how-
ever, also possible to learn a shared representation between
subjects (Vodrahalli et al., 2018). Additionally, the signal
can be averaged if multiple trials are available per stimulus
as in Mitchell et al. (2008).

3.4. Including the features in the models
This section describes the most common machine learn-
ing methods for leveraging human cognitive processing for
NLP. In most applications of systems using human data, it
is sub-optimal to require real-time human features at test
time. For eye-tracking, there are several studies working
towards not requiring recordings during inference. We start
by outlining those methods and move to other cognitive sig-
nals thereafter.
When using human language processing data recorded
from continuous stimuli, it is intuitive to implement se-
quence labelling or sequence classification approaches. For
instance, Strzyz et al. (2019) argue in favor of using bidi-
rectional LSTMs for predicting eye-movement informa-
tion. Many of other studies have leveraged similar neural
architectures, for example, Klerke et al. (2016) and Hollen-
stein and Zhang (2019).
A basic approach is to include cognitive features as multi-
dimensional vectors to represent each word, possibly along
with other word-based features. For instace, Rohanian et
al. (2017), Barrett and Søgaard (2015) and Yaneva et al.
(2018) implemented this approach for eye-tracking data.
However, this requires gaze data at test time. Barrett et
al. (2016a) and Barrett et al. (2016b) showed that word-
type averages of gaze features yielded better results for PoS
induction than token-level features. In this case, gaze rep-
resentations are used similarly to word embeddings, with
which they can also be combined (Barrett et al., 2018b).
Klerke and Plank (2019) analyzed this in detail for PoS tag-
ging and showed that word type variance was better than in-
dividual gaze representations and less aggregated gaze fea-
tures. Additionally, Hollenstein and Zhang (2019) showed
the same advantages of type-level aggregated features for
improving named entity recognition on corpora with no
available gaze features during training and testing. How-
ever, type aggregation on EEG data has not shown the same
positive benefits (Hollenstein et al., 2019a).
Concatenating cognitive features has also been tested with
brain activity data. Bingel et al. (2016) concatenate ex-
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tracted fMRI vectors from multiple subjects with linguistic
features. Moreover, Schwartz et al. (2019) include fMRI
and MEG data to augment a language model by fine-tuning
a model trained on textual input with brain activity signals.
In addition, multi-task learning is a method of training a
system that inherently does not need human data on the test
set. Multi-task learning studies typically use only one fea-
ture, but that is most likely due to constraints in the model
architecture, i.e. an increasing number of parameters lead-
ing to longer training times. Hollenstein et al. (2019a)
trained multi-task learning models to learn eye-tracking and
EEG features at the same time as NLP tasks such as senti-
ment analysis and relation detection. Multi-task learning
has also been successful when generalizing across subjects
from EEG data, for applications such as brain-computer in-
terfaces (Alamgir et al., 2010). Leveraging eye-tracking
data, González-Garduño and Søgaard (2017), Klerke et al.
(2016) and Klerke and Plank (2019) employ a multi-task
learning setup for text compression, readability prediction,
and syntactic tagging, respectively, while also learning to
predict a gaze feature as an auxiliary task.
Lastly, another related option is to regularise the attention
of a recurrent neural network with human data for sequence
classification. Attention weights influence the relative im-
portance of each word on the model, but require large
amounts of data to be trained. Barrett et al. (2018a) used
sentences from the main dataset to update the model pa-
rameters, while sentences from a smaller, non-overlapping
eye-tracking corpus were used to only train the attention
function. Regularising the attention function could also be
done using other human measures such as EEG.

3.5. Measuring improvements
On one hand, natural language understanding models are
mostly optimized for performance on specific tasks and
typically do not transfer well to other tasks or even other
datasets (Talman and Chatzikyriakidis, 2019). On the
other hand, cognitive signals are typically constrained to
their experimental design and stimuli. These discrepancies
may lead to limitations in the possible improvements when
leveraging cognitive signals to enhance NLP models.
Indeed, the improvements achieved with cognitive signals
are often modest. Therefore, we want to highlight the im-
portance of robust baselines and proper significance test-
ing. Examples of strong baselines are, for instance, word
frequency for eye-tracking signals to ensure that the cog-
nitive features add more to the model than purely lexical
aspects; or comparing EEG and fMRI feature vectors to
random vectors to guarantee that the cognitive features con-
tain more than added dimensions of noise. Additionally,
after achieving better results than strong baseline models,
one needs to ascertain that the improvements are not due
to some artifacts in the cognitive data. Hence, it is vital
to perform suitable significance tests, such as permutation
tests (Dror et al., 2018).
Furthermore, Gauthier and Ivanova (2018) propose three
highly sensible strategies for making language decoding
studies from brain activity more interpretable: (1) commit-
ting to a specific mechanism and task, which would help to
distinctly link brain activity features to specific NLP tasks,

(2) dividing the input feature space into subsets that capture
representations optimized for a particular task, and (3) ex-
plicitly measuring explained variance to evaluate the extent
to which each model component explain the overall brain
responses.

4. Ethical considerations
To conclude this paper, we address some of the ethical con-
siderations that arise when working with human language
processing signals for NLP. As researchers in this area, we
mostly make use of existing datasets that have been col-
lected by psychology researchers. Nevertheless, the fol-
lowing ethical aspects should be taken into account.
First, we want to highlight the necessity of considering the
high-level consequences of our work. It becomes increas-
ingly relevant to examine the implications of the interac-
tion between humans and machines, between what can be
recorded from a human brain and what can be extracted
from those signals. What is the potential of the derived re-
sults? What is the objective of the final application? What
is the impact on people and society? Suster et al. (2017)
describe this aspect as the dual use of data: Applications
leveraging cognitive cues for improving NLP (and many
other machine learning applications) have the potential to
be applied in both beneficial and harmful ways.
Second, it is essential to remember the responsibility to-
wards research subjects and towards protecting the individ-
ual (Suster et al., 2017). All collected data comes from
humans willing to share their brain activity for research.
Hence, the participants as well as their data should be
treated respectfully, even if as NLP practitioners we are
leveraging provided data and not recording it ourselves. Al-
though the data is anonymized after recording, we should
refrain from drawing inferences from our models back to
single participants.
Finally, the origins of the data and any biases within them
should be considered. Most psychological studies are
based on Western, educated, industrialized, rich, and demo-
cratic research participants (so-called WEIRD, Henrich et
al. (2010)). By assuming that human nature is so univer-
sal that findings on this group would translate to all other
demographics, this has led to a heavily biased collection of
psychological data. The potential consequences of exclu-
sion or demographic misrepresentation should not be ig-
nored (Hovy and Spruit, 2016). One step further, Caliskan
et al. (2017) showed that text corpora contain recoverable
and accurate imprints of our historic biases. These biases
can be extracted from text, and are also reflected in eye
movements and brain activity recordings (Wu et al., 2012;
Herlitz and Lovén, 2013; Fabi and Leuthold, 2018). Thus,
it is very important to remember that with extensive reuse
of the same corpora these biases – participant sampling as
well as experimental biases – are propagated to many ex-
periments, and researchers should be careful in the inter-
pretation of the results.
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Abstract
Linguistics predictability is the degree of confidence in which language unit (word, part of speech, etc.) will be the next in the sequence.
Experiments have shown that the correct prediction simplifies the perception of a language unit and its integration into the context. As a result
of an incorrect prediction, language processing slows down. Currently, to get a measure of the language unit predictability, a neurolinguistic
experiment known as a cloze task has to be conducted on a large number of participants. Cloze tasks are resource-consuming and are
criticized by some researchers as an insufficiently valid measure of predictability. In this paper, we compare different language models that
attempt to simulate human respondents’ performance on the cloze task. Using a language model to create cloze task simulations would
require significantly less time and conduct studies related to linguistic predictability.

1. Introduction
Nowadays language models are the most powerful instrument
to transfer knowledge. Mostly pre-trained neural network
models are more accurate in any type of task. This ten-
dency in language processing - usage of languagemodel (LM)
weights as a part of base model weights - took place after
word2vec announcing. Today there are three main ways to
use pre-trained LM in different natural language processing
tasks:

• Use pre-trained LM as universal embedder for
text/sentence

• Fit pre-trained LMon new data (domain adaptation) and
also use as an embedder

• Fit pre-trained LM as a part of a more complex and spe-
cific model

It is important to note that the resulting system is dependent
on the quality of the underlying LM; thus strategies to com-
pare models are also in demand. We propose a new compre-
hensive way to explore properties of different language mod-
els. Comparison of langauge models is not a new topic, and
there are many different measures of their quality. Popular
modern analyses are the Google analogy task for word2vec
(Mikolov et al., 2013) and now GLUE tasks (Wang et al.,
2018). However, we want to check the generative ability of
several different types of LM and compare them.
One of the key terms in natural language understanding and
speech generation is predictability. In cognitive linguistics,
it implies a confidence degree of a language unit (word, part
of speech, etc.) that can take next place in the sentence (or
text). This property of the token in the context is usually
measured in terms of the theory of probability, and it also
has some well-known probabilistic properties. For example,
the sum of the probabilities of all words which can or cannot
(in terms of common sense) follow the left context is equal
to one. A quarter-century ago these assumptions led to the
emergence of the first artificial language models (ALM).
Research papers in the field of cognitive science have shown
that correct prediction of the next word while reading a sen-
tence simplifies the perception of a language unit and its in-
tegration into the context. Incorrect prediction can lead to a

re-analysis of the context which is why language processing is
slowed down. However, the types of dependencies between
these two facts are still not well studied.
Nowadays, in linguistic and cognitive studies, to obtain data
describing the probabilistic distribution of lexical units (for
a specific context), artificial language models of various ar-
chitectures are used or cloze tests are conducted. In a cloze
test, participants asked to replace a missing language item in
a sentence. The cloze test is frequently criticized for lack of
coverage; nevertheless, in terms of common sense, it is cloze
test which uses the so-called “human” linguistic mechanisms
of speech generation to collect the data. The ALM, in con-
trast, is basically a set of various mathematical algorithms
applied to the text corpus.
Our analysis and gold-standard is a Russian cloze test con-
ducted by Laurinavichyute et al (Laurinavichyute et al.,
2018) from an eye-tracking study. We take the results of
the cloze task as a proxy for the underlying probability distri-
bution of next-word continuations of partial sentences. The
LM based on these answers we will call ”human-like”. So the
uniqueness of the research is that we can compare artificial
language models with the model which approximates real hu-
man expectations about the next word for a given sequence.
It is important to note that cloze tasks require a major time
commitment and are financially expensive. One of the goals
of this study is to find out whether the actual human respon-
dents can be replaced by an artificial language model trained
on a large corpus, or, whether language models can simulate
human performance on this task. Our study compare several
language models across four “levels” of prediction: lexical
(distribution of surface forms), part-of-speech (distribution
of morphological class), and two classes of semantic predic-
tion.
Besides having importance in the field of neuro- and psy-
cholinguistics, cloze task answer generation could also po-
tentially be used for OCR and hand writing recognition, as
mentioned in the paper by Kuperberg and Jaeger (Kuperberg
and Jaeger, 2016).

2. Related Works
As Kuperberg and Jaeger claim in their “What do we mean
by prediction in language comprehension?” (Kuperberg and
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Table 1: Example of stimuli sentence from RNC in cloze task with probabilities of the next word. Stimuli: “А промывать
манную крупу перед тем, как варить ее, не пробовали?” (English translation: “Have you tried to rinse semolina before
boiling it?”)

Stimulus Next word Predictability
А промывать 1,99E-07
А промывать манную 9,95E-06
А промывать манную крупу 0,091529563
А промывать манную крупу перед 0,000779675
А промывать манную крупу перед тем 0,015035226
А промывать манную крупу перед тем‚ как 0,966154218
А промывать манную крупу перед тем‚ как варить 0,011867962
А промывать манную крупу перед тем‚ как варить ее 0,04090891
А промывать манную крупу перед тем‚ как варить ее‚ не 0,146951959
А промывать манную крупу перед тем‚ как варить ее‚ не пробовали 0,000829122

Jaeger, 2016), the reaction time is in direct proportion with
the predictability of the word: the more predictable the word
is the faster is the reaction. Moreover, predictability of a
word or a context defines fixation time in eye-movement
studies as a result of the language comprehension process.
This implies that language comprehension must be predic-
tive. The authors also state that as the previous context ex-
pands, the predictability of the next word increases leading to
- in cloze tests - higher accuracy of predicting the next word,
and - in eye-movement experiments - to shorter fixation du-
ration.
The literature contains several different algorithms for cloze
answer generation. In (Zhou et al., 2018) the authors state
the importance of next word prediction in language mod-
eling and its potential contribution to OCR and handwrit-
ing recognition. The authors enhance existing models with
ELMo and BERT language models and train on the CLOTH
dataset of cloze tests. BERT models show the highest per-
formance (0.86 and 0.83 accuracy scores on test dataset for
BERT Large and BERT Base respectively), as this model was
initially trained to recover masked tokens in text. At the same
time, the ELMo model’s poor performance could be due to
the lack of parameter tuning and the fact that ELMo was
trained for the next sequence word prediction.
An LSTM-based model for cloze-style machine comprehen-
sion is proposed in (Wand et al., 2018). The model con-
sists of document hierarchical structure and dynamic atten-
tion mechanism for building the representations between the
document and the question. Despite the two-layer LSTM
model with attention outperforms one-layer model, the final
best accuracy score is still only 0.76 which could be improved
by future modifications to the model.

3. Methodology
3.1. Cloze Probabilities
Cloze task described in (Taylor, 1953) is an experiment in
which one or more words are removed from a sentence and
the participants are asked to fill in the missing content. It
is commonly carried out for assessing native speakers of a
language, which is aimed to understand respondents’ com-
prehension of a language and their ability to predict miss-
ing portions of written texts (Laurinavichyute et al., 2018).

