
Proceedings of 1st Workshop on Language Technologies for Historical and Ancient Languages, pages 10–16
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

10

Automatic Construction of Aramaic-Hebrew Translation Lexicon

Chaya Liebeskind, Shmuel Liebeskind
Computer Science Department, Jerusalem College of Technology, Lev Academic Center, Israel

liebchaya@gmail.com, israellieb@gmail.com

Abstract
Aramaic is an ancient Semitic language with a 3,000 year history. However, since the number of Aramaic speakers in the world has
declined, Aramaic is in danger of extinction. In this paper, we suggest a methodology for automatic construction of Aramaic-Hebrew
translation Lexicon. First, we generate an initial translation lexicon by a state-of-the-art word alignment translation model. Then,
we filter the initial lexicon using string similarity measures of three types: similarity between terms in the target language, similarity
between a source and a target term, and similarity between terms in the source language. In our experiments, we use a parallel corpora
of Biblical Aramaic-Hebrew sentence pairs and evaluate various string similarity measures for each type of similarity. We illustrate
the empirical benefit of our methodology and its effect on precision and F1. In particular, we demonstrate that our filtering method
significantly exceeds a filtering approach based on the probability scores given by a state-of-the-art word alignment translation model.

Keywords: translation, lexicon, Aramaic, Hebrew, word alignment, string similarity

1. Introduction
A translation lexicon is a set of word pairs, where each
pair contains one word from the source language and its
translation equivalent (has the same meaning as, or can be
used in a similar context to) from the target. Translation
lexicons are an essential element of any statistical machine
translation (MT) scheme. Previous work on MT has shown
that, given sufficient parallel training data, highly accurate
word translations can be learned automatically (Koehn et
al., 2003; Chiang, 2007).
According to UNESCO, some 6,000-7,000 languages are
spoken worldwide today. Approximately 97% are spoken
by only 4% of the world population, while just 3% of the
world speaks 96% of all the remaining languages. Most
of those languages, mainly spoken by indigenous people,
will alarmingly disappear. Thus, the worldwide preserva-
tion, revitalization and promotion of indigenous languages
is urgent.
Aramaic is a member of the Afro-Asian language family’s
Semitic branch. Aramaic is an ancient language (closely
related to both Hebrew and Arabic) with a 3,000 year his-
tory. Experts believe that Aramaic was main language from
539 BC to 70 AD in the Middle East and probably spoken
by Jesus. However, as the number of speakers worldwide is
declining, Aramaic is threatened by extinction.
Aramaic is the language of the Biblical books of Daniel and
Ezra, and is the primary language of the Talmud (a key Jew-
ish text) and the Zohar (a foundational work in the literature
of Jewish mystical thought known as Kabbalah). To enable
future scholars to understand and learn from these ancient
texts in Aramaic, lexical resources, such as a dictionary,
must be developed.
In this study, we present an algorithmic scheme for au-
tomatic construction of Hebrew-Aramaic translation lexi-
con. In particular, we propose and investigate a filtering
process over an initial translation lexicon, generated by a
state-of-the-art word alignment translation model. Our fil-
tering method computes three types of string similarities,
similarity between terms in the target language, similarity
between a source and a target term, and similarity between

terms in the source language. We examine five string simi-
larity measures for the three types of similarity.
We demonstrate the empirical advantage of our scheme
over a parallel Aramaic-Hebrew Biblical corpora and eval-
uate its impact on accuracy and F1. We show that our filter-
ing method significantly outperforms a filtering approach
based on the probability scores provided by the word align-
ment translation model. The remainder of this paper is or-
ganized as follows: we start with a description of word-
based translation models that we utilize in our scheme and
a brief summary on Aramaic natural language process-
ing (NLP) (Section 2.). Then, we describe our Aramaic-
Hebrew parallel corpora in Section 3.. Our main contri-
bution of the algorithmic scheme is detailed in Section 4.,
followed by an evaluation in Section 5. and conclusions in
Section 6..

