
Proceedings of the 7th Workshop on Linked Data in Linguistics (LDL-2020), pages 52–60
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

52

A Lime-Flavored REST API for Alignment Services

Manuel Fiorelli, Armando Stellato
University of Rome “Tor Vergata”, Department of Enterprise Engineering, via del Politecnico 1, 00133 Roma, Italy

fiorelli@info.uniroma2.it, stellato@uniroma2.it

Abstract

A practical alignment service should be flexible enough to handle the varied alignment scenarios that arise in the real world, while
minimizing the need for manual configuration. MAPLE, an orchestration framework for ontology alignment, supports this goal by
coordinating a few loosely coupled actors, which communicate and cooperate to solve a matching task using explicit metadata about the
input ontologies, other available resources and the task itself. The alignment task is thus summarized by a report listing its characteristics
and suggesting alignment strategies. The schema of the report is based on several metadata vocabularies, among which the Lime module
of the OntoLex-Lemon model is particularly important, summarizing the lexical content of the input ontologies and describing external
language resources that may be exploited for performing the alignment. In this paper, we propose a REST API that enables the
participation of downstream alignment services in the process orchestrated by MAPLE, helping them self-adapt in order to handle
heterogeneous alignment tasks and scenarios. The realization of this alignment orchestration effort has been performed through two main
phases: we first described its API as an OpenAPI specification (a la API-first), which we then exploited to generate server stubs and
compliant client libraries. Finally, we switched our focus to the integration of existing alignment systems, with one fully integrated
system and an additional one being worked on, in the effort to propose the API as a valuable addendum to any system being developed.

Keywords: Lime, OntoLex, VocBench, MAPLE, Ontology Matching

1. Introduction

Ontology matching (Euzenat & Shvaiko, 2013) is the task
of computing an alignment between two (or more)
ontologies that consists of correspondences between
semantically related concepts. We consider a broader
definition of the task, to cover thesauri and datasets, in
general. We argued (Fiorelli et al., 2019) that a practical
matching system should be flexible enough to recognize
different matching scenarios and handle each of them with
a suitable strategy possibly benefiting from additional
support resources. Our framework MAPLE1 achieves that
goal by exploiting explicit metadata about the input
ontologies and other available resources. MAPLE uses a
combination of metadata vocabularies, including DCMI
Metadata Terms2, FOAF3, VoID4, DCAT5 and Lime
(Fiorelli et al., 2015). The latter is the metadata module of
the OntoLex-Lemon model6 (McCrae et al., 2017;
Cimiano, McCrae, & Buitelaar, 2016), which is becoming
a cornerstone of the growing Linguistic Linked Open Data
cloud (Chiarcos, Nordhoff, & Hellmann, 2012), moving
beyond its original focus on ontology lexicons. MAPLE
uses Lime metadata to determine how lexical information
is represented (i.e. the so-called lexicalization model), the
degree of linguistic compatibility of the input ontologies
(e.g. supported natural languages, relative coverage,
relative expressiveness, etc.), as well to find suitable
language resources (e.g. a wordnet) in some natural
language to support synonym expansion. MAPLE compiles
a task report that summarizes the characteristics of the
given matching scenario and hints at possible matching
strategies. This task report is intended to help a downstream
matching system configure itself in order to manage the
given matching scenario as best as possible. In this paper,
we will refer to such a matching system as an alignment

1 http://art.uniroma2.it/maple/
2 https://www.dublincore.org/specifications/dublin-core/dcmi-

terms/
3 http://xmlns.com/foaf/spec/
4 https://www.w3.org/TR/void/

service, meaning a web service for the computation of
alignments between datasets (in general). The contribution
of this paper is precisely a REST API (Fielding, 2000) that
an alignment service shall implement in order to comply
with MAPLE. We used the OpenAPI7 format to describe
this API explicitly, ensuring that the produced
specifications are both machine-readable and human
friendly. These specifications establish a contract that make
it possible for a user to invoke any alignment system for
which a compliant server has been developed. We validated
our work through the implementation of a sever for one
alignment system, while planning an analogous one for an
additional system.