This experiment presumes that native speakers can under-
stand context and vocabulary to identify the correct semantic
field or part of speech of a missing word.
We used the dataset with cloze task answers from (Lauri-
navichyute et al., 2018). The dataset is based on 144 sen-
tences randomly selected from the National Corpus of the
Russian Language (RNC, ruscorpora.ru) - an online corpus
of Russian texts with extensive search options. These sen-
tences were slightly edited: the authors replaced rare infre-
quent words with more frequent ones and shortened the sen-
tences when they exceeded the preset maximum length of 13
words. The stimuli sentences were subjected to the cloze task
experiment. Respondents were asked to successively predict
the next words for each context. An example of stimuli that
were shown to the participants is presented in Table 1. with
corresponding correct next words and calculated predictabil-
ity scores.
Each context received from 10 to 100 responses, not all of
which matched the correct word. The predictability of each
next word was computed as the number of correctly predicted
words divided by the total number of predicted words. The
Laurinavichyute et al. article and the full list of sentences
used in the study can be found.

3.2. Corpus-Based Probabilities
For computing сorpus-based probabilities, different model
types and training corpora were selected. The goal of these
combinations is to represent some dependencies (if they ex-
ist) between model architecture, vocabulary and to compare
results.
In this research, we were solving the task of language mod-
eling - the task of predicting the next word given the cor-
pus. Several models perform well of this task type, including
HMM, LSTM, and BERT. We used pre-trained models on
our data to predict the next word for each context. These
models were trained on different corpora to see how corpora
influence model performance.
Hidden Markov Model

Markov chain theory is increasingly used in real-world com-
puting applications as it provides a convenient way to cap-
ture pattern dependencies in pattern recognition systems. For
this reason, Markov chain theory is suitable for natural lan-
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Table 2: Corpus statistics. RNC is the Russian News Corpus,
and NCRL is the National Corpus of the Russian Language.

Name Texts Size (GB) Mean length
RNC 470k 2,928 176
NCRL 111k 3,210 2341
(agg) 581k 6138 1258

guage processing (NLP), where data consists of repeating se-
quences of symbols or words.
In this case, we are using bi- and tri-gramsHMMnot for PoS-
tagging but the prediction of the next word. To eliminate
out-of-vocabulary errors in our HMM models, we will use
Good-Turing smoothing.
LSTM
A one-layer long short-term memory (LSTM) recurrent neu-
ral network model was used (Jozefowicz et al., 2016) to cre-
ate a list of predictions for each word in the same 144 stimuli
sentences. The dimensions of the model are 2048 for the
hidden layer and 512 for the input and output layers.
BERT
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) is trained on a masked language
modeling objective. Unlike a traditional language modeling
objective of predicting the next word in a sequence given the
history, masked language modeling predicts a word given its
left and right context. Because the model expects context
from both directions, it is not obvious how BERT can be used
as a traditional language model (i.e. to evaluate the probabil-
ity of a text sequence) or how to sample from it. We test sev-
eral ideas: give the model all of the content, except masked
word, and using the technique(Wang and Cho, 2019) to re-
work BERT as a classical language model.
For experiments, we used BERT trained on the Russian
Wikipedia corpus (Wikipedia, 2019). To show differences
between models, we fine-tuned BERT with our corpora.

3.3. Corpora
The Russian News Corpus (Shavrina and Shapovalova, 2017)
includes newspaper articles published in the 2000s. The Na-
tional Corpus of Russian Language (Apresjan et al., 2006)
includes written texts from the middle of the 18th to the mid-
dle of the 20th century.
Some corpus statistics are presented in Table 3.3..
All of our models (except LSTM) were trained separately on
the two corpora, and on their combination. Thus we examine
these models:

• Hidden Markov Models

– Bigram HMM on RNC
– Bigram HMM on NCRL
– Trigram HMM on RNC
– Trigram HMM on NCRL

• BERT-based models

– no fine-tuning

– BERT fine-tuned on RNC
– BERT fine-tuned on NCRL
– BERT fine-tuned on both

• custom LSTM model

• hybrid model

– Bigram HMM on NCRL + BERT fine-tuned on
NCRL

The custom LSTM model was trained on a blinded NCRL
(excluding the sentences chosen for stimuli) and the RNC.
Overall, the training corpus consisted of 577 million tokens.
The model was tested on 1000 sentences from the Open-
Corpora project (Bocharov et al., 2011) with 1,9 million to-
kens from newspaper articles, Russian Wikipedia, texts from
blogs, fiction, non-fiction, and legal documents.
Among all, there is a Bigram HMM on NCRL + BERT fine-
tuned on the NCRL model, which is by structure a combina-
tion of a bigram HMM and a BERT model. These models
were joined based on the best performance of both models:
probability distributions of HMM are used for contexts with
length less than 6 tokens, and BERT is used for longer con-
texts.
Renormalization of probabilities
To evaluate each model’s predictions, we took the first 30
most probable words. Each probability was renormalized by
dividing originally computed word-wise probability by the
sum of probabilities of the first 30 words. This way the sum
of probabilities the selected words would equal to 1.

3.4. Overview of Used Metrics

Mean accuracy
The metric is used to compute the mean of correct word pre-
diction across all contexts. Range of values from 0 to 1. It
was computed as a mean value of the array of accuracies.
Absolute number of correct word predictions
The metric represents the number of contexts for each pre-
diction of the correct word is non-zero.
Context consistency
The metric represents the proportion of “context consis-
tency”. It can be interpreted as the answer to the next ques-
tion: “How many contexts coincide assuming that prediction
of the correct word (for each of them) is not equal to zero for
a certain model pair?
Kolmogorov-Smirnov test
In our study, we used the two-sample Kolmogorov-Smirnov
test to find out whether two underlying one-dimensional prob-
ability distributions of model predictions differ. The null hy-
pothesis of the Kolmogorov-Smirnov test is: both samples
of predicted words come from a population with the same
probability distribution.
The Kolmogorov–Smirnov statistic is

Dn,m = sup
x

|F1,n(x)− F2,m(x)|,
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where F1,n and F2,m are the empirical distribution functions
of the first and the second sample respectively, and sup is the
supremum function. The null hypothesis is rejected at level
α if

Dn,m > c(α)

√
n+m

nm
,

where n and m are the sizes of first and second sample re-
spectively, and where c(α) is the inverse of the Kolmorogov
distribution at α, which can be calculated as

c (α) =

√
−1

2
lnα.

The advantage of the Kolmogorov-Smirnov test is that, un-
like the t-test, it can catch the difference between Gaussian
distributions with similar means but different variances.
This metric was used to compare both lexical and word class
probability distributions of cloze task, LSTM, HMMmodels
pairwise. The results of the metric are listed in the Results
section of this article.
Kullback–Leibler Divergence

Cross-entropy loss, or log loss, measures the performance
of a classification model whose output is a probability value
between 0 and 1. Cross-entropy loss increases as the pre-
dicted probability diverge from the actual label. The cross-
entropy shows the difference between probability distribu-
tions p and q. Kullback and Leibler defined a similar measure
now known as KL divergence. This measure quantifies how
similar a probability distribution p is to a candidate distribu-
tion q. We used KL-divergence to compare several language
models.
Cosine Similarity

Cosine similarity was used to measure the closeness of se-
mantic vectors of predicted words between different mod-
els. It is widely used for calculating the distance between two
words. In our study, cosine similarity was used to find the
semantic probability of predicting the word which is seman-
tically close to the target word.

3.5. Part-of-Speech Probabilities
Word class probabilities were computed as follows: each
word in the model’s vocabulary (N = 500000most frequent
words in the training corpus) and each word in the stimuli
sentences was tagged for word class and morphological fea-
tures using PyMorphy2 analyzer (Korobov, 2015) and the
predictions of the model were compared to the annotation
of the target words. A word class match was coded if the
predicted and target word belonged to the same word class.
The probability of a word class was computed by summing
probabilities of all words in the model’s vocabulary which
had the morphosyntactic feature in question. For example,
to estimate the word class probability in a sentence “A mo-
bile ”, where ”phone” is the target word, we would sum
up probabilities of all nouns in the model’s vocabulary. For
morphologically ambiguous words (e.g., рот ‘mouth’ in the
nominative or accusative singular), all possible variants were
considered in the probability estimation.

3.6. Probabilities for OBJECT-VERB-
FUNCTIONAL-MODIFIER

We have also tried to use different tags for our part-of-speech
tagging. Instead of using all of the tags, we thought we could
use a more generalized set of object, verb, modifier, and
functional word, because when a person mentally chooses the
next word, they might not think in terms of the usual parts of
speech, but choose generally an object, or a description of an
object, or a verb, or just some functional word.
Firstly, we converted all of the modified Pymorphy tags into
4 general sets: ’ADJ’, ’ADVB’, ’NUMR’ were generalized to
’MOD’; ’INFN’ and ’PRED’ - to ’VERB’; ’NPRO’ to ’NOUN’
(Object); ’PREP’, ’PRCL’, ’CONJ’ and ’INTJ’ to ’FUNC’ for
each context. Then, we have counted probabilities of these
tags in the same manner as the usual parts of speech.
We noticed that the generalized probabilities were overall
higher than with modified Pymorphy tags - further we will
refer to it as OMVF (object-modifier-verb-functional).

3.7. Semantic Comparison
After lots of trial and error, it was decided to use semantic
vectors for the comparison of cloze task results with other
models in the semantic aspect. All words were mapped into
a vector space of the model pre-trained on Wikipedia texts
(Arefyev et al., 2015). The comparison itself needed to
be dynamic because for each context a different amount of
words should have been chosen.
To compare semantic vectors for each context, firstly, we
cleared all of the words so there would be no digits, meaning-
less letters and punctuation. Then, we have built a function,
which:

1) Extracts first 10 words (we have decided that that is the
maximum amount of words for each context that would
have meaningful probabilities as all of the words after the
first ten for each model have their probabilities tends to
zero) for each of 1219 contexts;

2) Computes the mean probability of remaining words;

3) Counts the difference between the probabilities of the
first and last word and then the difference between mean
probabilities of the previous word and the next one;

4) Decides what amount of words vectors to use for each
context based on how different the first-last word differ-
ence and the mean probability difference is – if the latter
is lesser than the former, the function checks the next dif-
ference, if not – the previous amount of words would be
used for semantic comparison.

After the decision on the number of words was made, with
the help of gensim in Python a vector for each word was
extracted.
Then, MiniBatchKmeans (a modified version of the K-means
algorithm, that uses mini-batches to reduce computation
time, while at the same time trying to optimize the same
goal function (Béjar, 2010)) algorithm in sklearn was used to
find “cluster centers”, or mean semantic vector for one model
for each context. And at last, we computed cosine similarity
(also with sklearn library) for each pair of semantic vectors
for each pair of models.
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4. Results
4.1. Quantitative and Qualitative Analysis of

Cloze Task Language Model
First of all, it is necessary to establish how many different an-
swers on average are available for each context in a language
model based on a cloze task, since it is necessary to deter-
mine how many of the most likely words will be explored in
artificial language models and test the hypothesis about the
dependence of predictability on the length of the context.
Themean quantity of predictions for the languagemodel built
on cloze-task results is 17 words.
In Table 4.1., contexts with minimum variance in filling are
listed. It is worth emphasizing that in all these cases there
was no variance in respondents’ answers, i.e. all respondents
gave the same one answer for these contexts. What is more,
this predicted word was the original word from the corpus.
We classified these contexts based on their constraining abil-
ity:

• Semantically constraining contexts (contexts #3, 4, 6, 8)

• Syntactically constraining contexts (context #1)

• Idiomatically constraining contexts (contexts #2, 5, 7, 9,
10)

The maximum number of different answers were received for
the “на болотах” (“On the Swamps”) context - 87 words,
which is explained by the absence of any limiting semantic
properties of the context.
In this regard, the study of the artificial language model dis-
tribution is meaningless, as it will always be uniform, to say,
the indicator for each context in similar histograms will be
equal to the size of the vocabulary.
Another important aspect of the study of the linguistic model
of the cloze task is the relationship between the length of the
context and the probability of predicting (i.e., predictability
of) the correct word.
The regression line reflects a high value of predictability for
contexts of length both less and more than five lexical units.
However, the lack of correlation is worth emphasizing. We
received the Pearson correlation coefficient score of 0.323
and Spearman correlation coefficient of 0.363.
According to the results of our experiment, the closest prob-
ability distribution of the correct word of all the models was
achieved with BERT trained on the literary corpus.
In this case, there is practically no correlation: Pearson cor-
relation score is 0.09, and Spearman correlation is 0.08.
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Figure 1: Context length vs. lexical accuracy.

Each model was evaluated by two measures: mean accuracy
of model predictions and an absolute number of correct word
predictions. For computing mean accuracy, the mean of cor-
rect answer probabilities was taken. In case of an absolute
number of correct word predictions, a model achieved +1
score if there was at least one correct answer among all pre-
dictions.