2. Background
This section describes word-based translation models that
we used in our experiments (Section 2.1.), followed by a
brief introduction to the applications of NLP on our extinct
language, Medium Aramaic, or ”post-classical” Aramaic
(Section 2.2.). We note that we also applied state-of-the-
art neural MT algorithms. However, they did not perform
well on our corpus, probably due to the limited amount of
data.

2.1. Word-based Translation Models
Word alignment corresponds to word-based translation
models (Brown et al., 1993), where the units of correspon-
dence between sentences are individual words. Formally,
we say that the objective of the word alignment task is to
discover the word-to-word correspondences in a sentence
pair (F J1 = f1...fJ , E

I
1 = e1...eI) in which the source and

target sentences contain I and J words, respectively.
An alignment A of the two correspondences is defined as
(Och and Ney, 2003):

A ⊆ {(j, i) : j = 1, ..., J ; i = 0, ..., I} (1)

in case that i = 0 in some (j, i) ∈ A, it represents that the
source word j aligns to an “empty” target word e0.

11

In statistical word alignment models, the probability of a
source sentence given target sentence is written as:

P (fJ1 |ei1) =
∑
aJ1

P (fJ1 , a
J
1 |ei1) (2)

in which aJ1 denotes the alignment on the sentence pair.
Several different parametric forms of P (fJ1 , a

J
1 |ei1) =

pθ(f
J
1 , a

J
1 |ei1) have been proposed, and the parameters θ

can be estimated using Maximum Likelihood Estimation
(MLE) on a training corpus (Och and Ney, 2003).

θ̂ = argmax
θ

S∏
s=1

∑
a

pθ(fs, a|es) (3)

The best alignment of the sentence pair, is called Viterbi
alignment.

âj1 = argmax
aJ1

pθ(f
J
1 , a

J
1 |ei1) (4)

The IBM Models (Brown et al., 1993) are a sequence of
word alignment models with increasing complexity, start-
ing with lexical translation probabilities, adding models
for reordering and word duplication. The IBM Models,
along with the Hidden Markov Model (HMM) (Vogel et
al., 1996), serve as the starting point for most current state-
of-the-art statistical machine translation systems.
One of the serious drawbacks of the IBM models is that
they create a one-to-many mapping. Their alignment func-
tion may return the same value for different input, but can-
not return multiple values for one input (many-to-one). To
resolve this and allow many-to-many mappings, various
methods for performing a symmetrization of the IBM di-
rected statistical alignment models are applied. Most of
the symmetrization methods apply a heuristic postprocess-
ing step that combines the alignments in both translation
directions (source to target, target to source). If we inter-
sect the two alignments, we get a high-precision alignment
of high-confidence alignment points. If we take the union
of the two alignments, we get a high-recall alignment with
additional alignment points. In SMT (Och et al., 1999), a
higher recall is more important (Och and Ney, 2000), so an
alignment union would probably be chosen.
Och and Ney (Och and Ney, 2003) investigated the space
between intersection and union with expansion heuristics
that start with the intersection and add additional align-
ment points. They trained an alignment model in both
translation directions and obtained two alignments aJ1 and
bI1 for each pair of sentences in the training corpus. Let
A1 = {(aj , j)|aj > 0} and A2 = {(i, bi)|bi > 0} denote
the sets of alignments in the two Viterbi alignments. They
combinedA1 andA2 into one alignment matrix A using the
following steps:

1. Determine the intersection A = A1 ∩A2.

2. Extend the alignment A iteratively by adding align-
ments (i, j) occurring only in the alignment A1 or in
the alignment A2:

(a) if neither fj nor ei has an alignment in A, or

(b) if both of the following conditions hold:

i. The alignment (i, j) has a horizontal neighbor
(i - 1, j), (i + 1, j) or a vertical neighbor (i, j -
1), (i, j + 1) that is already in A.

ii. The set A ∪ {(i, j)} does not contain align-
ments with both horizontal and vertical
neighbors.