2. Background

2.1 LIME: Linguistic Metadata

LIME is the module of OntoLex-Lemon dedicated to the
description of lexicalized datasets and language resources
such as wordnets. LIME extends VoID, by defining
subclasses of void:Dataset based on the different roles that
these datasets play form the view point of the ontology-
lexicon interface.

A lime:LexicalizationSet is a dataset consisting of
lexicalizations for a given reference dataset in some natural
language, optionally using a lexicon, and expressed using
a specific lexicalization model. A lexicalization set can
describe the fact that an ontology (the reference dataset)
contains RDFS labels (hence, RDFS is the lexicalization
model) in English. If the ontology also contains labels in
Italian, it would be necessary to introduce a second
lexicalization set. Only if the lexicalization model is
OntoLex-Lemon, then the lexicalization set shall reference
a lexicon, providing the (reified) lexical entries. A
lexicalization set may include metadata such as the number

5 https://www.w3.org/TR/vocab-dcat-2/
6 https://www.w3.org/2016/05/ontolex/
7 https://www.openapis.org/

http://art.uniroma2.it/maple/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/2016/05/ontolex/
https://www.openapis.org/

53

of lexicalizations, the percentage of the reference dataset
being covered and the average number of lexicalizations
for the entities in the reference dataset.

Wordnets are represented in OntoLex-Lemon by mapping:
i) each synset to an ontolex:LexicalConcept, ii) each word
to an ontolex:LexicalEntry, iii) each sense to an
ontolex:LexicalSense. While similar to the one of
lexicalized datasets, the structure of wordnets is
characterized by the use of lexical concepts and specific
properties to bind these to lexical entries thorough lexical
senses. Therefore, their metadata deserved a dedicated
class, called lime:ConceptualizationSet, which relates a
lime:Lexicon (describing the collection of lexical entries)
to an ontolex:ConceptSet (describing the collection of
lexical concepts). The description of a conceptualization
set may include the number of lexical concepts, the number
of lexical entries, the average ambiguity and average
synonymy.

A conceptualization set (and the associated datasets) can be
used for synonym expansion; given a word: i) find
matching lexical entries (usually one per POS tag), ii) for
each matched lexical entry, find the associated lexical
concepts, and iii) retrieve other lexical entries associated to
any of these lexical concepts.

2.2 MAPLE: MAPping architecture based on
Linguistic Evidences

MAPLE is a framework facilitating the orchestration of
different, loosely coupled actors with the aim to support a
robust matching system. A user defines a matching task as
a pair of datasets, say 𝐷𝑙𝑒𝑓𝑡 and 𝐷𝑟𝑖𝑔ℎ𝑡 . The purpose of
MAPLE is to facilitate the configuration of a downstream
alignment system to solve this task. To this end, MAPLE
provides an orchestrator that analyzes the input datasets, in
order to infer the characteristics of the task and hint at
promising alignment strategies.

The orchestrator looks up the two datasets in a metadata
registry to retrieve metadata about them: indeed, the
descriptions of the two datasets jointly characterize
(perhaps indirectly) the matching task.

MAPLE specifies a metadata application profile that a
compliant registry must obey to, while the actual
implementation of the registry is part of the integration with
other systems. In this manner, it is possible to adopt and
switch different strategies to acquire and store the metadata
(e.g. automatic profiling, manual addition or retrieval of
metadata published alongside the datasets). The
orchestrator and other downstream components in the
processing chain are completely unaware of the chosen
strategy.

The orchestrator uses the metadata about the input
datasets, to determine which information is available, how
it is represented, and the extent of overlap between the two
datasets.

The orchestrator first determines the nature of the input
datasets (i.e. their metamodel), identifying whether they are
ontologies, thesauri and other RDF datasets. This
knowledge is important to set the goal of the alignment (e.g.