4.2. Model Comparison on the Lexical Level

Mean Accuracy

Figure 2 below shows a bar chart of the mean accuracy scores
of each model on the lexical level. As the goal of our study
was to build an algorithm, which would be the closest approx-
imation of the cloze task results (18% accuracy), we can see
that BERT (not a language model one) model scored better
than the others. Interestingly, all HMM model architectures
showed low results on the lexical level.
It is noticeable that BERT mean accuracy results are higher
than the cloze task score. This can be explained by the fact
that the model was trained on a large number of written texts
and thus had a higher chance to guess the correct word. Fol-
lowing this assumption, it is possible to infer respondents’
active vocabulary size is lower than the model’s vocabulary.
Also, we can make a hypothesis that the process of word re-
trieval by humans and by the model is performed differently,
as respondents do not always respond with the most probable
answer.
Absolute Accuracy

In terms of the absolute number of predicted words, in the
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Table 3: Contexts in which minimum variance is observed in filling by one lexical unit.
1. Какие главные лекарства должны входить (в)

What are the main drugs that should be included (in)
2. В современном обществе семья и школа оказывают большое (влияние)

In modern society, family and school have a large (influence)
3. Зачем ему звонить если откликается спокойный женский (голос)

Why would he call if a calm female (voice) answers
4. Ирине досталась отдельная комната в двухкомнатной (квартире)

Irina got a separate room in a two-room (apartment)
5. Они не ели целый (день)

They haven’t eaten all (day)
6. Во избежание ожогов надо нанести на лицо небольшое (количество)

To avoid burns on the face, apply a small (amount)
7. Дрозды и скворцы начали вить семейные гнезда неподалеку друг от (друга)

Blackbirds and starlings began to twist family nests not far from each (other)
8. Собаку виновницу случившегося приказали сечь хотя в чем была ее (вина)

The dog responsible for the incident was ordered to be beaten, although it wasn’t really her (fault)
9. С нескрываемой едкой иронией отзываются они друг о (друге)

With undisguised caustic irony, they speak of each (other)
10. Олень бродил среди берез жевал талый (снег)

The deer wandered among the birches chewing melting (snow)

Figure 2: Mean accuracy histogram, lexical level.
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cloze task around 625 contexts were given at least one cor-
rect prediction. The closest to that are the results of the bi-
gram HMM model combined with BERT (with around 545
contexts with at least one correct prediction) and raw BERT
(with about 725 contexts with at least one correct prediction).
Model Consistency

Next, we comparedmodels’ performances using an inclusion-
exclusion principle to find the percentage of overlapping an-
swers between different models. The result of this compari-
son is shown on the heat map below.
The heat map reflects information on pairwise model com-
parison, however, we are mainly interested in how close the
models are to the cloze task model. The comparison showed
that the models with the the largest overlap with the cloze

Figure 3: Absolute accuracy histogram, lexical level.
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task are bigram HMMmodel combined with BERT (58% of
overlap) and BERT trained on RNC.
Kolmogorov-Smirnov Tests

At the next step, we performed Kolmogorov-Smirnov testing
to find the similarity in the probability distributions of the
model predictions. Figure 5 also reflects the sum value of
the pairwise comparison of the contexts using Kolmogorov-
Smirnov testing. For convenience, all the values were nor-
malized. Observations show that the closest probability dis-
tribution is seen in the LSTM model. However, as we see,
there is a variation in metric values from 0.9 to 6.2 for differ-
ent models. Thus, we can assert that the difference between
all models and a cloze task is rather large and in some way
unacceptable.
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Figure 4: Overlap heatmap, lexical level.
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Figure 5: Kolmogorov-Smirnov tests, lexical level.
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Cosine Similarity
To measure model predictions on the semantic level, the co-
sine similarity between each context’s predicted words cen-
troid vector was found. The number of words was selected
dynamically for each context by maximizing vector signifi-
cance with the minimum words. Figure 6 reflects the results.

Kullback–Leibler Divergence
Due to the fact that all of our models are word-level, and in
order to lower the casing variability we’ve combined all our
vocabularies into one. For this compound vocabulary, we
calculated the KL divergence of our models.
Table 4.2. shows the scores for three different models with
bigramHMM trained onNCRL showing the best results. Un-
fortunately, this heat map does not show us changes in the
language model (LM) distances context-lengthwise. Top 3
lengthwise LM distances from cloze are shown in Table 4.2..
As we see, the bigram models start to increase the distance
from 1 to 6 context length, but BERT, on the contrary, starts

Figure 6: Cosine Similarity between each pair of models .
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Table 4: KL scores for three different models, all trained
on the National Corpus of the Russian Language. “Context
provided” is in number of tokens.

Context Bigram HMM BERT LSTM
1 1.34 2.17 2.01
2 1.57 2.10 1.78
3 1.84 2.07 1.84
4 1.79 1.93 1.81
5 1.91 2.02 1.92
6 1.86 1.88 1.87
7 1.99 1.77 1.89
8 1.73 1.69 1.80
9 1.97 1.55 1.63
10 2.46 1.71 1.80
11 2.79 2.68 2.17

to lower the distance up to 6 context length. For this case, we
merged the bigram model and BERT at length equal to 6.

4.3. Model Comparison on the PoS Level

Mean Accuracy

The performance of all models, except for LSTM, at the
parts of speech level, has significantly and proportionally in-
creased. This is due to a decrease in the set of classes for
which classification occurs. At this stage, the first 30 words
of each model were tagged for parts of speech. Overall, there
were 16 word classes. Notably, BERT linguistic models have
the highest scores.
Absolute Accuracy

Table 5: Distance in the KL-metric between the cloze task
and language models.

Model KL-distance to cloze
HMM 1.79
BERT 1.93
LSTM 1.84
HMM + BERT 1.71
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Figure 7: Mean accuracy histogram, part-of-speech level.
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Figure 8: Absolute accuracy histogram, part-of-speech level.
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In absolute values, there is also a tendency in higher accuracy
of BERTmodels, which can be interpreted as follows. BERT
as a languagemodel correctly predicts a part of the next word,
but the words themselves, rather close to the context, have a
low probability. Moreover, in many cases, they have almost
a uniform distribution equal to 0.033.
Model Consistency

The consistency of a part of speech prediction differs sig-
nificantly from the lexical level. However, when compared
with the cloze task model, we do not see a strong resemblance
with one of the artificial models. That is, there are contexts
for which a person can predict the part of speech of the next
word correctly, while the models are not able to do the same.

4.4. Model comparison on the OMVF level

Mean Accuracy

Figure 9: Overlap heatmap, part-of-speech level.
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Figure 10: Mean accuracy histogram, object-verb-
functional-modifier level.
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Reducing the number of classes by 4 times does not lead to
an improvement in the average accuracy. Although we can
see that the models perform similarly as on the original part-
of-speech model.
Absolute Accuracy

Absolute values at the OMVF level of generalization cease to
reflect any properties of the models. This is due to the metric
calculation algorithm. Themodel’s indicator increases by one
each time when there is a correct answer and its probability
is not equal to 0. Accordingly, the graph reflects that in more
than 95% of cases the correct tag is present. It can be noted
that for a model with a random tag generator, this threshold
would be 25%. Such differences in magnitudes suggest pro-
ductivity at the OMVF level.
Model Consistency and Kolmogorov-Smirnov Test on OMVF

Consistency at the object-verb-functional-modifier level and
Kolmogorov-Smirnov Test are is shown in Figure 4.4.
and 4.4. correspondingly.
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Figure 11: Absolute accuracy histogram, object-verb-
functional-modifier level.
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Figure 12: Overlap heatmap, object-verb-functional-
modifier level.
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Figure 13: Kolmogorov-Smirnov test heatmap, object-verb-
functional-modifier level.
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The last two tests reflect a contradictory trend: LSTM shows
a greater resemblance to the cloze task. Here it is necessary
to comment on probabilistic distribution. Calculation of sta-
tistical tests based on probability distributions of the models
makes the metrics far from objective, since the variation of
the number of lexical units to consider significantly impacts
the final output. Thus the results may highly differ for 25
and 30 lexical units. Moreover, artificial models allow us to
reflect distributions for the large vocabulary, whereas the vo-
cabulary of the cloze task is very limited and has many ran-
dom outliers when the context is not constraining the next
word on any level. It is disputable whether such cases should
be eliminated from the vocabulary during research or not.

5. Conclusion
One of the important results of this study is the development
of a certain set of methods (tools) for comparing the gen-
erative properties of language models. The starting point is
an unrestricted set of contexts and the probabilistic distribu-
tion of words for each of them. This data can be obtained
from all kinds of language models. Also, the re-normalized
value of frequency from the corpus can be used as a language
model for these purposes in further research. From our point
of view, the most relevant metrics (from presented above) are
Mean (Absolute) accuracy is prediction and Cosine similarity
measure computed for each pair of models.
We tested this methodology on the following models: Cloze-
task-based model, hidden Markov model (with the different
n-grams), LSTM and BERT. From the results, we have no-
ticed that the last one can predict the next word more ac-
curately, while LSTM - Cloze task pair shows that semantic
directions of k-first words for given context are more simi-
lar. However, based on all of these metrics scores, we can
conclude that Cloze-task-based model cannot be replaced by
any of the artificial language models presented in this paper
for eye-tracking experiments. In addition, it is worth notic-
ing that predictability scores computed within the Cloze task
reflect the real-world situation, but this is beyond the scope
of our study and could potentially be used in a different neu-
rolinguistic experiment.
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Abstract
While there is a rich literature on the tracking of sentiment and emotion in texts, modelling the emotional trajectory of longer narratives,
such as literary texts, poses new challenges. Previous work in the area of sentiment analysis has focused on using information from
within a sentence to predict a valence value for that sentence. We propose to explore the influence of previous sentences on the sentiment
of a given sentence. In particular, we investigate whether information present in a history of previous sentences can be used to predict
a valence value for the following sentence. We explored both linear and non-linear models applied with a range of different feature
combinations. We also looked at different context history sizes to determine what range of previous sentence context was the most
informative for our models. We establish a linear relationship between sentence context history and the valence value of the current
sentence and demonstrate that sentences in closer proximity to the target sentence are more informative. We show that the inclusion of
semantic word embeddings further enriches our model predictions.

Keywords: emotion, sentiment, valence, narrative fiction, word embeddings

1. Introduction

The experience of emotion plays a major role in the way
people understand and engage with stories. In works of lit-
erary fiction, it is the affective trajectory of the story (the
emotional journey that the reader is taken on) that propels
the plot forward. People read stories because they are emo-
tionally invested in the fates of the characters. In Natural
Language Processing (NLP), there is a rich literature on
using lexical, semantic and structural information to infer
an emotional tag or value for sentences and short passages
(Pang et al., 2008; Cambria, 2016; Mohammad, 2016; Liu,
2010). However, modelling the emotional trajectory of nar-
ratives poses new challenges – a model must be able to
account for both the long distance effects of previous dis-
course on the reader, and the contextually subtle ways in
which the high-level information conveyed by a text can
influence the reader’s emotional state.
The field of sentiment analysis (i.e. the task of “automat-
ically determining valence, emotions, and other affectual
states from text” (Mohammad, 2016)) has begun to answer
the question of how we can evaluate the emotional con-
tent of text, particularly with regard to commercial domains
and social media. For example, work on sentiment analy-
sis has focused on product or movie reviews (Mohammad,
2016; Liu, 2010; Socher et al., 2013; Tai et al., 2015) or
on the analysis of twitter feeds (Liu, 2010; Zimbra et al.,
2018). Recent work using deep learning, and in particu-
lar recurrent neural networks (RNN) such as Long Short-
Term Memory (LSTM) networks (Hochreiter and Schmid-
huber, 1997), and Transformer networks (Vaswani et al.,
2017) has facilitated a significant increase in the perfor-
mance of sentiment classification of texts and, given the
ability of such networks to represent information over long
sequences (Socher et al., 2013; Tai et al., 2015; Jiang et al.,
2019), they show particular promise for modelling high-

level properties of natural discourse, such as literary texts.
Most of the work on sentiment analysis makes use of large,
readily available corpora of labelled data, which contain
short samples of text (e.g. tweets or movie reviews) and as-
sociated explicit rating values (e.g. 5-star rating systems for
movie and product reviews, or emoticons or hashtags used
to summarise or emphasise the emotional content of a tweet
(Liu, 2010; Mohammad, 2016; Socher et al., 2013; Tai et
al., 2015). However, no large dataset of literary text anno-
tated for emotional content exists, and so in this study we
start by developing a method which can learn to predict the
emotional content at a particular point in a story given the
preceding context and existing word-level resources (such
as hand-tailored sentiment dictionaries, and corpus-derived
word-embeddings). In particular, in order to determine how
the sentiment of the text changes over time we must eval-
uate the sentiment of each new sentence as it arises within
the context of the text that has come before. Our approach
conceives the problem of modelling the emotional trajec-
tory of narrative as consisting of two distinct questions:

1. Can the sentiment of a given sentence be determined
by a previous history of sentences?

2. How much history should be included to be optimally
informative?

We focus on modelling emotional valence at the sentence
level. Explicitly, we model the valence of any given sen-
tence in a sequence of sentences making up a narrative us-
ing the preceding context. We explore various sizes of sen-
tence history context window and the effects of incorpo-
rating semantic information through the inclusion of pre-
trained word embeddings of various dimensions.
To our knowledge, very little previous work has directly ex-
amined the influence of sentence history on the current sen-
tence’s valence as we do in this paper. Jockers (2015) takes
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a simple sum of word valences as representative of sentence
valence and then employs a number of different smoothing
functions to allow for the effects of history. Whissell (2010)
takes a mean of all word valence values as representative
of the valence value for different chunks of text (e.g. sen-
tence, paragraph, and chapter-level chunks). In this work,
we choose sentence-level sentiment as the best basic unit
of measurement for emotional content. We model sentence-
level valence using a lexicon of sentiment (Whissell, 2010),
where the sentence-level valence is estimated as the mean
of the sentence’s word valences as found in the lexicon.
While we are aware that a sentence valence rating based on
a mean of the constituent word ratings taken from a lexicon
is not state-of-the-art in sentiment analysis, the approach is
validated by work in psychology (Whissell, 2010; Whissell,
2003; Bestgen, 1994) and offers a computationally inex-
pensive way to begin this exploratory work, in the absence
of large labelled datasets.