In our experiments, we adopted this type of symmetrization
methods, which are also known as grow-diag-x heuristics.
Given this alignment method, it is quite straight-forward to
estimate a maximum likelihood translation lexicon.

2.2. Aramaic NLP
Not much research has been done on Aramaic NLP. Some
studies have used a corpus of ancient texts in mixed He-
brew and Aramaic language, the Responsa project. These
studies discussed different tasks like abbreviation disam-
biguation (HaCohen-Kerner et al., 2010; HaCohen-Kerner
et al., 2013), citations identification (HaCohen-Kerner et
al., 2011; Koppel and Schweitzer, 2014), temporal data
mining (Mughaz et al., 2017; Moghaz et al., 2019), and di-
achronic thesaurus construction (Zohar et al., 2013; Liebe-
skind et al., 2016; Liebeskind et al., 2019). Some of these
studies have provided insights into the Aramaic language.
However, since the main language of the Responsa project
is Hebrew, these studies did not directly focus on Aramaic
NLP.
Snyder and Barzilay (2008) presented a non-parametric
model that jointly induces a segmentation and morpheme
alignment from a multilingual corpus of short parallel
phrases from the Hebrew Bible and translations (Targum
Onkelos was used for the Aramaic (see Section 3.)). The
model uses Dirichlet process prior for each language and
for the cross-lingual links. Snyder and Barzilay (2008) ap-
plied their model to four languages: Arabic, Hebrew, Ara-
maic, and English. They showed that the joint model de-
creased error by up to 24% with respect to monolingual
models. When used in languages of the same family, the
model achieved better performance. However, since Snyder
and Barzilay (2008) did not have gold standard segmenta-
tion for the English and Aramaic part of the data, they re-
strict their evaluation to Hebrew and Arabic.
An exception is the recent work of Porat et al. (2018) on
identification of parallel passages in the Babylonian Tal-
mud corpus. In contrast to the Responsa project, the Tal-
mud main language is Aramaic. The method by Porat et
al. (2018) allows for changes between the parallel passages
on word level and on phrase level. On word level, they fo-
cused on the core of the words. First, the input corpus was
used to compute the frequency of the Hebrew letters. Then,
they identified for each word the two most rare letters and
represented the word by these two letters (keep the order of
two letters in the word). Since prefixes letters and matres
lectionis are the most common letters in the language, The
method by Porat et al. (2018) effectively eliminated most
of them. They assumed that since they aimed to find se-
quences of matching two-letter codes, the number of false
positives will be reduced later. On phrase level, they com-
pared both n-grams of length 4 and non-contiguous n-grams

12

(termed skip-grams). They extracted all 4-word combina-
tions for every 5-word sequence in the text, which could
omit any of the last four words. Finally, to validate a given
match, they clustered matching skip-grams by generating a
two-dimensional graph. Each skip-grams match was plot-
ted on one axis according to the base skip-gram starting
word position, and on the other axis according to the cor-
responding skip-gram starting word position. Cases where
several skip-grams match a cluster on the graph on a more
or less diagonal line were considered valid. As the method
by Porat et al. (2018) constructs its list of potential matches
in a pre-processing step generated via a single pass, it is ca-
pable of processing text of any size in O(N) time.

3. Parallel Corpus
Translation lexicon construction requires parallel data for
learning. In a sentence-level parallel corpus, for every sen-
tence in the source language there is a translated sentence
in the target language. We used two Aramaic-Hebrew cor-
pora:

1. Targum Onkelos, the Jewish Aramaic Targum, is an
authentic translated text of the Pentateuch (Five Books
of Moses), which is believed to have been written in
the early 2nd century CE. Its authorship is tradition-
ally attributed to Onkelos, a well-known convert to Ju-
daism in the Tannaic era (c. 35−120 CE). The Tal-
mud story (Megillah 3a) tells that Targum Onkelos’s
content was first transferred to Moses at Mount Sinai
by God, but later forgotten and recorded by Onke-
los. Onkelos’ Aramaic translation is a literal word-by-
word translation, with very little additional material
in the form of non-legalistic exegetical texts (usually
where the original Hebrew is an idiom, a homonym,
or a metapho). However, in cases where biblical pas-
sages are difficult, Onkelos aims at minimizing obscu-
rities and ambiguities.