8 http://vocbench.uniroma2.it/

matching OWL classes vs matching SKOS concepts),
while different combinations of dataset types may require
different matching algorithms or dedicated configurations
(e.g. taxonomy is encoded by the property rdfs:subClassOf
in OWL ontologies and by the properties skos:broader and
skos:narrower in SKOS thesauri).

MAPLE doesn't commit on any alignment technique,
nonetheless it makes some assumptions:

• the seeding role of natural language
lexicalizations

• the possibility to use wordnets for synonym
expansion (and, in the future, for translation)

The orchestrator finds the lexicalization sets for the input
datasets (see Section 2.1) and produces a ranked list of
pairs of lexicalization sets. The orchestrator also tries to
construct a synonymizer using a suitable wordnet included
in the metadata registry. The order of the aforementioned
list is determined by a complex scoring formula taking into
account metrics about the lexicalization sets and, if
available, about the synonymizer.

The orchestrator will compile a task report with the output
of its analysis, which can be communicated to the
alignment system.

3. Use Case and Requirements

As a software framework, MAPLE needs to be integrated
into other systems, which in turn must implement or
consume interfaces defined by MAPLE. Figure 1 illustrates
a concrete use case applying MAPLE to VocBench 38
(Stellato et al., 2017; Stellato et al., in press), an open-
source web application supporting collaborative editing of
ontologies, thesauri and lexicons, complying with
Semantic Web representation standards.

In this use case, the matching task comprises two datasets
that are managed as two projects in VocBench.

VocBench provides an implementation of the metadata
registry that covers locally managed datasets and remote
ones (which are not associated with a VocBench project).

The task report produced by the orchestrator provided by
MAPLE is returned to the user for explanation and
refinement. The (possibly refined) task report is sent to the
alignment service for the actual execution of the alignment
task. The need for accepting the task report as an input
instead of obtaining it from the orchestrator is motivated by
the necessity to include the user in the loop.

In addition to the task report, the alignment service may
accept some configuration parameters. The configuration is
split in two: a system configuration that does not depend on
the (explicit) choice of a matcher, and a matcher
configuration that is bound to a specific matcher. Matchers
and configuration schemas are clearly dependent on the
alignment service, whose interface must include operations
for retrieving them.

The computation of an alignment can be a slow task;
therefore, it should be handled asynchronously without
blocking the application (and thus the user) who submitted

http://vocbench.uniroma2.it/

54

it. Additionally, the alignment service shall support the
submission of multiple tasks.

When an alignment task is completed, the user should be
able to download the alignment into an alignment
validation user interface. Validated alignments can then be
integrated into either the left or right dataset. Moreover, the
user can store that alignment into an EDOAL project
dedicated to the alignment between these two datasets.

4. API Design Methodology

We designed a resource-centric API without using
hypermedia (see Section 5.2), which is required by a strict
compliance to the REST architectural style (Fielding,
2008). This kind of API, often called “pragmatic REST”,
comprises a collection of resources associated with
endpoints (i.e. URLs) that can be operated on through
standard HTTP verbs (e.g. GET to retrieve the
representation of a resource, POST to create a new resource
in a collection, etc.).

We analyzed the use case described in Section 3 to identify
the resources, their representation and the verbs supported
by each of them.

For the development of our API, we adopted the API-first
approach: i.e. we started from the specifications of the API

9 https://swagger.io/tools/swagger-codegen/

itself using the OpenAPI format rather than from the
implementation of a reference server. These API
specifications are a first-class artifact of the development
process and, as such, they can be version controlled,
verified, validated and published. Interoperability between
clients and servers is guaranteed by the compliance to the
same specifications. In fact, compliance to a given API is
facilitated by tools that generate client libraries (to
consume the API) and server stubs (to ease the
implementation of the API) from the API definition. One
such tool is Swagger Codegen9, which supports tens of
different programming languages. Moreover, a lot of API
tools can be configured for a certain API by simply loading
its definition in OpenAPI format.