2. Related work
Most work in the field of sentiment analysis has focused
on product reviews, tweets, and emails, and has been fo-
cused on determining opinions towards certain targets (e.g.
the new iPhone, or President Obama) (Mohammad, 2016;
Liu, 2010; Mohammad et al., 2013). Liu (2010) surveys the
field of sentiment analysis with a focus on opinion mining
— determining users opinions about goods or services by
analyzing reviews. Mohammad et al. (2013) trained two
SVM classifiers for two different sentiment tasks; the first
of these was a message level sentiment prediction task and
the second a term-level task. They achieved state-of-the-
art performance on both tasks using two lexicons generated
from tweets (the first using tweets with sentiment hashtags
to generate the lexicon, the second using tweets with emoti-
cons). The use of such lexicons of affect, where each entry
is annotated with a valence value, is commonplace in senti-
ment analysis. As well being automatically generated, as in
the tweet lexicons (Mohammad, 2016), lexicons may also
be created by human annotation (usually gathered using on-
line tools such as Mechanical Turk).
There are several prominent sentiment lexicons that differ
in their contents and methods of compilation. The NRC
Emotion Lexicon, known as Emolex (Mohammad and Tur-
ney, 2010), is a list of 14,182 English words and their as-
sociations with eight basic emotions (anger, fear, anticipa-
tion, trust, surprise, sadness, joy, and disgust) and two sen-
timents (negative and positive). The terms in EmoLex are
carefully chosen to include some of the most frequent En-
glish nouns, verbs, adjectives, and adverbs. The Opinion
Lexicon (Liu et al., 2005) consists of a list of 6800 posi-
tive and negative sentiment words. This lexicon only con-
sists of words believed to be associated with either polarity
and does not contain any neutral words. AFINN (Nielsen,
2011) is a list of English words rated for valence on a scale
of -5 (negative) to +5(positive). The words were manu-
ally labeled by Finn Årup Nielsen (the author) in 2009-
2011. There are two versions of this lexicon — AFINN-
96 (1468 unique words and phrases) and AFINN-111 (the
newest version with 2477 words and phrases). There are
also lexicons available from studies on emotion in psychol-

ogy, most notably the Revised Dictionary of Affect in Lan-
guage (DAL) (Whissell, 2010). Whissell’s DAL consists of
8742 English words which have been rated for their activa-
tion, evaluation and imagery. Each of these dimensions was
rated along a three point scale: (1) Unpleasant, (2) In be-
tween, (3) Pleasant; (1) Passive, (2) In between, (3) Active;
(1) Hard to imaging, (2) In between, (3) Easy to imagine.
It was comprised of frequently occurring words in a num-
ber of sources including an established corpus of 1,000,000
words (Francis and Kucera, 1979), samples of writing gen-
erated by adolescents, and juvenile literature. When tested
against a corpus of 350,000 English words gathered from
many different sources, the DAL demonstrated a matching
rate of 90%, suggesting that we can expect 9 out of every
10 words in any given English language text to have rating
data in DAL (Whissell, 2009).
There is some work to demonstrate that there is a cor-
relation between these lexical affective word ratings and
subjective passage ratings (Bestgen, 1994; Whissell, 2003;
Hsu et al., 2015). However, these studies have relied on
carefully chosen text inputs and have avoided complicating
issues such as negation and irony, etc., which are common-
place in natural discourse.
While there have been a few studies into emotion in lit-
erary texts (Bestgen, 1994; Mohammad, 2012; Whissell,
2003; Hsu et al., 2015), these have largely focused on de-
tecting discrete emotions (love, anger, fear etc.) and cen-
tred almost exclusively on classifying texts (or sections of
text) into these discrete groups. Mohammad (2012) com-
pared the polarity and emotional word density (defined as
the number of emotion words per X-words) of novels and
fairy tales in English. Using the NRC Emotion lexicon,
Mohammad and Turney (2010) labelled words in novels
and fairy tales with polarity and discreet emotions such as
joy, sadness, and so on. They then used an emotion anal-
yser tool to make certain inferences from the data; for ex-
ample, counting the instances of words related to particu-
lar emotions, and comparing the emotional distributions of
different words across different genres. However, this work
focused on discreet emotions (joy, anger, etc.) using asso-
ciated emotion words, which can enlighten us in terms of
literary criticism or text classification, summarization, etc.,
but which are not sufficient to help us to effectively model
the emotion of a text in a way comparable to how a person
experiences it over time as a story unfolds, or how it is con-
structed in the brain. Reagan et al. (2016) investigated the
emotional arcs of narrative fiction using a sliding window
of sentences.
What all of the aforementioned approaches have in com-
mon is that they consider the task of investigating valence
and emotion in literature as a classification problem. The
goal is to assign a given text or segment of text with a va-
lence label which can then be used to derive some insight
into the author’s opinion regarding some product or issue,
or to bring some quantitative insight to bear on studies in lit-
erary criticism. In this study, in contrast, we aim to model
the changing experience of emotion during the course of
reading a text. For this reason we frame the problem as
a regression task, where we aim to predict a real number
(measuring the degree of positive or negative emotion) for
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each sentence in the sequence of sentences making up the
narrative.

3. Methodology
We aim to predict the valence of each sentence using in-
formation extracted from the history preceding that sen-
tence. For this purpose, we train machine learning models
that assign an emotion value to each sentence given infor-
mation available in the preceding context. There are three
key challenges that need to be addressed. First, identify-
ing the features of the preceding context that are relevant
to this sentence-by-sentence valence assignment task. Sec-
ond, identifying what size of context history is most infor-
mative. And third, determining the type of machine learn-
ing model which performs best in predicting these sentence
valences. As a first step, we investigate the degree to which
the relationship between current sentence valence and sen-
tence context history information can be modelled using
linear methods. We apply two models to this task — lin-
ear regression and a linear support vector regressor. In the
second part of the study, we investigate whether the appli-
cation of non-linear methods to the same feature sets can
better model the relationship between the sentence context
history and the current sentence valence. We implement
these non-linear models using a random forest regressor.
To train these models we explore a number of different fea-
ture combinations, to determine which kinds of information
are most important for predicting sentence-level valence.
We explore the scope of context relevant to inferring sen-
tence valence, investigating different sizes of sentence con-
text history and a variety of feature sets of different dimen-
sionalities. This first stage of our study therefore focuses
on the exploration of eighteen different feature sets com-
bined in the following ways: (1) a history of sentence va-
lence scores only (over a number of history window sizes,
spanning 10, 50 and 100 sentences), and (2) a history of
sentence valence combined with semantic information (i.e.
pre-trained semantic word embeddings in the form of 50,
100, 200 and 300 dimension GloVe word embeddings (Pen-
nington et al., 2014), and 300 dimension FastText word em-
beddings (trained on subword information) (Bojanowski et
al., 2017) again over the same number of context history
window sizes (10, 50 and 100 sentences). The 18 differ-
ent feature set combinations investigated correspond to the
rows of the results table below (Table 1).

4. Data and Resources
4.1. Text Used
Project Gutenberg (https://www.gutenberg.org/) provides
access to thousands of public domain books (copyright ex-
pired) in plain-text format. We selected a corpus of 100
books (643,352 sentences) in total. We split these, by book,
into 72 training texts (476,891 sentences, 74% of our cor-
pus) and 28 test texts (166461 sentences, 26% of our cor-
pus). The texts were split in this way to preserve the natu-
ral boundaries between books. These books were chosen as
they represent pieces of literary fiction for children which
would be well in common narrative techniques such as the
use of irony, metaphors and imagery, and creative language.

These are important features of literary language which can
prove challenging for sentiment analysis systems based on
a simple literal interpretation of sentences.

4.2. Lexicons and lexical embeddings
In training our models, we used information about emo-
tional content derived from Whissell (1989)’s Dictionary
of Affect in Language (the Revised DAL) (Whissell, 2010),
discussed in Section 2. We generated sentence-by-sentence
valence ratings for our target texts using the Whissell lexi-
con. The valence for each sentence is estimated by averag-
ing over the valence values for the constituent words in the
sentence. We then took these sentence-level valence ratings
as the target values we hoped to predict.

5. Results
We explored three different machine learning models: Lin-
ear Regression, Linear Support Vector Regression and Ran-
dom Forest Regression. The results from these models (R2

values for predictions on the test set) are displayed in Table
1 below. We also present two figures which each illustrate
different patterns observable from the data. Figure 1 illus-
trates the difference in performance of each of the machine
learning models tested, across each of the different context
windows. Figure 2 shows the difference in performance on
each feature set across all of the models tested.

Figure 1: Performance (R2 values on the test set) of all
machine learning models across all context sizes, averaged
over all feature sets.

Figure 2: Contribution of each different feature combina-
tion to model performance; averaged over all model sets.
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Feature Set Context Linear Regression Linear SVR Random Forest

Sentence Only 10 0.0210 0.0210 0.0236
50 0.0215 0.0215 0.0226

100 0.0215 0.0214 0.0213
50d GloVe 10 0.0309 0.0312 0.0295

50 0.0304 0.0250 0.0285
100 0.0280 0.0244 0.0261

100d GloVe 10 0.0309 0.0203 0.0294
50 0.0302 0.0238 0.0267

100 0.0274 0.0231 0.0256
200d GloVe 10 0.0302 0.0308 0.0291

50 0.0288 0.0251 0.0267
100 0.0259 0.0239 0.0214

300d GloVe 10 0.0288 0.0294 0.0283
50 0.0273 0.0242 0.0261

100 0.0235 0.0231 0.0211
300d FastText 10 0.0299 0.0312 0.0310

50 0.0273 0.0249 0.0271
100 0.0241 0.0237 0.0214

Table 1: Performance (R2 values for predictions on the test set) of all machine learning models across all context sizes.

6. Discussion

Our study has focused on two central questions – firstly,
to establish whether linear or non-linear methods are best
suited to modelling this type of relationship and, secondly,
to determine what kind of features extracted from the his-
torical content are the most effective in training the machine
learning models. This second question of finding an opti-
mal feature set can be sub-divided into two smaller prob-
lems: (a) assessing whether the inclusion of semantic in-
formation in the form of pre-trained word-embeddings adds
more relevant information to the model training, and (b) de-
termining if there is an optimal size of sentence history con-
text that should be included to generate the best predictions
for each model.
From the results presented in Table 1, we can see that there
is a small linear relationship between sentence valence his-
tory and the valence of the current sentence. This relation-
ship is statistically significant at p = 0.0001. While these
results clearly show that we have captured a real linear ef-
fect between valence history and current sentence valence,
the magnitude of explained variance is small. The applica-
tion of non-linear methods does not improve performance.
However, we can discern an important pattern in these re-
sults regarding the influence of sentence history context on
our model predictions. We can see from Table 1 that across
all models and feature sets, the best results are generated us-
ing a sentence history context of 10 sentences, which con-
firms our intuition that sentences closer to the sentence be-
ing predicted should bear more on its valence value than
sentences further back in the history. This information is
summarised in Figure 1 where we have taken an average
across all feature sets for each model to illustrate this trend.
Figure 2 depicts a summarisation of the relative contribu-
tion of each of the feature sets averaged across all of the
models implemented and all of the context history sizes

employed. We can see from this illustration that while all
of the feature sets ultimately result in models which ex-
hibit similar performance, in general, the inclusion of the
semantic word embeddings does add slightly to the predic-
tive power of the models.

7. Conclusions and Future Work
In this paper we proposed to investigate whether informa-
tion present in a history of previous sentences can be used
to predict a valence value for the following sentence in con-
text. We explored both linear and non-linear methods and
a range of different feature combinations. We also looked
at different context history sizes to determine what range of
previous sentences was most informative for our models.
In conclusion, we have established a linear relationship be-
tween sentence context history and the valence value of the
current sentence. We have demonstrated that the sentences
in closer proximity to the target sentence are more infor-
mative. We have also shown that the inclusion of semantic
word embeddings does seem to enrich our model predic-
tions. We have therefore established a firm base for further
explorations of valence in literature which should be char-
acterised by further investigations of potentially optimally
informative feature sets and the application of models capa-
ble of better capturing the complex, non-linearities inherent
in literary text, such as LSTM artificial neural networks.
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Abstract
We present the Le Petit Prince Corpus (LPPC), a multi-lingual resource for research in (computational) psycho- and neurolinguistics.
The corpus consists of the children’s story The Little Prince in 26 languages. The dataset is in the process of being built using state-
of-the-art methods for speech and language processing and electroencephalography (EEG). The planned release of LPPC dataset will
include raw text annotated with dependency graphs in the Universal Dependencies standard, a near-natural-sounding synthetic spoken
subset as well as EEG recordings. We will use this corpus for conducting neurolinguistic studies that generalize across a wide range of
languages, overcoming typological constraints to traditional approaches. The planned release of the LPPC combines linguistic and EEG
data for many languages using fully automatic methods, and thus constitutes a readily extendable resource that supports cross-linguistic
and cross-disciplinary research.

1. Introduction
We present the Le Petit Prince Corpus (LPPC), a
multi-lingual resource for experimental research in cross-
linguistic (computational) psycho- and neurolinguistics.
The corpus consists of translations of the children’s story
Le Petit Prince (The Little Prince), published by Antoine
de Saint-Exupéry in 1943, in 26 languages. The corpus is
built by combining current methods from speech and lan-
guage technology, that is, state-of-the-art Text-to-Speech
Synthesis (TTS) and dependency parsing, as well as elec-
troencephalography (EEG).
This paper describes ongoing work. We describe the re-
source that we will release as well as the important aspects
to consider while building this corpus. The final release
of the dataset will include three main parts: The primary
written data is given as raw text and annotated with depen-
dency graphs in the Universal Dependencies (UD) standard
(Nivre et al., 2016). A subset of the corpus will be provided
as time-aligned synthetic speech. The speech data will be
used as an auditory stimulus for recording EEG data, which
comprises the final part of the release.

1.1. Motivation
Traditional psycho- and neurolinguistic research has em-
ployed factorial experimental designs that require a large
number of trials with highly controlled stimuli. Such ex-
perimental designs thus limit the generalizability of find-
ings, and it has been increasingly acknowledged in recent
years that factorial experiments lack sufficient statistical
power and ecological validity (Brennan, 2016; Willems et
al., 2015). For this reason, more and more studies rely on
naturalistic stimuli (Hamilton and Huth, 2018).
An additional shortcoming of factorial experiments is evi-
dent from recent findings in probabilistic language process-
ing: Repetitive presentation of large numbers of matched
stimuli can have the undesired effect of changing tran-
sitional probabilities during the experiment and thus, of
obscuring neurobiological results (Kroczek and Gunter,
2017). The development of information-theoretic quantifi-

cations of speech and language processing (Hale, 2001) and
their excellent fit to behavioral (Levy, 2008; Demberg and
Keller, 2008) and neurobiological data (Hale et al., 2018;
Rabovsky et al., 2018; Frank et al., 2015) supports this.
Traditional psycho- and neurolinguistic studies have typi-
cally been restricted to single or few individual languages.
This results in limited generalizability beyond small typo-
logical domains, thereby hindering the understanding of
cross-linguistic commonalities and differences in the cog-
nitive apparatus and neural substrate of speech and lan-
guage processing (Kandylaki and Bornkessel-Schlesewsky,
2019).
In contrast, the LPPC as a resource facilitates gener-
alization across a range of languages (Kandylaki and
Bornkessel-Schlesewsky, 2019), helping the psycho- and
neurolinguistic fields to further overcome their current sta-
tistical and typological limitations. The motivation for
building this dataset is in line with the recent development
of openly accessible naturalistic stimulus sets in the neu-
rolinguistic community, such as the Mother of All Unifica-
tion Studies (Schoffelen et al., 2019), the Narrative Brain
Dataset (Lopopolo et al., 2018), the Alice Datasets (Bhat-
tasali et al., 2020) and the ongoing Alice in Language Lo-
calizer Wonderland project1. Unlike factorial and/or mono-
lingual experimental datasets that are tailored to just one
specific question, the LPPC’s lexico-syntactic annotation
in the UD standard fosters research that addresses a broad
range of linguistic research questions. The LPPC is also
sustainable in that its data is amenable to future re-analysis
that addresses future research questions. Furthermore, the
use of the dataset will facilitate the formulation of neu-
robiological frameworks that generalize across languages
(Bornkessel-Schlesewsky and Schlesewsky, 2016), assum-
ing that the structural and functional properties of the hu-
man brain that subserve language are shared among speak-
ers of all languages (Futrell et al., 2015; Levy, 2008; Bren-
nan et al., 2019). In turn, the dataset may also serve as re-

1https://evlab.mit.edu/alice
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source for traditional linguistic research that aims to explain
why languages are different, yet they all can be processed
by brains that are unitary across humans.