2. Targum Jonathan, the official eastern Aramaic trans-
lation to the Nevi’im (Prophets), the second main di-
vision of the Hebrew Bible. Its authorship is tradi-
tionally attributed to Jonathan ben Uzziel, a pupil of
Hillel the Elder. The Talmud (Megillah 3a) states that
”from the mouths of Haggai, Zechariah, and Malachi,”
suggesting Targum Jonathan was based on traditions
derived from the last prophets. Its overall style is
like Targum Onkelos, originated in the land of Israel
and was accepted in Babylonia in the third century.
Targum Jonathan was brought to the Diaspora by the
Babylonian Academies.

4. Methodology
Translation lexicons usually contain thousands of entries,
termed here source terms. Each entry holds a list of target
translated terms, which has the same meaning as, or may
be used in a similar context to the source term.
In this paper we assume that a sentence-level parallel cor-
pus is given as input, and run an IBM method to extract a
list of candidate target translated terms (termed candidate

translated terms). Then, we focus on the process of filter-
ing the candidate list and extracting a list of target translated
terms for each source term.
Our methodology was performed on a Aramaic-Hebrew
parallel corpus, but can be generically applied in other set-
tings.

4.1. Algorithmic Scheme
We used the following algorithmic scheme for translation
lexicon construction. Our input is a sentence-level paral-
lel corpus. First, we extract an initial translation lexicon
using an IBM word alignment algorithm. Next, to filter
incorrect translations, for each term in the initial lexicon
we retrieve all its translations and cluster them using some
measure of string similarity. For example, the translation
cluster of the Aramaic word !Nגברי (men) is ,אנשי!} !Mאנשי,
{איש! We consider clusters of more than one translation as
valid and further examine clusters of length 1. We compare
the similarity between the term and its single translation. A
high similarity score indicates the correctness of the trans-
lation. For example, the Aramaic word !Nאכלתו (eat) and
its translation { !Mאכלת}. Finally, to check the validity of
the remaining clusters (e.g. מדכר! (ram)) and avoid losing
cases like synonyms, we extract similar terms to the term
that we are testing (!Nדכרי) using some measure of string
similarity and cluster the translations of all these terms (
{ !Mאיל, !Mהאילי, ,איל! !Mאילי, !Mאיל}). If the cluster of the
tested translation ((איל! is contained in one of the extracted
clusters, the translation is considered valid. The output is
a filtered translation lexicon consisting of the translations
which were judged valid by the algorithm.
The algorithm’s pseudo code is described in Algorithm 1.
String similarity measures are used (in four steps of the al-
gorithm) to calculate three types of similarities; (1) similar-
ity between terms in the target language (lines 4 and 13), (2)
similarity between a source and a target term (line 7), and
(3) similarity between terms in the source language (line
10).

4.2. String Similarity
Aramaic is a resource-poor language that lacks essential re-
sources, such as part-of-speech taggers, necessary for com-
putational linguistics. Thus, to calculate the similarity be-
tween two Aramaic words. we can not lemmatize them and
compare their lemmas, but we need to apply a string simi-
larity measure. Since Liebeskind et al. (2012) reported that
available tools for Hebrew processing perform poorly on
a diachronic corpus and our parallel corpora is of a sim-
ilar genre, we also investigate string similarity measures
for Hebrew. For word comparison in different languages
(Aramaic and Hebrew), a string similarity measure is also
required.
Table 1 lists the prior art string similarity measures consid-
ered in our work. Given two similar words with a different
orthography, our goal is to find a measure which maximizes
their similarity score or minimizes their distance score.
Although, in our corpora, the alphabet of both languages is
the Hebrew alphabet. the letter distribution differ between
the Aramaic and Hebrew. Figure 1 shows both the letters’
frequency in each of the languages. !N and א! are common

