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Abstract
Human interaction analyzes are essential to study social interaction, conversational rules, and affective signals. These analyzes are
also used to improve models for human-machine interaction. Besides the pure acoustic signal and its transcripts, the use of contextual
information is essential. Since the enforcement of the GPDR for the EU in 2018, there has been an increased uncertainty among
scientists and participants. The discussion about the EU GDPR raised the awareness of personal rights and personal data recordings.
This contribution aims to discuss issues of collecting personal and contextual data during acoustic interaction in terms of scientists’
needs and GDPR demands.
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1. Introduction
The General Data Protection Regulation (EU Regulation
2016/679, hereinafter: the GDPR) entered into applica-
tion on May 25, 2018. The aim of the GDPR is on one
hand to unify all data protection laws across the Euro-
pean Union and on the other hand to protect the infor-
mation about all EU residents against unlawful process-
ing and privacy breaches. The GDPR has raised awareness
about privacy-related rights throughout the EU. Data mis-
use has already led to noteworthy fines, including a 20k
EUR fine against a French translation company Uniontrad
for videotaping its employees, or against an Italian hospi-
tal (Azienda Ospedaliero Universitaria Integrata di Verona)
of 30k EUR for not adequately protecting patient personal
health records from unauthorized treatment. A danish taxi
company stored data from eight million trips and thus vio-
lated the minimization principle of the GPDR, resulting in
a fine of 161k EUR. The so-far highest fine (204M EUR)
was condemned against British Airways due to a cyber in-
cident, where 500,000 customers’ personal data were com-
promised.
These examples of data misuse and the raising awareness
have a direct impact on research activities, not only among
scientists but also among experimental subjects.
The GDPR regulates the way data can be collected, stored,
and processed (analyzed, exchanged, etc. ((Svenings-
son Elm, 2009)). This entails the constitution of "personal
data" and its efficient anonymization. According to Art. 4,
1. of the GDPR "personal data" is defined as "any informa-
tion relating to an identified or identifiable natural person"
("data subject"). This concept of ‘personal data’ is signif-
icantly broader than the concept of ‘personally identifiable
information’ (PII) used e.g. in the US. Personal data defi-
nition.
In contrast, interaction analyzes require huge data collec-
tions together with contextual information of the partici-
pants, in order to understand the interaction process, the in-
dividual behavior and develop proper models (Dudzik et al.,
2019). These needs are challenging regarding the GDPR,

leading to a huge uncertainty for data collection and data
sharing activities.
Up until now, scientists tried to deal with it on their own and
to help their peers by publishing documents and papers on
ethical issues. Batliner and Schuller (2014), for example,
list crucial ethical issues, including the challenge to guar-
antee the consent and the privacy of the subjects and the
need to encode the data to guarantee this privacy (Batliner
and Schuller, 2014).
This contribution aims to discuss the above issues by high-
lighting needs scientists have for analyzing interactions by
giving examples in which additional "personal data" are
needed but their storage and exchanging is crucial accord-
ing to the GDPR.

2. Examples of the need for "personal data"
in interaction analyzes

An important aspect of human perception is the processing
of additional contextual information (Dudzik et al., 2019;
Truong et al., 2007). The same holds true for techni-
cal systems. They must implement these human abilities
and analyze human interaction signals together with addi-
tional contextual information. Therefore developers need
databases capturing the context of interactions as well as
the behavior expressed in them, which is also denoted as
enriched data (Böck et al., 2019). Recent literature already
surveys empirical research on how the decoding of behav-
ioral signals in emotion perception benefits from contextual
information (Wieser and Brosch, 2012) and how perceivers
make use of contextual knowledge in interpreting affective
behavioral signals (Aviezer et al., 2017). Important con-
textual categories are developed in (Dudzik et al., 2019),
comprising age, gender, cultural embedding – nationality
and ethnic background, language, and occupation. Further-
more, also personality traits, as NEO-FFI or SVF, and ad-
ditional measurable signals are helpful, as it will be shown
in the following.
Some examples where contextual data are needed to im-
prove the interaction analyzes and modeling will be shortly
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discussed in the following. Age and gender information
of a user is particularly required to improve automatic
emotion recognition due to speaker-group dependent mod-
els (Siegert et al., 2014c) and could even improve multi-
modal recognition for fragmentary data (Siegert et al.,
2013). For example, in order to improve the emotion recog-
nition significantly, recognition models make use of factors
that affect the vocal tract, such as aging-effects, to improve
their acoustic models by personalizing it to a specific age
group. Also for human annotation of conversations not only
the speech is important but also facial information (Siegert
et al., 2014a), which allows an improvement of the identifi-
cation of the participant.
Only a few analyzes so far deal with personality traits as ad-
ditional contextual information. Although it is known that
certain personality traits play an important role in commu-
nication (Cuperman and Ickes, 2009; Funder and Sneed,
1993; Weinberg, 1971). In (Gossen et al., 2017) the au-
thors showed that the Incorporation of the contextual in-
formation on the personality trait "extraversion" improves
the long term modeling of interactions. Furthermore, it is
shown that information about the stress-coping ability of
participants is useful to link exhaustive filled pause usage
for the detection of challenging tasks (Siegert et al., 2014b).
These examples underline the importance of both the
acoustic signal and the contextual information (metadata)
of the subjects to acoustic interaction research. Especially
for automatic affect recognition systems the incorporation
of metadata is beneficial.

