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Abstract
Textual data in ancient and historical languages such as Latin is increasingly available in machine readable forms, yet computational
tools to analyze and process this data are still lacking. We describe our system for part-of-speech tagging in Latin, an entry in the
EvaLatin 2020 shared task. Based on a detailed analysis of the training data, we make targeted preprocessing decisions and design our
model. We leverage existing large unlabelled resources to pre-train representations at both the grapheme and word level, which serve as
the inputs to our LSTM-based models. We perform an extensive cross-validated hyperparameter search, achieving an accuracy score of
up to 93 on in-domain texts. We publicly release all our code and trained models in the hope that our system will be of use to social
scientists and digital humanists alike. The insights we draw from our inital analysis can also inform future NLP work modeling syntactic
information in Latin.
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1. Introduction
Textual data in historical and ancient languages (such as
Latin and Ancient Greek) is increasingly available in dig-
ital form. As such, computational tools for analyzing and
processing this data are highly useful among social scien-
tists and digital humanists. In order to promote the devel-
opment of resources and language technologies for Latin,
the CIRCSE research centre1 organized EvaLatin: a shared
competition on part-of-speech tagging and lemmatization
in Latin. This paper describes our system that participated
in the part-of-speech tagging task of EvaLatin (Sprugnoli et
al., 2020).
Our system was heavily informed by a detailed exploratory
analysis of the training data. This analysis guided both
our preprocessing decisions as well as the structure of the
model. We assembled a large unlabelled corpus of Latin to
train embeddings at both the grapheme and word level. Our
system combines these pre-trained embeddings in LSTMs
to predict part-of-speech tags. In this way we are able to
leverage the wealth of unlabelled but machine-readable text
in Latin available, as well as recent progress in neural net-
work models of language. To fine-tune our system, we per-
form an extensive cross-validated hyperparameter search.
The remainder of the paper is structured as follows. In
the next section, we outline the main findings of our ex-
ploratory data analysis that guided our approach. We then
discuss the preprocessing decisions that were informed by
this analysis in section 3. Section 4 describes our system,
including our cross-validated hyperparameter optimization.
In section 5 we present our results. Finally, section 6 high-
lights our plans for improving our method as well as the
open and reproducible nature of this research.

2. Exploratory data analysis
Prior to making any modeling decisions, we performed a
detailed exploratory analysis of the EvaLatin dataset. The
goal was to find insights in the data that could be lever-
aged during the modeling stage. To do this, we analyzed

1https://github.com/CIRCSE

the training data from three viewpoints, each focusing on a
different level of the data: dataset-wide, orthographic forms
and part-of-speech labels. In this section, we highlight the
main findings from our analysis that guided the develop-
ment of our system.

The training dataset contains 14,399 sentences with a to-
tal of 259,645 words. This is sizeable yet still signifi-
cantly smaller than part-of-speech datasets in many other
languages. The moderate size of labelled data available
motivated us to investigate external unlabelled data (de-
scribed in Section 4.1). Most (75%) sentences have under
24 tokens, with the average having 18. The vast majority
(95%) of sentences have at most 40 tokens. A common
concern in sequence-based neural networks is their recency
bias which is a shortcoming when the data displays long-
distance dependencies. However, with sentences of such
moderate length, this concern is not pressing.

At the level of the orthographic form, we found numerous
insights that guided our modeling. There are 43,767 unique
forms in the training data, of which more than half (24,376)
only appear once. The vast majority (90%) of forms ap-
pear at most 7 times in the training data. The large number
of forms, and especially the large number of hapax legom-
ena, suggest the need to include sub-word information, e.g.
character-based models. There are 126 unique characters
in the training data, a number which we could massively
reduce by focusing on Latin characters (47 unique). Within
the Latin characters, we noted that over 98% of instances
are lower case. We further noted that capitalization is used
in one of four ways: i) as the first character of a sentence, ii)
as the first character of a proper noun (abbreviated or not),
iii) in Roman numerals, or iv) in the token “HS”. Although
capital letters are an important signal for proper nouns, case
folding would again halve the size of the character vocabu-
lary. Full stops were also used in one of four ways: i) in ab-
breviations of proper nouns, ii) in lacunae, iii) for the noun
“salus”, almost always preceded by “suus”, or iv) other ab-
breviations, whose full form is not found elsewhere in the
sentence. As all Greek forms have the part-of-speech X,
we can effectively represent any Greek word with a single
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Figure 1: The frequency distribution over part-of-speech
tags in the training data. Nouns and verbs are by far the
most frequent tags, while AUX, NUM, X and INTJ are ex-
tremly rare.