13

Algorithm 1: Methodology implementation
input : A sentence-level parallel corpus
output: A translation lexicon

1 IntialLexicon← IBM(parallel corpus);
2 foreach term t in IntialLexicon do
3 CandidateTransList←

GetCandTransList (t);
4 SimilarCandidateClusters←

GetSimCandCls(CandidateTransList);
foreach cluster c in
SimilarCandidateClusters do

5 if length(c)>1) then
6 add c to FilteredTransList

break;
7 if IsTermCandSim (t,c) then
8 add c to FilteredTransList

9 else
10 SimilarTermList←

GetSimilarTermList(t);
11 foreach term t2 in SimilarTermList do
12 CandidateTransList + =

GetCandTransList (t2)
13 SimilarCandidateClusters←

GetSimCandCls(CandidateTransList)
foreach cluster simc in
SimilarCandidateClusters do

14 if length(simc) > 1 & c ⊆ simc
then

15 add c to FilteredTransList

16 add < t,FilteredTransList > to
FilteredLexicon

Aramaic suffixes and ד! is a common Aramaic prefix. Thus,
they are more frequent in Aramaic than in Hebrew. On the
contrary, !M is a common Hebrew suffix and ה! and ש! are
common Hebrew prefixes, so they are more frequent in He-
brew.

5. Evaluation
5.1. String Similarity Evaluation
In our experiments, we investigated three types of similar-
ities (see Section 4.1.), namely, Hebrew-Hebrew (HE-HE),
Aramaic-Aramaic (AR-AR), and Aramaic-Hebrew (AR-
HB). To evaluate the performance of the various string sim-
ilarity measures presented in Section 4.2., we manually an-
notated word pairs of the three types. For each type, we
annotated word pairs that were tested by the algorithm in
the corresponding step. To avoid focusing on trivial cases
that can easily be determined by all the measures, we only
annotated pairs with at least two common letters, excluding
matres lectionis.
Table 2 compares the performance of five string similarity
measures for the three types of similarity by four commonly
used measures: precision (P), recall (R), F1, and accuracy
(Acc). For each configuration, we report the optimal thresh-
old results. The word-level (Porat et al., 2018) measure was

examined with the most two, three, and four rare letters,
obtaining the best results with two lettered items for all the
configurations.
In the sample of the annotated HE-HE pairs, there are 269
pairs, 187 positive (judged similar) and 82 negative (judged
dissimilar). In the sample of the annotated AR-AR pairs,
there are 559 pairs, 32 positive and 527 negative. In the
sample of the annotated AR-HE pairs, there are 429 pairs,
131 positive and 298 negative. The gap between the number
of positive and negative pairs of the corresponding configu-
rations in the AR-AR sample explains the gap between the
F1, which do not consider true negatives, and the accuracy,
which does consider them.
The best results were obtained by the Jaro similarity mea-
sure, using different thresholds, for all the three types of
pairs. The similarity thresholds were 0.67, 0.82, and 0.78
for HE-HE, AR-AR, and AR-HE, respectively.
To complete our investigation, we used the Hebrew part-
of-speech tagger (Adler and Elhadad, 2006) to lemmatize
the HE-HE pairs and compare their lemmas. We obtained
recall, precision, F1, and accuracy of 0.4, 0.48, 0.44, and
0.29, respectively.
Next, we evaluated the performance of our algorithmic
scheme. In all the reported results, for each similarity type,
we used the best similarity measure with its optimal simi-
larity threshold.