5. API Definition

The design of a REST API is focused on the identification
of the resources in the domain of interest, their
representations and the HTTP verbs that they support. Each
kind of resource is often associated with two paths (or
endpoints): i) the collection of resources of that kind (e.g.
/matchers), ii) each specific resource of that kind (e.g.
/matchers/1). We represented the resources and the request
bodies using JSON, which is currently the de facto standard
for web APIs. In our API, some resources are read-only,
because they reflect the capabilities of a specific alignment

Figure 1: Use case integrating MAPLE, VocBench 3 and an external alignment service

https://swagger.io/tools/swagger-codegen/

55

service or the result of a computation, while others can be
manipulated. This distinction manifests in the support for
verbs other then GET.

5.1 Resources

5.1.1 API root

The path / is the root of the API namespace. Performing a
GET on this path returns a JSON object like the one in
Listing 1.

The object contains metadata about the implementation of
the alignment service such as its name (service), version,
compliance to different specs and an optional system
configuration schema (see Section 5.1.2). The specs
property is an array of URLs for locating API definitions in
the OpenAPI format. This array must contain at least the
URL of the description of our REST API. Humans (e.g.
developers) interfacing with this service may benefit from
a reference to the documentation of the service.

When a sever has been just launched, it is not obvious when
it is ready to accept requests. An approach to answer this
question is to first attempt to retrieve the representation of
the root: it can be assumed that a sever is not ready as long
the service doesn’t respond at all. Once the representation
of the root path is returned, the property status tells whether
the service is starting, active, busy (i.e. no longer accepting
task submissions), shutting down or failed.

5.1.2 Matchers

The design goal of MAPLE is to disburden the user from
manual configuration of the matching process to the
maximum extent possible. However, an alignment service
may support an option for manually choosing between
different matchers (i.e. often associated with different
combinations of matching techniques).

The path /matchers is the collection of all available
matchers, whereas the path /matchers/{id} represents an
individual matcher.

Listing 2 illustrates the JSON object describing a matcher,
which contains its identifier (id), a textual description and
an optional configuration schema.

The configuration schema defines the “shape” of the JSON
object that represents the actual matcher configuration in a
task submission (see Section 5.1.3). Moreover, the
configuration schema can be used to produce a suitable user

10 https://json-schema.org/

interface to edit the configuration. Instead of reinventing
the wheel, we adopted a subset of JSON Schema10.

If the alignment service does not support manual selection
and configuration of the matcher, this collection should be
empty.

5.1.3 Tasks

The computation of an alignment is managed as an
asynchronous task, which needs to be modeled explicitly.

The path /tasks is the collection of all tasks ever submitted
to the alignment service. The description of individual tasks
can be obtained from the endpoint /tasks/{id}. Listing 3
contains a JSON object that exemplifies the representation
of a task.

The id identifies this task and it can also be found inside the
path associated with the task. The properties leftDataset
and rightDataset reference the two datasets to align. The
service may differentiate between the submission time,
when the task was first queued into the system, and the start
time, when the computation started (pragmatically, when
the service allocated computing resources for the task). An
end time is also included when the execution ends. In fact,
the task status makes it possible to differentiate between a
task that is just submitted, running, failed or completed.
When a task is running, its start time is non null and the
service is computing the alignment. The task will

{

 "id": "example-matcher",

 "description": "example matcher",

 "configuration": {

 "type": "object",

 "properties": {

 "structuralFeatures": {

 "description": "whether to use

structural features or not",

 "type": "boolean",

 "default": true

 },

 "synonymExpansion": {

 "description": "whether to do

synonym expansion or not",

 "type": "boolean",

 "default": true

 }

 }

 }

}

Listing 2: Representation of a matcher

{

 "id": "c27d77380cf4[…]020871d5f95c2",

 "leftDataset":