form. Taken together, these insights suggest heavy prepro-
cessing to reduce the character vocabulary, which we de-
scribe in Section 3.
Although there are a total of 15 part-of-speech tags in the
dataset, the tags are clearly separated into three groups by
frequency. The distribution over tags is illustrated in 1.
Nouns and verbs are by far the most frequent tags (each ac-
counting for around 23% of all tokens, totalling over 45%
together). The next group consists of ADJ, ADV, PRON,
DET, CCONJ, ADP, PROPN, SCONJ and PART tags, and each
account for 1-8% of tags. The last group consists of AUX,
NUM, X and INTJ tags, which each account for less than
1% of tokens. As a baseline, predicting NOUN for all words
would have an accuracy of 23% in the training data. The
NOUN, VERB, ADJ tags and PRON are identified by lexical
root, morphology and syntactic context. Thus, it is impor-
tant to explicitly include these information sources in the
model, for example, with a contextual model. The ADV,
DET, ADP and CCONJ tags are often tied to a particular or-
thographic form, which suggests that word-type represen-
tations would be effective in identifying them. Identifying
tags which rely on inflectional morphology could be han-
dled by character-based models and sub-word representa-
tions. As Latin’s inflectional morphology is entirely suffix-
ing, models would benefit from explicit end of word infor-
mation.

3. Preprocessing
Based on our initial data analysis, our preprocessing was
designed to remove as much noise from the data as possi-
ble that is not relevant to the task of part-of-speech tagging.
To that end, we made significant preprocessing decisions.
We replaced the following classes of word forms with
placeholder characters as their specific forms do not mat-
ter for part-of-speech tagging: i) Greek words, ii) proper
noun abbreviations and iii) lacunae. All remaining forms
were lowercased. We also added start and end characters
for word boundaries to assist modeling inflectional mor-
phology. Furthermore, we tokenized orthographic forms

into graphemes rather than characters (Moran and Cysouw,
2018). Thus, character bigrams such as 〈qu〉 and 〈ph〉 are
represented as a single grapheme in our models, rather than
two.

4. System
Our system is broadly composed of three sections: i) pre-
trained domain-specific grapheme and word embeddings,
ii) grapheme-level LSTMs, and iii) word-level bidirectional
LSTMs. In this section, we first describe the unlabelled cor-
pus of Latin text we curated to pre-train embeddings. We
then describe the training procedure of the embeddings, fol-
lowed by the structure of our model. Finally, we describe
our extensive hyperparameter search to fine-tune our sys-
tem.

4.1. Unlabelled corpus
Given the moderate size of the labelled training data dis-
cussed in Section 2, we opted to leverage unlabelled data
to improve performance. Concretely, we curated an unla-
belled corpus of Latin texts in order to learn non-contextual
grapheme and word embeddings. We sourced this corpus
from the Perseus Project, the Latin Library and the Tesserae
Project through the CLTK library (Johnson, 2014 2020).
The resulting corpus totalled over 23 million words.