5.2. Algorithmic Scheme Evaluation
5.2.1. Evaluation Setting
The results reported in this paper were obtained from a sam-
ple of 108 randomly selected source terms from a list of
29,335 terms, generated by the state-of-the-art IBM model
4 using Giza++ (Och and Ney, 2003) open source toolkit1.
Only source terms with more than one appearance in the
corpora were selected. We manually annotated 287 source-
target word pairs with an average of 2.66 word pairs per
source term. Each source-target word pair was judged as
either correct or incorrect translation.
We assessed our algorithmic scheme by evaluating its abil-
ity to filter the state-of-the-art IBM model 4 translation lex-
icon and increase its accuracy. Additionally, we compared
our filtering process with a baseline filtering approach of
deleting translations with low probability score. We used
the probability (i.e. maximum likelihood) score that was
assigned by the IBM model.
We used four evaluation measures: precision (P), relative-
recall (RR), F1, and Accuracy (Acc). The scores were
micro-averaged. Since we do not have any pre-defined
translation lexicon, we evaluated the relative-recall. Our
relative-recall considered the number of correctly translated
source-target pairs from the output of state-of-the-art IBM
model as the full set of translated pairs.
Table 3 presents the results of the baseline filtering ap-
proach which deletes translations with low probability
score. We examined different probability thresholds. The
best results were obtained with a threshold value of 0.1,
which means almost no filtration. Once the filtering is more

1http://www.statmt.org/moses/giza/GIZA++.
html

http://www.statmt.org/moses/giza/GIZA++.html
http://www.statmt.org/moses/giza/GIZA++.html

14

String Similarity Measure Description

1
Levenshtein distance
(Levenshtein, 1966)

Counts the minimum number of operations (removal, insertion, or substitution
of a character) required to transform one string into another.

2
Hamming distance
(Hamming, 1950) Finds the total number of places one string is different from the other.

3
Jaccard similarity coefficient
(Jaccard, 1901)

Counts the number of common characters and divides it by the total number of
unique characters.

4
Jaro similarity
(Jaro, 1989)

Highly scores strings with the same characters, but at a certain distance from each
other, as long as the order of the matches is similar.

5
Word-level match
(Porat et al., 2018)

Represents the words by their n most rare letters (keeps the order of the letters in
the word) and requires an exact match.

Table 1: Prior art string similarity measures considered in our work

Figure 1: The frequency of the Aramaic and Hebrew letters.

Type Measure R P F1 Acc

HE-HE

Levenshtein 0.96 0.77 0.85 0.77
Hamming 0.75 0.73 0.74 0.64
Jaccard 0.8 0.9 0.85 0.8
Jaro 0.89 0.83 0.86 0.8
Word-level 0.65 0.9 0.75 0.71

AR-AR

Levenshtein 0.31 0.71 0.43 0.95
Hamming 0.25 0.73 0.37 0.95
Jaccard 0.41 0.5 0.45 0.94
Jaro 0.41 0.72 0.52 0.96
Word-level 0.19 0.26 0.22 0.92

AR-HE

Levenshtein 0.76 0.59 0.67 0.77
Hamming 0.76 0.35 0.48 0.5
Jaccard 0.65 0.72 0.69 0.82
Jaro 0.69 0.8 0.74 0.86
Word-level 0.49 0.79 0.61 0.81

Table 2: Performance of five string similarity measures for
the three types of similarity

significant, there is very little precision increase and a dra-
matic recall drop. We concluded that the probability score
is not sufficiently indicative to be used for filtering the ini-
tial lexicon and a different filtering scheme is required.