"http://example.org/void.ttl#EuroVoc",

 "rightDataset":

"http://example.org/void.ttl#TESEO",

 "submissionTime": "202-02-

10T18:00:00+01:00",

 "startTime": "202-02-10T18:00:30+01:00",

 "status": "running",

 "progress": 60

}

Listing 3: Representation of a task

{

 "service": "Genoma REST API",

 "version": 1,

 "status": "active",

 "documentation": "https://../Home",

 "specs": [

 "http://../alignment-services-

1.0.0.yaml"

],

 "configuration" : {

 ...

 }

}

Listing 1: Representation of the root resource

https://json-schema.org/

56

eventually end either by completing the computation of the
alignment or by failing for some reason. The reason is
expressed as a JSON object with at least the property
message, which shall contain a textual description of the
failure. For a running task, the property progress contains

the percentage (expressed as an integer between 0 and 100)
of the task that has been carried on. A completed task is
associated with an alignment that can be retrieved by means
of a GET on the path /tasks/{id}/alignment. The response is

{

 "taskReport": {

 "leftDataset": { "@id": "http://example.org/void.ttl#TESEO",

 "conformsTo": "http://www.w3.org/2004/02/skos/core#",

 "uriSpace": "http://www.senato.it/teseo/tes/",

 "sparqlEndpoint": "http://localhost:7200/repositories/TESEO_core"

 },

 "rightDataset": { "@id": "http://example.org/void.ttl#EuroVoc",

 "conformsTo": "http://www.w3.org/2004/02/skos/core#",

 "uriSpace": "http://eurovoc.europa.eu/",

 "sparqlEndpoint": "http://localhost:7200/repositories/EuroVoc_core"

 },

 "supportDatasets": [{

 "@id": " http://example.org/void.ttl#TESEO_it_lexset",

 "@type": "http://www.w3.org/ns/lemon/lime#LexicalizationSet"

 "sparqlEndpoint": "http://localhost:7200/repositories/TESEO_core",

 "referenceDataset": "http://example.org/void.ttl#TESEO",

 "lexiconDataset": null,

 "lexicalizationModel": "http://www.w3.org/2008/05/skos-xl",

 "lexicalizations": 3378, "references": 3378,

 "avgNumOfLexicalizations": 1, "percentage": 1,

 "languageTag": "it",

 }, {

 "@id": "http://example.org/void.ttl#EuroVoc_it_lexset",

 "@type": "http://www.w3.org/ns/lemon/lime#LexicalizationSet"

 "sparqlEndpoint": "http://localhost:7200/repositories/EuroVoc_core",

 "referenceDataset": " http://localhost:7200/repositories/EuroVoc_core",

 "lexiconDataset": null,

 "lexicalizationModel": "http://www.w3.org/2008/05/skos-xl",

 "lexicalizations": 18545, "references": 7282,

 "avgNumOfLexicalizations": 2.546, "percentage": 1,

 "languageTag": "it",

 }, {

 "@id": "http://.../omw/MultiWordNet-it-lexicon",

 "@type": "http://www.w3.org/ns/lemon/lime#Lexicon",

 "sparqlEndpoint": "http://localhost:7200/repositories/OMW_core",

 "languageTag": "it", "lexicalEntries": 43011

}, {

 "@id": "http://.../omw/pwn30-conceptset",

 "@type": "http://www.w3.org/ns/lemon/ontolex#ConceptSet",

 "sparqlEndpoint": "http://localhost:7200/repositories/OMW_core",

 "concepts": 117659

}, {

 "@id": "http://.../void.ttl#MultiWordNet_ConceptualizationSet",

 "@type": "http://www.w3.org/ns/lemon/lime#ConceptualizationSet",

 "sparqlEndpoint": "http://localhost:7200/repositories/OMW_core",

 "lexiconDataset": "http://.../omw/MultiWordNet-it-lexicon",

 "conceptualDataset": "http://.../omw/pwn30-conceptset",

 "conceptualizations": 63133, "concepts": 35001, "lexicalEntries": 43011,

 "avgSynonymy": 0.537, "avgAmbiguity": 1.468

}],

 "pairings": [{

 "score": 0.7836831074710862,

 "source": {"lexicalizationSet": "http://example.org/void.ttl#EuroVoc_it_lexset" },