1.2. The LPPC – an automatic corpus
Recent advancements in the field of speech and language
processing, fueled by the striking success of deep learning
models, have made it feasible to automatically create and
annotate large amounts of data with a higher quality than
previously possible. We exploit such methods for build-
ing our resource, that, given it comprises 26 languages,
would require much effort using traditional manual meth-
ods. Apart from the primary text data, which is manu-
ally cleaned, the database is created using automatic de-
pendency parsing, forced-alignment and speech synthesis.
In addition to the state-of-the-art speech and language pro-
cessing tools employed for building the corpus, the EEG
data is preprocessed using a fully automatic pipeline setup.
We are also planning to make the EEG data available to the
community in an open format that facilitates further pro-
cessing. To the best of our knowledge, the LPPC is the first
resource for neurolinguistic research that is not only created
by, but also combines such methods.

2. The LPPC multi-lingual resource
The corpus consists of translations of the children’s story
Le Petit Prince by Antoine de Saint-Exupéry. The text was
originally written in 1943 and has since been translated into
over 300 languages2.
The languages chosen for the LPPC are Arabic, Chi-
nese (Mandarin), Czech, Danish, Dutch, English, Finnish,
French, German, Greek, Hindi, Hungarian, Indonesian,
Italian, Japanese, Korean, Norwegian, Polish, Portuguese,
Russian, Slovak, Spanish, Swedish, Turkish, Ukrainian,
and Vietnamese.
The criteria for choosing these languages was their avail-
ability both as a significantly large treebank in the UD tree-
bank (Nivre et al., 2016) (to allow for uniform syntactic
parsing across languages) as well as in Google’s Text-to-
Speech API3 voice selection. Both tools are part of auto-
matic pipelines for creating the linguistic annotations and
the speech data, respectively.

2.1. Primary written data
The primary data in the LPPC consists of one text version
of the story in each of 26 chosen languages. The full story
comprises 27 chapters in total (plus a short prologue) and
the English version amounts to roughly 16k words. The
LPPC includes the first six chapters in each language as
spoken data, amounting to around 20 minutes of speech (≈
250 sentences).
We chose existing published translations of the story. Since
the domain of the data is literary text, the versions for the
various languages cannot be expected to be translated di-
rectly at the sentence level. Furthermore, we do not have
any control on how close the different translations are to the

2It has thus been referred to as the most-translated non-
religious text in the world (Le Figaro, 7. April 2017).

3https://cloud.google.com/text-to-speech/

French original, and we expect expect a certain degree of
variation between the different translations. Nevertheless,
given the fact that the book follows a clear story line and
uses rather simple language, we consider the translations to
be fairly parallel. The LPPC is therefore not a strictly par-
allel corpus, but a combination of comparable parts as well
as parallel, but unaligned sentences4.

2.1.1. Acquisition of text
For the written text part of the corpus, we acquired elec-
tronic translations of the text. In most languages, multiple
translations have been published since the first issue, and
newer translations continue to appear until today. There-
fore, we carefully chose versions according to the follow-
ing criteria: The first being the availability as an e-book5, as
these are readily obtained and easily converted to raw text.
The second criterion was the availability of bibliographic
data. Since the texts available on web differ in quality, we
selected releases that contained information on the trans-
lator, year, and publishing house. We also discussed the
choice of text with native speakers in cases where we were
unsure about the quality of the translated versions.

2.1.2. Choice of translation
We placed an additional constraint on our choice of transla-
tions based on diachronic linguistic changes that may pose
additional interfering factors during neuroscientific studies.
Such problems may arise, for example, when performing
EEG studies on canonical participant samples, e.g. in an
age range of 20 to 30 years. Since participants in this age
group are less familiar with the writing style used in the
original version from 1943 and the early translations, we
chose to collect more recent translations for the corpus.
This decision was based on the outdated language in older
translations, which may confound experimental measure-
ments. For example, the Hungarian version uses the obso-
lete term fölnőtt for the word grown-up, whereas the new
version uses felnőtt. An additional concern was the use of
literary writing style, which has changed considerably over
the years. Old words or syntactic constructions may be un-
familiar to participants and thus be experienced as unusual,
thereby triggering meta-cognitive processing.
Conversely, due to the fact that Le Petit Prince is a well-
known text, we expect that participants who are very famil-
iar with the original translations may also display interfer-
ence effects when confronted with a different translation.
Therefore, this choice comprises a trade-off between a fa-
miliar story and a contemporary language style. To keep
the corpus as consistent as possible, however, we chose the
newest translation available that fits the aforementioned cri-
teria. Apart from the French original text, the full collection
therefore contains translations that were published after the

4Cross-language sentence alignments may be carried out by
hand to a limited extent. The research questions we seek to ad-
dress with this corpus, discussed in section 3.3.3. do not require
a strictly parallel corpus, and we therefore do not plan to include
such alignments in this release.

5Obtaining digitized text from print versions was deemed
too error-prone due to expected issues in using optical character
recognition (OCR).
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year 2000 except for Russian and Slovak, for which such
recent translations are currently not available as e-books.

2.1.3. Preprocessing
In order to prepare the written text for the annotation
pipeline, the documents needed to be cleaned of format-
ting errors, punctuation, typographical errors and other in-
consistencies resulting from the conversion process. Addi-
tional text stemming from the title page, picture captions as
well as biography sections or other supplemental sections
was removed. Each sentence of the text is assigned a sepa-
rate ID to facilitate further processing. We employed native
speakers to preprocess and check the texts manually.

2.2. Synthesized speech data
The first six chapters of the story will be converted to
spoken language via Text-to-Speech Synthesis (TTS). We
chose to use synthetic voices over natural voices for two
main reasons: First, due to the time and cost involved
in recording professional speakers in a laboratory setting.
Second, to have more control over the resulting speech out-
put and to obtain voices that do not differ too much in voice
quality, pitch and speaking rate. This allows for better ex-
perimental control over the effects of individual voice dif-
ferences during neuroscientific studies.

2.2.1. Google Text-to-Speech API
In order to obtain synthesized speech that is as natural
as possible, we chose to use the state-of-the-art WaveNet
(Oord et al., 2016) voices provided by the Google Cloud
Text-to-Speech API. We chose this synthesizer since it cur-
rently provides the largest selection of natural sounding
voices. The client libraries are an efficient method of creat-
ing speech output in a wide range of languages in human-
like quality. The API also allows the input to be further
enhanced using the W3C Speech Synthesis Markup Lan-
guage (SSML6), which enables the user to manually add
additional instructions on how the input text is to be syn-
thesized. The Google API supports a subset of SSML tags
for generating different prosody or for reading out numer-
als.

2.2.2. Manual markup of input text
The first six chapters as cleaned written text files are used as
raw input for TTS. The text is segmented into smaller parts,
that is, single sentences or paragraphs, for easier handling
during the processing pipeline.
We recruited native speakers with expertise in TTS to create
SSML markup that increase the naturalness of the synthesis
where necessary. This markup can be used to change the
prosody, for example for making pitch modifications and
inserting breaks. An example of the markup is illustrated in
Figure 1.
Since the prosody across sentence boundaries can differ
when sentences are entered individually or as part of a
longer text, they were also asked to decide whether to syn-
thesize the sentences individually or as grouped into para-
graphs. The sentence IDs assigned to the raw text are kept
track of during this step.

6https://www.w3.org/TR/speech-synthesis11/

We let the native speakers choose the most natural sound-
ing female WaveNet voices according to their opinion. The
only current exception is Spanish, for which currently only
one ”standard” female voice is provided.

2.2.3. Naturalness of synthetic speech
The naturalness of the speech recordings is constrained by
feasibility: Based on prior experiences, we chose to em-
ploy TTS because the recruitment of professional speak-
ers of comparable professionalism, speech training, and
speech quality across languages is a hard-to-predict risk to
a project of this size and scope. However, we ensured that
the synthetic voices chosen for this corpus are of very high,
and in part near-natural, quality. The mean opinion scores
(MOS) obtained by using a WaveNet vocoder in the TTS
system have been reported to greatly surpass those of tra-
ditional parametric or concatenative TTS systems (Shen et
al., 2018; Oord et al., 2016).
In addition, we take two further measures to handle vari-
ability in synthesis quality: First, the native speakers in
charge of SSML adjustment will report gross problems with
the TTS output and SSML markup, such that corpus users
can easily identify sentences of low synthesis quality. Sec-
ond, we plan to include with each sentence the results of a
rating study collected via crowdsourcing (e.g. Amazon Me-
chanical Turk), allowing users of the LPPC to include para-
metric covariates of naturalness in their statistical models
or define individual naturalness thresholds.

2.2.4. Alignment of speech and text
The text and speech data will be time-aligned, that is, the
timestamps that denote the start and end times of each word
in the text will be automatically obtained and provided with
the corpus. This step is especially necessary for aligning the
spoken part of the data to the EEG recordings.
While standard available tools generally yield good per-
formance in resource-rich languages such as English and
German, we expect a poorer quality of the alignments in
other languages, and that for certain languages there may
not even exist suitable tools. Since Google’s services do not
provide timestamps for the synthesized output, we will use
a workaround solution7 using their multi-lingual Speech-
To-Text API8, which does provide word offset times.

2.3. Lexico-syntactic annotations
The LPPC will contain lexico-syntactic annotations for the
written text part of the corpus that we will automatically
obtain using natural language processing (NLP) tools. The
full texts will be parsed according to the UD framework.
This framework comprises a method of combining con-
sistent annotations across languages. Furthermore, previ-
ous evidence has suggested a link between syntactic de-
pendency and psycholinguistic processing (Brennan et al.,
2019). The parsed output will be provided in a standard for-
mat (CoNLL), which includes part-of-speech (POS) tags
and lemmatization. We will train the best state-of-the-art
parser trained on the respective UD treebank for each lan-

7This workaround had been suggested to us by Google.
8https://cloud.google.com/speech-to-text
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<p>
<s> He bent over the drawing. </s><break time="300ms"/>
<s><prosody pitch="+2st" rate="110%"> "Not so small as all that. <break time="500ms"/>
Look! <break time="300ms"/> He’s gone to sleep!" </prosody></s><break time="700ms"/>
<s> And that’s how I made the acquaintance of the little prince. </s>

</p>

Figure 1: Example paragraph taken from the English translation of Le Petit Prince with SSML markup

guage for parsing. We refer to section 3.3.2. for a discus-
sion on annotation quality estimation.

2.4. EEG data
We aim to collect EEG recordings from 20 participants for
each of the languages in the LPPC. During EEG record-
ing, the synthesized speech data (i.e., the first six chapters
of the story) will be played via loudspeakers at a volume
that is comfortable to the participants. To ensure that par-
ticipants stay alert and focus on the content of the story,
a set of multiple-choice comprehension questions will be
asked after each chapter; questions and responses will be
included in the corpus. This also enables corpus users to
model inter-individual comprehension differences or define
their own selection thresholds.
While we plan to include an active task, the paradigm be-
hind the planned EEG recordings is mostly passive. We
refer to a body of literature from the speech, language,
and music fields (Cheung et al., 2019; Hale et al., 2018;
Rabovsky et al., 2018; Frank et al., 2015; Armeni et al.,
2019; Brennan and Martin, 2020; Weissbart et al., 2020;
Meyer and Gumbert, 2018; Di Liberto et al., 2015) to ex-
pect variability of electrophysiological responses of interest
to the user (e.g., evoked responses, changes in oscillatory
phase and power) to exhibit enough variance for state-of-
the-art statistical analysis (e.g., multiple regression, tempo-
ral response functions, speech–brain-coupling measures).
EEG data will be continuously recorded from 64 elec-
trodes.The setup will be referenced against the left mastoid
and grounded to the sternum. To facilitate subtraction of
eye blink and movement artifacts, the horizontal and ver-
tical electrooculograms will be acquired. Scalp electrodes
will be placed according to the 10–20 system in an elastic
cap. During recording, the word start and end markers of
the audio will be stored as events in the EEG file.
Artifact cleaning will be automatic, combining functions
from EEGLAB (Delorme and Makeig, 2004) and Field-
Trip (Oostenveld et al., 2011) running in MATLAB R©. We
will use an absolute threshold to remove outlier record-
ing channels. The 50-Hz artifact and resonance fre-
quencies will be projected out via a combination of a
perfect-reconstruction filter bank and a spatial filter (de
Cheveigné, 2019). Remaining artifacts will be removed
using independent-components analysis (ICA). To stabilize
ICA, an 1-Hz highpass filter will be applied (Winkler et
al., 2015), followed by wavelet ICA (Gabard-Durnam et al.,
2018) and ICA (Makeig et al., 1996); artifact components
will be automatically classified using MARA (Winkler et
al., 2011), ADJUST (Mognon et al., 2011), and ICLA-
BEL (Pion-Tonachini et al., 2019). Artifactual components

will be removed from the data highpass-filtered at 0.01 Hz
(Winkler et al., 2015). Then, channels removed from the
initial thresholding will be interpolated.

3. Ongoing work
We are currently in the stage of acquiring cleaned versions
of the text data as well as the SSML markup as input for
our speech processing pipeline. The annotation of the text
data and the recording of EEG data will occur in parallel
once the acquisition of the primary data is completed.

3.1. Availability
We plan to release the corpus in three stages: (1) The
release of the primary text data, synthesized speech and
(word-level) time-alignments, (2) the lexico-syntactic an-
notations of the written text, and (3) the preprocessed EEG
data recorded during listening and aligned with the speech
data. The first version of the corpus release is expected to
be available in parallel to this publication. The release of
neuroimaging data is postponed for the third release due to
pending legal issues regarding data privacy9. We plan to
make as many EEG recordings available as possible under
these constraints. For better re-usability, we also aim to
convert the EEG data to openNeuro10 format.