4.2. Embeddings
We trained grapheme and word embeddings on this un-
labelled corpus. In order to capture as much inflec-
tional morphology as possible in the word embeddings,
we used fastText (Bojanowski et al., 2017) which ben-
efits from sub-word information. For grapheme embed-
dings, where subsymbolic information is not available
we used the closely related word2vec (Mikolov et al.,
2013). We trained grapheme embeddings of dimension
dg ∈ {5, 10, 20} and word embeddings of dimension dw ∈
{10, 25, 50, 100, 200, 300} with n-gram lengths from 2 to
4. As part-of-speech tagging is a syntactic task, we fixed
a low window size (3) for both sets of embeddings and
trained for 10 epochs.

4.3. Model
Our part-of-speech tagging model is structured as follows.
A unidirectional LSTM reads words as the preprocessed
sequence of graphemes, representing them with their pre-
trained embeddings. The final hidden state of that model
is concatenated with the pre-trained word embedding. This
concatenation (of size dg + dw) represents the input to a
bidirectional LSTM at a single time step. At each time step,
the output of the bidirectional LSTM is passed through
a linear layer to produce probabilities over part-of-speech
tags. All parameters within the model, including the pre-
trained embeddings, are trainable.

4.4. Hyperparameter optimization
We ran extensive hyperparameter optimization to fine-
tune our model. In particular, we performed a grid
search over the following hyperparameters: grapheme em-
beddings (dg ∈ {5, 10, 20}), word embeddings (dw ∈
{10, 25, 50, 100, 200, 300}), hidden size of bidirectional
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Subtask Text Accuracy
Classical Bellum Civile 93.08

In Catilinam 93.02
De Providentia 90.63
De Vita Beata 90.72

Agricola 89.71
Germania 87.38
Epistulae 90.02

Cross-Genre Carmina 73.47
Cross-Time Summa Contra Gentiles 76.62

Table 1: The official evaluation results of our system on
the EvaLatin shared task. Our system performed well on
other Classical texts but saw significant performance drops
on out-of-domain texts.

LSTM (dh ∈ {50, 100, 200, 300}) and batch size (b ∈
{8, 16}). To evaluate each hyperparameter setting, we used
5-fold cross-validation of the training data. We trained for
up to 10 epochs, with early stopping. In total, we trained
1,440 models on a single GPU.

5. Results
In this section, we analyze the results of our hyperparameter
search and the errors our system makes, as well as report on
the official evaluation.
Averaging over the five cross-validation folds, our best per-
forming model achieved 95.3% accuracy on the training
set. We observed a strong positive correlation between the
dimensionality of the word embeddings and performance
(Pearson’s correlation ρ = 0.725) and a moderate positive
correlation between the dimensionality of the hidden state
of the bidirectional LSTM and performance (ρ = 0.253).
The dimensionality of the grapheme embeddings and per-
formance were weakly correlated (ρ = 0.042). All of the
1,440 models we trained achieved above 99% top 3 accu-
racy. The most common errors we observed were incor-
rectly tagging adjectives as nouns (12 % of errors) or nouns
as adjectives (11%).
The official evaluation metric used in the EvaLatin evalu-
ation was accuracy. The scores of our model on individ-
ual texts across the three subtasks are illustrated in Table 1.
Our system performed well on in-domain texts (the Clas-
sical subtask) but saw significant drops in performance in
out-of-domain texts spanning different genres and time pe-
riods of the language.

6. Discussion
Our approach was one heavily informed by an initial ex-
ploratory data analysis of the training dataset. We relied
on significant preprocessing to remove noise from the data
and leveraged a large unlabelled corpus of Latin texts. Our
extensive hyperparameter search fine-tuned our system. Al-
though our system performed well on in-domain texts, this
high performance did not carry well across to other do-
mains and time periods. Future work could investigate the
use of external labelled resources to improve performance
out of domain.
In order to facilitate engagement with our work, we make
all our code and trained models publicly available at

https://github.com/geoffbacon/verrius. In
future work, we plan to make our models freely avail-
able through an API for research purposes. With the in-
creased availability of digitized documents in ancient lan-
guages like Latin, computational tools for processing lin-
guistic data grow in usage. We hope that our system will be
of use to social scientists and digital humanists alike.
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