Threshold RR P F1 Acc
0.1 0.85 0.798 0.823 0.711
0.2 0.758 0.789 0.773 0.648
0.3 0.634 0.8 0.708 0.585
0.4 0.533 0.823 0.647 0.54
0.5 0.498 0.819 0.619 0.516
0.6 0.33 0.852 0.476 0.425
0.7 0.291 0.846 0.433 0.397
0.8 0.273 0.838 0.412 0.383
0.9 0.251 0.826 0.385 0.366

Table 3: Baseline filtering approach with different proba-
bility thresholds

15

Table 4 compares the performance of our algorithmic
scheme with that of the best baseline and the state-of-the-
art IBM model 4. The state-of-the-art results corresponds
to the baseline without any filtering. In other words, the
IBM model classifies all the source-target pairs as positive.
Therefore, its precision and accuracy are the same. Since
we considered the correctly translated source-target pairs
from its output as the full set of translated pairs, its relative-
recall is 1.
Our algorithmic scheme increases both the F1 and the ac-
curacy of the state-of-the-art IBM model by 5 points and 10
points, respectively. The baseline filtering does not improve
the IBM model.

Method RR P F1 Acc
Our Algorithmic Scheme 0.87 1 0.93 0.89
Baseline Filtering 0.85 0.8 0.82 0.7
State-of-the-art model 1 0.79 0.88 0.79

Table 4: Results Comparison

5.2.2. Error Analysis
We analyzed the classification errors of our algorithm. In
Table 5, we present the classification confusion matrix.
Each column of the matrix represents the instances in a
predicted class while each row represents the instances in
an actual class.

Predicted True False
Actual
True 198 29
False 0 60

Table 5: The confusion matrix of our algorithm

All of the classification errors were due to incorrect classi-
fication of valid source-target pairs as invalid. In 34% of
these incorrect classifications were cases where the trans-
lation appeared in a single morphology form. For ex-
ample -כסותה! שמלתיו! (dress) and לאיש!-לאנשא! (to a man).
The remainder of cases (66%) were classified incorrectly
due to a low string similarity score. A low score was
obtained in a few simple ,ההר!-טורא!) בהר! (mountain)),
mediocre ,אחיו!-לאחוהי!) אח! (brother)) and more complex
cases (,החביאה!-אטמרת! נחבאת! (hide)). We note that the
string similarity measure can be improved by matching ter-
minal letters to regular letters as in the incorrectly classified
example of ,כשדימה!-כסדאי! !Mכשדי (Chaldean (person)).

6. Conclusions and Future Work
We proposed a methodological algorithmic scheme to con-
struct an Aramaic-Hebrew translation lexicon. First, by a
state-of-the-art word alignment translation model, we gen-
erated an initial translation lexicon. We then filtered the ini-
tial lexicon using three types of string similarity measures.
For each similarity type, we evaluated five string similarity
measures. Our algorithmic scheme significantly increased

both the accuracy of the F1 over the initial lexicon and a fil-
tered lexicon based on word alignment probability scores.
The scheme was investigated for Aramaic and Hebrew, but
can be generically applied for other languages.
At some stage, during learning or in feature functions, all
existing statistical machine translation (SMT) methods are
using word alignments. Therefore, we plan to integrate our
translation lexicon in a SMT scheme.

7. Bibliographical References
Adler, M. and Elhadad, M. (2006). An unsupervised

morpheme-based hmm for hebrew morphological disam-
biguation. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th an-
nual meeting of the Association for Computational Lin-
guistics, pages 665–672. Association for Computational
Linguistics.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mer-
cer, R. L. (1993). The mathematics of statistical ma-
chine translation: Parameter estimation. Computational
linguistics, 19(2):263–311.

Chiang, D. (2007). Hierarchical phrase-based translation.
computational linguistics, 33(2):201–228.

HaCohen-Kerner, Y., Kass, A., and Peretz, A. (2010).
Haads: A hebrew aramaic abbreviation disambiguation
system. Journal of the American Society for Information
Science and Technology, 61(9):1923–1932.

HaCohen-Kerner, Y., Schweitzer, N., and Mughaz, D.
(2011). Automatically identifying citations in hebrew-
aramaic documents. Cybernetics and Systems: An Inter-
national Journal, 42(3):180–197.

HaCohen-Kerner, Y., Kass, A., and Peretz, A. (2013). Ini-
tialism disambiguation: Man versus machine. Journal of
the American Society for Information Science and Tech-
nology, 64(10):2133–2148.