3.2. Metadata
The corpus release will include bibliographical informa-
tion on the e-book publications (e.g., name of the translator,
year of publication, and publishing house). We will provide
the Google WaveNet voice ID as well as the SSML markup
used to create the synthesized speech data. We will also
provide detailed information on the NLP tools and meth-
ods used to create the lexico-syntactic annotations, as well
as information on the estimated quality for each language.
The EEG subset of the corpus will include metadata such
as the age, gender, native language and bilinguality of each
subject. Complete EEG metadata (e.g., filter and ICA set-
tings) will be provided with the respective release.

3.3. Discussion
Due to use of automatic annotation methods and the choice
of using synthesized speech for our corpus, several open
questions arise, which we discuss in the following. Further-
more, we welcome feedback on possible additional caveats
and extensions while the corpus is under construction.
In addition, by means of an outlook, we will discuss some
classes of research avenues that could be addressed by em-
ploying the LPPC in planned typological contrasts.

9Subjects must give written consent according to the European
General Data Protection Regulation (GDPR).

10https://openneuro.org/
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Corpus subset Size Annotations Metadata
Text 27 chapters, ≈ 16k English words Universal Dependencies bibliographical data, NLP tools
Speech chapters 1–6, ≈ 20 minutes of speech time-alignments Google voice, SSML
EEG speech subset time-alignments subject metadata

Table 1: Overview of the planned LPPC resource in 26 languages.

3.3.1. Use of synthesized speech
The decision to use TTS to create the speech part of the
LPPC was based on our aim to use the dataset for neurolin-
guistic studies that focus on higher-level syntactic process-
ing. We would like to stress that we do not recommend
the corpus for research on lower-level phonetic or auditory
processing, since these would require human speech to rule
out any confounds created by parts of the auditory stimulus
that may be perceived as clearly non-human.
As discussed in section 2.2.3., the Google voices used to
create the spoken part of the corpus have been judged to be
of significantly higher quality than the best previous TTS
systems and the SSML markup is used to further increase
the naturalness of the synthesized speech. However, the
synthesized speech still differs from human speech, espe-
cially when used to read out a literary text. We had chosen
this method despite this drawback due to the fact that it
enables us to efficiently obtain speech data for all chosen
languages.
Depending on the outcome of the ratings obtained from
crowdsourcing (see 2.2.3.), it may be necessary to include
a recording of a human speaker for at least one language
to perform a comparison in further neuroscientific studies.
Expanding the selection of languages which include human
speech can then be taken into account for possible future
versions of the corpus.

3.3.2. Quality of automatic annotations
Since the linguistic annotations will be obtained using
purely automatic NLP methods, they are expected to in-
clude errors. While the quality of the automatic time-
alignments and the syntactic parses will likely be quite high
for resource-rich languages such as English, we expect a
higher degree of error in low-resource languages. By using
tools that can be applied cross-linguistically, however, we
aim to generate annotations with a high accuracy. Further-
more, domain differences between the data used to train the
tools and the LPPC (children’s literature) can be reduced by
choosing treebanks from literary texts. The exact choice of
tools is subject to current work and will consist of methods
that meet this aim.
Possible methods to increase the quality of the linguistic an-
notations include hand-annotating small amounts of text as
a gold-standard reference for automatic evaluation and for
domain adaptation of annotation models, or employing na-
tive speakers to perform manual corrections in cases where
the error rate is deemed too large to be acceptable. Previ-
ous efforts to increase the quality of automatic corpus an-
notation include, for example, a silver standard approach
(Rebholz-Schuhmann et al., 2010; Schweitzer et al., 2018;
Hale et al., 2019), in which several annotation layers can be
combined to estimate confidence scores.

3.3.3. Outlook: an EEG typology
The main motivation for building the LPPC is to address the
notion of overcoming the typological restrictedness of prior
and current experimental designs in psycho- and neurolin-
guistics, which is a major obstacle for the generalizability
of cognitive and neuroanatomical frameworks of language
comprehension (Kandylaki and Bornkessel-Schlesewsky,
2019). While this work-in-progress paper cannot serve the
purpose of providing an exhaustive list of cross-linguistic
contrastive research questions, we here give a short set for
inspiration.
First, cross-linguistic variance in evoked potentials and os-
cillatory power and phase changes associated with mem-
ory storage mechanisms of dependency formation could be
tested (Meyer et al., 2013; Kluender and Kutas, 1993). Ini-
tial pilot work supports the feasibility of this (Brennan et
al., 2019). Moreover, further open questions of models of
dependency formation could be tested cross-linguistically,
including retrieval cues and their weighting, as well as
whether memory retrieval is activation-based or direct (Va-
sishth et al., 2019; McElree, 2000). Indeed, it has been
shown that such fine-grained aspects can be dissociated; for
instance, Search Effort as formalized in parsing algorithms
was shown to model evoked components classically associ-
ated with syntactic processing difficulty (Hale et al., 2018).
In addition to enhancing the validity of parsing algorithms
proper from their statistical fit to the underlying elec-
trophysiology, seminal work on the alignment between
electrophysiological excitability and information content
(Weissbart et al., 2020; Meyer and Gumbert, 2018) could
be tested for its cross-linguistic generalizability, thus work-
ing towards an information-theoretic typology (Hahn et al.,
2020; Gibson et al., 2019).

4. Conclusion
In this paper, we have presented the LPPC as a resource
that combines linguistic data in the form of text and speech
with EEG data for 26 languages. The corpus is currently
being built semi-automatically; only the written story was
acquired and the text cleaned by hand, and the synthetic
speech data, linguistic annotations as well as EEG data is
obtained using automatic state-of-the-art tools and meth-
ods. The LPPC bridges several gaps between traditional
psycho- and neurolinguistic approaches and current data-
driven research and enables researchers to investigate and
generalize research questions across a wide range of lan-
guages. We hope to show that using corpora obtained using
automatic methods is a realistic alternative to manual nat-
uralistic stimuli, since this approach enables testing larger
amounts of data and across a broader range of languages.
The corpus is work-in-progress. Apart from the planned re-
lease described here, we encourage future extensions of the
corpus by the (computational) psycho- and neurolinguistics

47



communities to include additional languages as they be-
come available in Google’s TTS voice selection or in other
synthesis systems of comparable quality. Furthermore, the
speech part of the LPPC is limited to the first 6 chapters.
Provided that the quality of the output is acceptable and
that it proves to be a useful resource, the speech part can
readily be extended.
As future work, we plan to further expand the scope of re-
search questions that can be addressed with the LPPC by in-
corporating data from additional neuroimaging modalities,
such as magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI; see Bhattasali et al.
(2019) for an application using human speech). Our vision
is for the LPPC to become an open infrastructure to which
researchers from various communities can contribute by
adding further modalities, such as functional near-infrared
spectroscopy or electrocorticography. We also welcome
further suggestions and contributions to help expand the
utility of the LPPC across disciplines to facilitate innova-
tive psycho- and neurolinguistic research.

5. Acknowledgements
The authors would like to thank Joakim Nivre for helpful
discussion. Monique Horstmann carried out preparatory
work during early stages. This work was funded by the
Max Planck Society through the award of Max Planck Re-
search Group Language Cycles to Lars Meyer.

6. Bibliographical References
Armeni, K., Willems, R. M., Van den Bosch, A., and Schof-

felen, J.-M. (2019). Frequency-specific brain dynam-
ics related to prediction during language comprehension.
NeuroImage, 198:283–295.

Bhattasali, S., Fabre, M., Luh, W.-M., Al Saied, H., Con-
stant, M., Pallier, C., Brennan, J. R., Spreng, R. N., and
Hale, J. (2019). Localising memory retrieval and syn-
tactic composition: an fMRI study of naturalistic lan-
guage comprehension. Language, Cognition and Neu-
roscience, 34(4):491–510.

Bhattasali, S., Brennan, J. R., Luh, W.-M., Franzluebbers,
B., and Hale, J. T. (2020). The Alice Datasets: fMRI
EEG observations of natural language comprehension.
In Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2020),
Marseille, France, May. European Language Resources
Association (ELRA).

Bornkessel-Schlesewsky, I. and Schlesewsky, M. (2016).
The importance of linguistic typology for the neurobiol-
ogy of language. Linguistic Typology, 20(3):615–621.

Brennan, J. R. and Martin, A. E. (2020). Phase synchro-
nization varies systematically with linguistic structure
composition. Philosophical Transactions of the Royal
Society B, 375(1791):20190305.

Brennan, J., Martin, A. E., Dunagan, D., Meyer, L., and
Hale, J. (2019). Resolving dependencies during natural-
istic listening. In 11th Annual Meeting of the Society for
the Neurobiology of Language.

Brennan, J. (2016). Naturalistic sentence comprehen-
sion in the brain. Language and Linguistics Compass,
10(7):299–313.

Cheung, V. K., Harrison, P. M., Meyer, L., Pearce, M. T.,
Haynes, J.-D., and Koelsch, S. (2019). Uncertainty and
surprise jointly predict musical pleasure and amygdala,
hippocampus, and auditory cortex activity. Current Bi-
ology, 29(23):4084–4092.
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Abstract
In sentiment analysis, several researchers have used emoji and hashtags as specific forms of training and supervision. Some emotions,
such as fear and disgust, are underrepresented in the text of social media. Others, such as anticipation, are absent. This research paper
proposes a new dataset for complex emotion detection using a combination of several existing corpora in order to represent and interpret
complex emotions based on the Plutchik’s theory. Our experiments and evaluations confirm that using Transfer Learning (TL) with a
rich emotional corpus, facilitates the detection of complex emotions in a four-dimensional space. In addition, the incorporation of the
rule on the reverse emotions in the model’s architecture brings a significant improvement in terms of precision, recall, and F-score.

Keywords: Complex Emotions, Emotional Intelligence, Data Augmentation, Machine Learning, Natural Language Processing

1. Introduction
Several works in natural language processing (NLP) have
addressed the recognition of expression of emotions. They
can be divided into two approaches. The first one assesses
emotions by using quantitative metrics such as the level of
intensity or valence, arousal, domination, etc. For example,
the emotion carried by a text is measured as very joyful, a
little angry, fearful, etc., with the metric value referring to
the degree of emotion (Posner et al., 2005). The second
approach starts from a dictionary of basic emotions, con-
sidered as atomic and irreducible, to build more complex
ones. This is the case of the Plutchik model (Plutchik,
1980), which allows to represent a complex emotion as a
combination of several basic emotions (De Bonis, 1996).

Regardless of the approach used, a relevant corpus of ex-
amples is required for training and/or validation.
Many researchers have considered social media with emoji
and hashtags as a source of training data. However, Some
emotions, such as fear and disgust, are underrepresented in
those media, and others such as anticipation are absent.

This research proposes the following contributions:

1. Construction of a novel annotated dataset for emotion-
related work, created by mixing several existing cor-
pora, that addresses the previous limitations. This an-
notated corpus is then used in a system designed to
detect complex emotions based on the Plutchik model.

2. Introduction of a formal method for reading and inter-
preting complex emotions based on basic emotion vec-
tors. This vector is reduced in a 4-dimensional space.

3. Introduction of a rule for reverse emotions in the
model’s architecture, stating that an emotion cannot
be present at the same time as its opposite.

The structure of the present paper is described as follows:
Section 2. introduces the Plutchik model in the context of

this study, Section 3. surveys the state of the art on the
analysis and detection of emotions, Section 4. describes
our approach to the recognition of complex emotions with
a deep neural network, Sections 5. and 6. describe the
experiments that help evaluate our model and compare its
performance to other models, along with an error analysis
and a discussion. Finally, Section 7. concludes this work
and offers perspectives for future research.

2. Overview of the Plutchik Theory
Plutchik (Plutchik, 2003) proposed a model based on a dic-
tionary of emotions similar to the color dictionary. Indeed,
since there are secondary colors derived from primary
colors, there would be secondary emotions derived from
primary emotions, and each combination of certain pri-
mary emotions can generate secondary emotions (Plutchik,
1980).
According to Plutchik (Plutchik, 1980), there are four pairs
of opposite emotions: (Joy, Sadness), (Trust, Disgust),
(Fear, Anger), (Surprise, Anticipation). The eight dimen-
sions of these fundamental emotions are adjacent and ar-
ranged like a cone, with the terms that designate the maxi-
mum intensity of each emotion at the top.
In relation to complex emotions that are added to the pri-
mary ones, first we can find the emotions that are a result
of the combination of two adjacent emotions. These are
the primary dyads (Plutchik, 2003). Moreover, there are
emotions that are the result of a combination of two adja-
cent primary emotions, but separated by an emotion. These
are the secondary dyads. Finally, the emotions that are the
result of a combination of two adjacent primary emotions,
but separated by two emotions, these are the tertiary dyads
(Plutchik, 1980). Table 1 represents all possible combina-
tions of the primary dyads, the secondary dyads, as well as
the tertiary dyads, with the generated emotions according
to the Plutchik model.
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Primary Dyads Results Secondary Dyads Results Tertiary Dyads Results
Joy + Trust Love Joy + Fear Guilt Surprise + Joy Delight
Trust + Fear Submission Surprise + Trust Curiosity Sadness + Trust Faintness
Surprise + Fear Alarm Sadness + Fear Despair Disgust + Fear Shame
Surprise + Sadness Disappointment Surprise + Disgust Horror Surprise + Anger Outrage
Sadness + Disgust Remorse Sadness + Anger Envy Sadness + Anticipation Pessimism
Disgust + Anger Contempt Disgust + Anticipation Cynicism Disgust + Joy Morbidity
Anticipation + Anger Aggressiveness Anger + Joy Pride Anger + Trust Domination
Anticipation + Joy Optimism Anticipation + Trust Fatalism Anticipation + Fear Anxiety

Table 1: Combinations of Plutchik’s emotions (Plutchik, 2003).

3. Related Work
Because of the absence of annotated data, manually or oth-
erwise, many NLP tasks related to sentiment analysis and
emotion mining use co-occurring emotional expressions for
remote supervision of social media, to allow models to
learn directly useful textual representations before mod-
elling these tasks (Mohammad et al., 2013; Nida et al.,
2019).