3. GDPR-issues of recording contextual data
Recording contextual data of a participant can, even if all
direct identifiers (name, birth, residence) are deleted, be
used to identify a specific participant. A participant is iden-
tified when it’s singled out from a group, typically by a
sufficiently unique name-surname combination, but other
identifiers (e.g., username or ID number, or in a certain con-
text – a photograph) can also be taken into account. More-
over, a person is ‘identifiable’ if it can be singled out from
a group by any means reasonably likely to be used (such as
cross-referencing with data from social networks). Many
examples are known, that not much data is generally needed
to identify a person, even if the records are anonymized;
e.g. the combination of zip codes, birth date and sex from
anonymized data together with voter databases is enough
to identify individuals (Ohm, 2010) Or that for identifying
users of a famous video-streaming platform using knowl-
edge about some movie ratings (Narayanan and Shmatikov,
2008).
What does that mean for the recording of contextual data?
According to art. 5.1, c) of the GDPR, personal data should
be ‘adequate, relevant and limited to what is necessary in
relation to the purposes for which they are processed’. The
development of an experimental design and the conduction
of the experiment can be very elaborate. Especially for
interaction analyzes, as most of them are fundamental re-
search, at the beginning of the experiment it is not clear
which contextual factors are relevant for the task. Some-
times, additional questions arise during the evaluation of
the data or new collaborative ideas are showing up during

the presentation of the analyzes results. Thus, it is not al-
ways known nor desirable to limit the recording of personal
data for research analyzes. This principle (which existed
also under the 1995 Data Protection Directive), referred
to as ‘data minimization’, is arguably the biggest hurdle
for data-intensive research and technology especially as the
GDPR does not allow any derogations from the principle
for research purposes.
Furthermore, as the examples in the introduction showed,
the protection of personal data against cyber incidents is
crucial. Researchers mostly do not have the capacity nor
the knowledge how to properly secure the data against mis-
use and on the same time still allow access to the data for
authorized persons.
In this context, the German Research Foundation (DFG) for
example explicitly encourages applicants to request fund-
ing for the preparation of research data for subsequent
reuse or transfer. But this mostly covers the preparation,
long-term archiving, and accessibility of data. Aspects re-
lating to the compliance with the GDPR (access control,
anonymization techniques, selective data access) are not in
the focus so far.

4. Conclusion
The new regulations pose a new situation where despite not
sharing personal data, or even not collecting at all, there is
no proposed solution at the moment, at least for acoustic
interaction research. Researchers might need a combined
policy of legal and academic authorities.
One possibility is that the research community be more
thorough, by disconnecting the assignment of context data
to certain persons. This can be done by using ranges or
broader classes for contextual data. For example, in (Silber-
Varod et al., 2019) they used solely the acoustic signal and
speaker-sex attribute, as the data was proprietary by an in-
dustrial company.
Another possibility is that recorded data is anonymized
– hence the importance of anonymization or data omis-
sion for research activities gets important – as well as a
proper access control infrastructure still allowing the share
research data has to be developed. Hereby, it has to be noted
that already the voice recordings itself reveal the speakers’
identity. This constitutes a bigger challenge to cope with,
especially in terms of anonymization.
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