Hamming, R. W. (1950). Error detecting and error correct-
ing codes. The Bell system technical journal, 29(2):147–
160.

Jaccard, P. (1901). Étude comparative de la distribution
florale dans une portion des alpes et des jura. Bull Soc
Vaudoise Sci Nat, 37:547–579.

Jaro, M. A. (1989). Advances in record-linkage method-
ology as applied to matching the 1985 census of tampa,
florida. Journal of the American Statistical Association,
84(406):414–420.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statisti-
cal phrase-based translation. In Proceedings of the 2003
Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human Lan-
guage Technology-Volume 1, pages 48–54. Association
for Computational Linguistics.

Koppel, M. and Schweitzer, N. (2014). Measuring di-
rect and indirect authorial influence in historical corpora.
Journal of the Association for Information Science and
Technology, 65(10):2138–2144.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. In Soviet physics
doklady, volume 10, pages 707–710.

Liebeskind, C., Dagan, I., and Schler, J. (2012). Statistical
thesaurus construction for a morphologically rich lan-

16

guage. In * SEM 2012: The First Joint Conference on
Lexical and Computational Semantics–Volume 1: Pro-
ceedings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (SemEval 2012), pages 59–
64.

Liebeskind, C., Dagan, I., and Schler, J. (2016). Semiauto-
matic construction of cross-period thesaurus. Journal on
Computing and Cultural Heritage (JOCCH), 9(4):22.

Liebeskind, C., Dagan, I., and Schler, J. (2019). An algo-
rithmic scheme for statistical thesaurus construction in a
morphologically rich language. Applied Artificial Intel-
ligence, 33(6):483–496.

Moghaz, D., Hacohen-Kerner, Y., and Gabbay, D. (2019).
Text mining for evaluating authors’ birth and death years.
ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(1):7.

Mughaz, D., HaCohen-Kerner, Y., and Gabbay, D. (2017).
Mining and using key-words and key-phrases to identify
the era of an anonymous text. In Transactions on Com-
putational Collective Intelligence XXVI, pages 119–143.
Springer.

Och, F. J. and Ney, H. (2000). A comparison of alignment
models for statistical machine translation. In Proceed-
ings of the 18th conference on Computational linguistics-
Volume 2, pages 1086–1090. Association for Computa-
tional Linguistics.

Och, F. J. and Ney, H. (2003). A systematic comparison
of various statistical alignment models. Computational
linguistics, 29(1):19–51.

Och, F. J., Tillmann, C., and Ney, H. (1999). Improved
alignment models for statistical machine translation. In
1999 Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora.

Porat, E., Koppel, M., and Shmidman, A. (2018). Identifi-
cation of parallel passages across a large hebrew/aramaic
corpus. Journal of Data Mining & Digital Humanities.

Snyder, B. and Barzilay, R. (2008). Unsupervised multilin-
gual learning for morphological segmentation. In Pro-
ceedings of ACL-08: HLT, pages 737–745, Columbus,
Ohio, June. Association for Computational Linguistics.

Vogel, S., Ney, H., and Tillmann, C. (1996). Hmm-based
word alignment in statistical translation. In Proceed-
ings of the 16th conference on Computational linguistics-
Volume 2, pages 836–841. Association for Computa-
tional Linguistics.

Zohar, H., Liebeskind, C., Schler, J., and Dagan, I. (2013).
Automatic thesaurus construction for cross generation
corpus. Journal on Computing and Cultural Heritage
(JOCCH), 6(1):4.

	Introduction
	Background
	Word-based Translation Models
	Aramaic NLP

	Parallel Corpus
	Methodology
	Algorithmic Scheme
	String Similarity

	Evaluation
	String Similarity Evaluation
	Algorithmic Scheme Evaluation
	Evaluation Setting
	Error Analysis

	Conclusions and Future Work
	Bibliographical References