3.1. Previous works on emotion recognition
Some works use binarized emojis as noisy labels (Read,
2005; Nakov et al., 2016; Yang et al., 2016; Nikhil and Sri-
vastava, 2018), but emojis can be ambiguous as they can
serve both as comments or to set emotional state of a text.
This ambiguity was addresses by Kunneman et al. (2014)
with emotional hashtags such as #nice and #lame. Never-
theless, DeepMoji has succeeded in showing that emoticons
can be used to accurately categorize the emotional content
of texts in many cases (Felbo et al., 2017). But DeepMoji
requires more than one billion pieces of data for training (1
246 million of tweets), and it has two limitations: a) The
analyzed text must contain emoticons; b) the emojis do not
always reflect the emotional state behind the writing of the
text, since they can also be used to complete the writing
text.Other works use emotion theories such as Ekman’s six
basic emotions and Plutchik’s eight basic emotions (Mo-
hammad et al., 2013; Suttles and Ide, 2013; Felbo et al.,
2017). The categorization is also done manually, and it re-
quires requires an understanding of the emotional content
of each expression, which is difficult and time-consuming
for sophisticated combinations of emotional content.
The work of Suttles and Ide (2013) uses a binary classi-
fier that indicates the existence of an emotion according to
the representation of Plutchik. However, this method suf-
fers from ambiguity when the emotion is presented with its
opposite, for example the binary classification in a multi-
label context can indicate joy and sadness at the same time,
an impossible representation by Plutchik’s theory.
The authors Felbo et al. (2017) used transfer learning (Ben-
gio, 2012), which does not require access to the original
dataset, but only to the model of an already trained deep
learning classifier. This allowed them to classify sarcasm
(Gal and Ghahramani, 2016) and the 7 emotions of the
PsychExp dataset (Wallbott and Scherer, 1986). Others
works using transfer learning (Barbieri et al., 2018; Gee
and Wang, 2018; Park et al., 2018) demonstrated a great
performance in detecting emojis in shared tasks such as Se-
mEval1.

1(International Workshop on Semantic Evaluation)

The authors Barbieri et al. (2017) studied the relation-
ship between words and emoticons. They also proposed
an approach to predict the most likely emoji associated
with a tweet. This proposed approach was based on a Bi-
directional Long Short-Term Memory (BiLSTM) architec-
ture (BiLSTM).
Zhong and Miao (2019) used a model that extends the
Recurrent Convolutional Neural Network (RCNN) using
finely-tuned external word representations and DeepMoji
phrase representations on the emotion detection task in
SemEval-2019.
Other work (Tang et al., 2014) proposed a method to
learn to incorporate specific words in Word Embeddings
and showed an improvement in the performance especially
when combining other sets of existing features.
In our knowledge, none of the previous works considered
the case of texts with conflicting emotions, hence the need
for such a model.

3.2. Datasets Overview
In this section, we present the existing emotional English
datasets in chronological order.
The dataset ISEAR, published by (Scherer and Wallbott,
1994) uses the responses of people from different cultures
to questionnaires in social media. The final dataset con-
tains about 3,000 reports, for 7,665 sentences labeled with
unique emotions. The set uses the labels “joy”, “fear”,
“anger”, “sadness”, “disgust”, “shame” and “guilt”.
The WordNet-Affect Lexicon (Valitutti, 2004) is a collec-
tion of emotion related words (nouns, verbs, adjectives,
and adverbs), classified as “Positive”, “Negative”, “Neu-
tral”, or “Ambiguous”, and categorized into 28 subcate-
gories (“Joy”, “Love”, “Fear”, etc.).
The dataset Tales, published by Alm et al. (2005; Bostan
and Klinger (2018) is based on literature and consists of
15,302 sentences, with its annotators only agreeing on
1,280 sentences. The goal of this resource is to help build
emotion classifiers for literature. The annotation scheme
includes Ekman’s six basic emotions. Labels ’angry’ and
’disgust’ are merged.
The dataset AffectiveText, published by Strapparava and
Mihalcea (2007; Bostan and Klinger (2018), is built from
news headlines. The main objective of this resource is the
classification of emotions and valence in news headlines
using the basic emotions of Ekman, supplemented by enu-
merate valence between 0 to 100.
The dataset Blogs, published by Aman and Szpakowicz
(2007), includes 5,205 sentences. Each instance annotated
with one label. The used annotation scheme corresponds to
Ekman’s six fundamental emotions.
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The dataset EmoTxt , published by Ortu et al. (2015), in-
cludes 4000 comments posted by software developers. This
corpus contains sentences manually labelled with the emo-
tions "Love", "Joy”, "Surprise", "Anger", "Sadness" and
"Fear".
The dataset Electoral-Tweets, published by Mohammad and
Kiritchenko (2015) for the field of elections, contains more
than 100,000 responses to two detailed online question-
naires (questions focused on the emotions, purpose, and
style of the electoral tweets). These tweets are annotated
via Crowdsourcing and the labels for emotions are non-
standard, examples: polite,impolite . The tweets are an-
notated with emotional words (Bostan and Klinger, 2018).
The dataset Emotion-Stimulus, published by Ghazi et al.
(2015), contains 820 sentences that are annotated with
both emotions and their causes, and 1,549 sentences that
are uniquely marked with emotions. The annotators used
FrameNet (Fillmore et al., 2003) to annotate this dataset
using the Ekman’s theory alimented with the Shame label.
The dataset fb-valence-eveal, published by Preoţiuc-Pietro
et al. (2016), is a data set of 2,895 Social Media posts
rated by two psychologically-trained annotators on two sep-
arate ordinal nine-point scales. These scales represent va-
lence (or sentiment) and arousal (or intensity), which de-
fines each post’s position on the circumplex model of affect,
a well-established system for describing emotional states.
The dataset Grounded-Emotions, published by Bostan and
Klinger (2018), is built on tweets and contains 2,557 in-
stances published by 1,369 users. The labels is "happy"
and "sad". The tweets are annotated by the authors.
The dataset TEC, published by Mohammad et al.
(2013)(Bostan and Klinger, 2018), includes 21,051 tweets.
The main objective of this resource is to use emotion word
hashtags as a source of annotation for emotions. The an-
notation scheme corresponds to Ekman’s basic emotion
model. They collected tweets with hashtags corresponding
to Ekman’s six basics emotions: anger, disgust, fear, happy,
sadness, and surprise.
The dataset DailyDialogs, published by Li et al. (2017), is
based on conversations and includes 13,118 sentences. The
annotation used is from Ekman, with a label of "no emo-
tion". A single label by utterance via an expert annotation.
This dataset contains annotations about the user’s intent and
the topic of the dialog.
The dataset EmoBank, published by Buechel and Hahn
(2017), is based on several genres and domains. It consists
of 10,548 sentences, each one annotated manually accord-
ing to the emotion expressed by the author and the readers.
The dataset EmoInt, published by Mohammad and Bravo-
Marquez (2017) (Bostan and Klinger, 2018), consists of
7,097 tweets. It associates each text with different intensi-
ties of emotion. The tweets are annotated via crowdsourc-
ing with intensities of anger, joy, sadness, and fear.
As the previous list shows, there exist many emotional data
set to work with. However, they all have the following limi-
tations with regards to Plutchik’s theory : 1) The labels are
not based on the fundamental emotions of Plutchik’s the-
ory; 2) the size of the data may be too small to train an
efficient emotion detection model.
Plutchik’s theory offers many advantages for the detection

of complex emotions. 24 complex emotions can be mod-
eled with just 8 basic emotions; while, the model proposed
by Ekman offers 16 complex emotions, and needs a larger
data set for its implementation(Ekman, 2004). Our motiva-
tion in the present research is to use the Plutchik’s theory
for the detection of basic and complex emotions. For this
purpose, a new dataset was constructed and annotated with
the complex emotions.

4. The Proposed Approach
Our ultimate goal is to create an emotion classifier that
is capable of detecting complex emotions based on the
Plutchik model, and that introduces an implicite rule to han-
dle conflicting emotion representations. This rule forces
the classifier to detect either an emotion like joy or sadness
but not both at the same time.
The overall process is summarized in Figure 1 and consists
in three phases :

(1) collection of annotated data to construct a training an-
notated corpus from several types of corpora in order
to cover the eight basic labels of the Plutchik theory;

(2) detection of basic emotions and representation with
a four-dimensional emotion vector. The proposed
strategy for the emotion detection relies on multi-
label classification using transfer learning (Felbo et
al., 2017);

(3) learning and interpretation of complex emotions using
multi-label classification.

4.1. Corpus Construction
Our training corpus combines several English data sets
from different sources. Table 2 represents the details of the
source and types of labels considered. As the table shows,
all eight basic emotions according to Plutchik’s theory are
considered, plus three complex emotions that are generally
associated with our model. For instance, we break down
complex emotions Love into the basic emotions Trust and
Joy in the whole corpus. By repeated the operation for all
complex emotions, the initial corpus becomes a multi-label
one. Table 2 shows the different corpora, as components
of the data set used in this research to detect the basic and
complex emotions. These corpora are described in the fol-
lowing paragraphs.

Dataset Labels
EmoTxt 1 joy, anger, sadness, love, surprise,

fear
PsychExp 2 joy, fear, anger, sadness, disgust,

shame, guilt
DailyDialog 3 no emotion, anger, disgust, fear,

happiness, sadness, surprise
NRC_Emotion_Lexicon_ v0.92 4

emotion_proposition_store 5
joy, fear, disgust, anger, sadness,
surprise, trust and anticipation

WordNet-Affect (Valitutti, 2004) joy, fear, disgust, anger, sadness,
surprise, trust and anticipation

Table 2: Sources of each component of the data set
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Figure 1: General presentation of the proposed method

Dailydialog (Li et al., 2017) is annotated with the Big Six
emotions of Ekman, and it is a multi-turn corpus built for
human dialogue. We extracted sentences containing be-
tween 5 and 12 words, and deleted the sentences that do
not contain emotions in the big Six of Ekman, since they
can have emotions that can be represented by the Plutchik
model but are absent in Ekman model.
Wordnet samples will help us generate the missing labels
in other corpora such as Surprise and Anticipation. In ad-
dition, we enriched our corpus with the sources of WordNet
and WordNet-Affect (Valitutti, 2004) as follows:
First, we have extracted all the effective examples of Word-
Net that have a word-annotated relationship in WordNet-
Affect. Second, we manually annotated the examples using
Crowdsourcing, three users chose emotions that correspond
to the 8 basic plutchik emotions.
Then,we choose only the examples to the three evaluators
agree on the same emotions.

Word Examples label WordNet-Affect
love She loves her boss and works hard for him Joy + Trust
love he has a very complicated love life Joy + Trust
sad feeling sad because his dog had died Sadness
surprise The news really surprised me Surprise

Table 3: Examples of annotated WordNet data where the
three annotators agreed

Table 3 presents some examples where all of the annotators
agreed on the same label.
Table 4 presents the complex emotions that exist in our cor-
pus and that we replaced by the corresponding basic emo-
tions in the Plutchik model. Love represents the Primary
Dyads, Guilt represents Secondary Dyads, and Shame rep-
resents Tertiary Dyads. Moreover, we augmented our cor-
pus with words associated with the emotions extracted from

1https://github.com/collab-uniba/EMTk
2https://github.com/bfelbo/DeepMoji/tree/master/data
3http://yanran.li/dailydialog
4Lexicon of the NRC Word Emotion Association.
5https://github.com/sebastianruder/emotion_proposition_store

Wordnet-Affect. Thus, all examples associated with these
words have the same affect. Hence, the emotions associated
with these words reflect the emotions already present in the
examples used in Wordnet.

Complex emotion Basic emotion Composition type
Love Joy + Trust Primary Dyads
Guilt Fear + Joy Secondary Dyads
Shame Fear + Disgust Tertiary Dyads

Table 4: Decomposition of complex emotions

The corpus is divided into four sub corpora, each one mak-
ing use of three labels for emotion representation, its oppo-
site and the absence of the two (e.g., Joy/Sadness/No, An-
ticipation/Surprise/No, Disgust/Trust/No, Anger/Fear/No).
then, The instances of each sub corpus are mixed randomly.
We divided each sub-corpus into three parts related to: (1)
training 70%, (2) development 15% and (3) testing 15%.
We used the same validation process as the one used for
DeepMoji (Felbo et al., 2017), using the provided code 2.
The DeepMoji model uses an embedding layer of 256 di-
mensions to represent each word in a vector space model.
A hyperbolic tangent activation function is used to enforce
a constraint of each embedding dimension being within [-
1, 1]. To capture the context of each word, DeepMoji uses
two bidirectional LSTM layers with 1024 hidden units in
each (512 in each direction). Finally, the attention mecha-
nism lets the model decide the importance of each word for
the prediction task by the projection on 64 outputs of emo-
jis. Our model uses the same architecture with changing the
output layer to 3 outputs.
The test phase is done after the generation of the final
model. Table 5 represents the statistics by the average num-
ber of words per sentence for each label that exist in the cor-
pus. Figure 2 illustrates the distribution of the eight emo-
tions in our corpus by percent.

2https://github.com/huggingface/torchMoji
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Emotion sub
data

Train Eval Test Total Average
Sentence
Length

Anticipation 1572 336 336 2246 6.1
Joy 5640 1208 1208 8058 6.7
Trust 1653 354 354 1653 7.1
Fear 5859 1255 1255 8370 7.3
Surprise 1317 282 282 1881 6.2
Sadness 3357 719 719 4795 7.4
Disgust 4067 871 871 5810 7.2
Anger 2231 478 478 3188 6.9

Table 5: Statistics by number of labels in the corpus
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Figure 2: Distribution of emotions in the corpus

4.2. Using the corpus for emotions detection
In the case of the presence of the emotion, we mark 1 and in
the case of the presence of the opposite emotion, we mark
-1. If the emotion with its inverse are absent we mark 0.
Our main objective is to avoid having an emotion with its
opposite at the same time, either 1 or -1. In addition, if the
model detects 0, then we have no emotion.
With the proposed corpus, the emotion recognition prob-
lem can be seen as a problem of learning multi-labels where
each of the four dimensions is represented by a label with
three values (1,0,-1), each label detected by a Sequence to
Vector model (Seq2vec). The seq2vec model used is Deep-
Moji, as shown in figure 3.
To detect each label, we use transfer learning of a DeepMoji
model shown in the figure 3.
DeepMoji model is learnt on 50,000 words of inputs and 65
outputs that correspond to emojis. The model contains two
BiLSTM layers that can learn the sequential structure of the
sentence. These two layers were kept during the transfer
learning. On the other hand, the layers of the attention and
the output are replaced by a layer of three outputs.
Our modelling of emotional states is based on representing
of emotional states in the form of vectors. For each emo-
tional state, there is a vector in a 4-dimensional space, each
dimension representing a pair of contradictory basic emo-
tions (eg. Joy and Sadness and No).
We propose to use the same basic emotions of the Plutchik
model to define the dimensions of our base. Therefore, the
number of dimensions of our basic emotion is four pairs
of emotions and is formally defined by the base B = ((Joy,
Sadness), (Trust, Disgust), (Fear, Anger), (Surprise, Antic-

Figure 3: The architecture used to transfer learning based
on the DeepMoji model for each classifier multiclass.

ipation)). Thus, any emotion can be realized using a com-
bination of the other fundamental emotions that define our
base B. Our model represents the following axes, as defined
in Table 6:

Positive axis(+) Negative axis(-)
Joy Sadness
Trust Disgust
Fear Anger
Surprise Anticipation

Table 6: Combinations of two by two conflicting emotions
in 4 dimensions

Each basic positive emotion is in the interval [0,1] and ev-
ery basic negative emotion is in the interval [-1,0].
This allows on the one hand to represent an infinite num-
ber of complex emotions, because our model is a continu-
ous one, and on the other hand, to offer high-performance
mathematical tools for the analysis and processing of these
emotions.

4.3. Learning complex emotions
Table 8 shows a representation of primary complex emo-
tions using the Plutchik model, with the combinations of 2
adjacent emotions separated by no emotion constituting the
primary dyads.
Table 7 shows a representation in 8 dimensions equivalent
to Table 8. The latter represents the emotion in 4 dimen-
sions and prevents the representation of the emotion with
his inverse that will serve as a transition matrix W to detect
the main complex emotions.
The numerical contents of Table 8 are used as a transition
matrix W to detect complex emotions for primary dyads.
To this end, we converted each type of dyad in table 1 into
a W transition matrix.
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Complex emotions Pri-
mary Dyad

Anticipation Joy Trust Fear Surprise Sadness Disgust Anger

Optimism 1 1 0 0 0 0 0 0
Love 0 1 1 0 0 0 0 0
Submission 0 0 1 1 0 0 0 0
Apprehension 0 0 0 1 1 0 0 0
Disappointment 0 0 0 0 1 1 0 0
Remorse 0 0 0 0 0 1 1 0
Contempt 0 0 0 0 0 0 1 1
Aggressiveness 1 0 0 0 0 0 0 1

Table 7: Combinations of 2 adjacent emotions that make
the primary dyads in 8 dimensions.

Complex emotions
Primary Dyad Anticipation-Surprise Joy-Sadness Trust-Disgust Fear-Anger
Optimism 1 1 0 0
Love 0 1 1 0
Submission 0 0 1 1
Apprehension -1 0 0 1
Disappointment -1 -1 0 0
Remord 0 -1 -1 0
Contempt 0 0 -1 -1
Aggressiveness 1 0 0 -1

Table 8: Combinations of 2 adjacent emotions that make
the primary dyads in 4 dimensions.

Equations 1 and 2 show how one can detect the presence
of a complex emotion by multiplying matrix W by the vec-
tor V that represents the emotion coordinates in our vector
space (equation 1).

S
Primary Dyad

= W
Primary Dyad

V =




1 1 0 0
0 1 1 0
0 0 1 1
−1 0 0 1
−1 −1 0 0
0 −1 −1 0
0 0 −1 −1
1 0 0 −1







a
b
c
d


 (1)

The result for the complex emotion obtained should be the
result that maximizes a component of the vectors. A prob-
lem that can be faced is that the components can exceed the
value 1. To fix this problem, we propose to seek the value
greater than 1. Does it mean to convey that no complex
emotion is detected when Si < 1.
Equation 2 presents our objective function for reading the
complex emotion. The complex emotions generated by the
index i correspond to the emotions in the transition matrix
W given in table 8.





ˆEmotion complex = argmax
i

(Si)

and
Si ≥ 1

(2)

i∈ (Optimism =0, Love =1, Submission =2, Alarm=3,
Disappointment=4,Contemptment=5, Remord=6, Aggressiveness=7)

5. Experiments and Results
We conducted two sets of experiments. The first ex-
periments considered the emotion space in four dimen-
sions, each one having three labels that reflect the pres-
ence of an emotion and its inverse, or the absence of
both. As a result, the classifiers consider the vector of
four labels: Joy/Sadness/No , Trust/Disgust/No, Anticipa-
tion/Surprise/No, Anger/Fear/No.
The second experiments turn the problem into binary clas-
sification, we modeled as the baseline approach. This

method, called the binary relevance method, models the
emotion space in 8 dimensions, each one having two classes
that reflect the presence of emotion and its absence. Thus,
The classifiers consider the vector of 8 labels: Joy/No
,Sadness/No, Trust/No, Disgust/No, Anticipation/No, Sur-
prise/No, Anger/No, Fear/No.
Both sets of experiments are based on transfer learning and
can be represented by table 9.

Model Axis Emotions Recall Precision F1 Macro
F1

Exact
Match

Our Model joy/sadness/No 0.56 0.44 0.49 0.54 0.43
in 4 dimensions anger/fear/No 0.61 0.56 0.58
space surprise/anticip/No 0.55 0.51 0.52

trust/disgust/No 0.63 0.59 0.57
Our Model joy/No 0.48 0.41 0.44 0.46 0.23
in 8 dimensions sadness/No 0.46 0.39 0.42
space anger/No 0.51 0.47 0.48

fear/No 0.52 0.44 0.47
surprise/No 0.46 0.42 0.43
anticipation/No 0.45 0.39 0.41
trust/No 0.54 0.49 0.51
disgust/No 0.57 0.48 0.52

Table 9: Results based on precision, recall, F-score for dif-
ferent classifications after using transfer learning.

Figure 4: Visualization of the attention for each Multi Class
classifier with example ’I like it and now we’ll just succeed’.

Table 9 provides the obtained Precision, Recall, F1 and
Macro-F1 values of the model trained with transfer
learning, comparing the use four-dimensional space and
eight-dimensional space representations.

Figure 4 illustrates four attentions, each one detected by one
classifier. They represent the score of participation of each
word in the example above, with the model detecting the as-
sociated class. The yellow color represents a high probabil-
ity of contribution, whereas the blue color represents a low
probability of contribution. The classifiers Joy/Sadness and
anticipation/surprise identified the labels Joy, Trust and
Anticipation. The classifiers represent the absence of other
emotions with the label Nan. The complex emotion de-
tected in this example is Optimism, Fatalism, and Love, as
Joy+Anticipation=Optimism,Trust+Anticipation=Fatalism
and Joy+Trust=Love.
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5.1. Comparison with other models
As our model appears to be the first to apply the Plutchik
model to a text with conflicting emotions, a precise com-
parison with other works is not possible. However, as there
exit methods that attempt to detect complex emotions by di-
rect means directly such as PsychExp and EmoTxt, a qual-
itative comparison may give insight into the strengths and
weaknesses of the different methods.

Model Complex Emotion Average-F1 Exact Match

Our Model
Love (Joy + Trust) 0.58 0.52
Shame (Fear + Dis-
gust)

0.54 0.53

Guilt (Fear + Joy) 0.54 0.51
Model Complex Emotion F1 Accuracy

DeepMoji( PsychExp) Shame 0.56 0.59
Guilt 0.54 0.60

DeepMoji Love 0.57 0.63
(PsychExp + EmoTxt) Shame 0.53 0.58

Guilt 0.51 0.58

Table 10: Results based on Exact Match, F-score for Love,
Guilt and, Shame classification after using Transfer Learn-
ing.

Table 10 presents a comparison with the state of the art,
which uses public data sets that contain some complex emo-
tions. The EmoTxt dataset contains a test with 200 instances
of the labels ’Love’ and the PsychExp dataset contains a test
with 264 and 427 instances of labels Guilt and Shame, re-
spectively.
For the first model, we used the DeepMoji model (Felbo
et al., 2017) with the PsychExp data set, and for the sec-
ond, we added the Love label to the model after training it
with PsychExp and EmoTxt dataset. The Love label repre-
sents the Joy + Trust detection found in the Primary Dyads.
The Shame label represents the ’Fear + Disgust’ detection
found in the Tertiary Dyads. The Guilt label represents the
’Fear + Joy’ detection that is in the Secondary Dyads.

6. Discussion
The analysis of our experiments, we notice a correlation be-
tween the different loss estimates illustrated in figure 5. An
inverse relationship can be detected between the loss and
the results shown in table 9: the more we reduce the loss
the more we increase the F1 score. In addition, we can no-
tice that the duration of learning depends on the size of the
data. Moreover, the convergence towards the local minima
collapses quickly, because the DeepMoji parameters used
are using Transfer Learning.
The obtained results also reveal a slight difference between
the different experiments in table 10. Indeed, the average
F1 score of our model for label Guilt (Fear + Joy) is greater
then the F1 score of the experiment done by the DeepMoji
model (PsychExp), but the DeepMoji model accuracy ex-
ceeds the Exact match (subset accuracy) of our model by
0.07, because the exact match means that both labels detect
it at the same time.
Our model has a better performance in terms of average F1
score for the label Love (Trust + Joy) when compared to the
DeepMoji model (PsychExp + EmoTxt) which contains the
love label. However, the accuracy of DeepMoji (PsychExp
+ EmoTxt) is better than the Exact match of our model.

Table 9 also reveals obvious difference between models.
The F1-score in the experiment Joy/Sadness improves to
5% (from 0.44 to 0.49) due to the incorporation of the re-
verse emotions rule, which imposes that the presence of an
emotion excludes the existence of its inverse.
Figures 6b and 6a are attention heat maps for two sentences.
The first one is an affirmative sentence, ’I am happy’, and
it is classified by the label Joy; the second one, ’ textit I am
not happy’, is its negative sentence and is classified by the
label Sadness.
The classifiers detect the labels (Sadness, Joy) through the
yellow boxes. The words that caused the detection of sad-
ness are ’not happy’ and the word that caused the detection
of joy is ’happy’. However, the word ’I’ participates less
in the generation of emotion, this can be explained by the
fact that the words ’happy’ and ’not happy’ are subjective
words. The word ’am’ has a weak intensity represented by
the blue box. It does not contribute to the generation of
the emotion, because it is objective and can be replaced by
another entity without affecting the subjectivity of the sen-
tence.
The comparison between the attentions of the figures 6b
and 6a illustrates the independence of the emotion from the
vocabulary. The replacement of the sentence ’I am happy’
by ’I am not happy’ shows that the system learnt an inter-
esting rule as follows: the reversal of sentences by nega-
tion involves the reversal of the Joy emotion by the Sadness
emotion.
The labels Love, Guilt, and Shame in Table 10 represent the
detection of Primary Dyads, Secondary Dyads, and Tertiary
Dyads, which confirms that our hypothesis worked well on
these three test labels with a Macro-F1 exceeding 50%.

7. Conclusions and perspectives
This paper presents a novel approach for the detection of
complex emotions, according to the Plutchik model and us-
ing multi-label classifiers. These classifiers are divided into
4 multiclass classifiers. Our main contributions are listed as
follows:

(1) A new corpus labeled by the 8 basic emotions of
Plutchik.

(2) Representation of complex emotions according to the
Plutchik theory, in a vector space with four axes.

(3) Learning new rules that the detected emotions do not
show up using their inverse emotions in the same axis.

To our knowledge, there exist no previous efforts to au-
tomatically detect and recognize complex emotions which
was introduced by Plutchik’s theory, in a textual data using
four dimensions and deep neural networks.
Our proposed research is a crucial step towards building a
conversational agent endowed with emotional intelligence.
We are also looking forward to transferring the idea of com-
plex emotions to task-oriented dialogs and multi-turn dialog
generation problems.
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Figure 5: Visualization of loss reduction for each classifier Multi Class in evaluation process.

(a) Visualization of the attention for example ’I am happy’ (b) Visualization of the attention for example ’I am not happy’.

Figure 6: Visualization of the attention mechanism.
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Sensorimotor norms for 506 Russian nouns 

Alex Miklashevsky 
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Embodied cognitive science suggested a number of variables describing our sensorimotor experience 

associated with different concepts: modality experience rating (i.e., relationship between words and 

images of a particular perceptive modality – visual, auditory, haptic etc., see Lynott and Connell, 2009; 

Lynott and Connell, 2013; Lynott et al., 2019), manipulability (the necessity for an object to interact 

with human hands in order to perform its function), vertical spatial localization. According to the 

embodied cognition theory, claiming that our bodily experiences underlie abstract thought (see Kiefer 

and Pulvermüller, 2012; Meteyard et al., 2012; Fischer and Zwaan, 2008, for reviews; also see Barsalou, 

2008), these semantic variables capture our mental representations and thus should influence word 

learning, processing and production. However, it is not clear how these new variables are related to such 

traditional variables as imageability, age of acquisition (AoA) and word frequency, known to strongly 

influence word processing. In the presented database, normative data on the modality (visual, auditory, 

haptic, olfactory, and gustatory) ratings, vertical spatial localization of the object, manipulability, 

imageability, age of acquisition, and subjective frequency for 506 Russian nouns are collected. Strongest 

correlations were observed between olfactory and gustatory modalities (.81), visual modality and 

imageability (.78), haptic modality and manipulability (.7). Other modalities also significantly correlate 

with imageability: olfactory (.35), gustatory (.24), and haptic (.67). Factor analysis divided variables into 

four groups where visual and haptic modality ratings were combined with imageability, manipulability 

and AoA (the first factor); word length, frequency and AoA formed the second factor; olfactory modality 

was united with gustatory (the third factor); spatial localization only is included in the fourth factor. 

Importantly, the database includes semantic categories indicated for each word (e.g., food, transport, 

mental or emotional concepts), thus making comparisons between categories possible. The database is 

available online together with a publication describing the method of data collection and data parameters 

(Miklashevsky, 2018). 
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