 "target": {"lexicalizationSet": "http://example.org/void.ttl#TESEO_it_lexset" },

 "synonymizer": {

 "lexicon": "http://example.org/void.ttl#OMW_Lexicon",

 "conceptualizationSet": "http://.../void.ttl#MultiWordNet_ConceptualizationSet"

 }

 }]

 }

}

Listing 4: Representation of a task submission (this example doesn't include neither a matcher nor configurations)

57

formatted according the format11 of the Alignment API
(David et al., 2011).

The submission of a task to the system can be made as a
POST to the collection path /tasks. The body of the request
(see Listing 4) represents the submission in terms of a task
report and, optionally, a system configuration, a matcher
and (only if a matcher is provided) a matcher
configuration.

Let us describe the content of a submission in reverse order,
starting from the optional parts. If the alignment service
allows that, the parameter matcher can be used to manually
specify the matching algorithm (see Section 5.1.2). In this
case, it is also possible to specify a matcher configuration
as a JSON object, which shall conform to the configuration
schema included in the representation of the matcher.
Independently from the choice of a matcher, the user can
also provide a system configuration as another JSON
object, which shall conform to the configuration schema
included in the representation of the root resource (see
Section 5.1.1).

The task report is the only mandatory part of a task
submission.

At the beginning of the report, the properties leftDataset
and rightDataset contain the descriptions of the two
datasets to match. The descriptions use properties that are
in most cases eponym for properties defined by widely
adopted metadata vocabularies. The description of a dataset
includes its identifier ("@id") (in the metadata registry),
which is used in the rest of the task report to mention that
dataset. The property uriSpace contains the namespace of
the dataset (corresponding to void:uriSpace), while the
property sparqlEndpoint contains the address of a
SPARQL endpoint that provides access to the actual
content of the dataset (corresponding to
void:sparqlEndpoint). The property conformsTo
(corresponding to dcterms:conformsTo) contains the URI
of a modeling vocabulary that defines the type of the
dataset (in the example, both datasets are SKOS thesauri).

The property supportDatasets is an array of JSON objects
describing other potentially useful datasets. Like the ones
above, these descriptions also include further properties
that are bound to specific dataset types (@type).

In the example in Listing 4, the first two support datasets
are lime:LexicalizationSets that provide SKOS-XL labels
in Italian for each of the input datasets. Indeed, Italian is
the only natural language shared by these datasets, and
consequently it is suggested as the basis for a monolingual
matching scenario. The description of these lexicalization
sets includes several properties borrowed from Lime to
represent metrics.

The other three datasets define a subset of Open
Multilingual Wordnet12 (Bond & Paik, 2012) for Italian: i)
the ontolex:ConceptSet describes the set of lexical concepts
(i.e. synsets), ii) the lime:Lexicon describes the set of words
in Italian, iii) the lime:ConceptualizationSet describes the

11 http://alignapi.gforge.inria.fr/format.html
12 http://compling.hss.ntu.edu.sg/omw/

bindings between these words and these concepts (i.e. word
senses).

At the end of the report, the property pairings contains a
ranked list of pairs of lexicalizations for each of the input
datasets. Each pairing suggests a different strategy to
compare the input datasets from a lexical viewpoint. If
available (as in the example), the pairing also includes a
synonymizer describing a strategy for synonym expansion
(see Section 2.1).

The response of this HTTP request is the description of the
task just created: using the identifier contained in this
description, it is possible to poll the alignment service for
updates on the status of the task.

5.2 Linking

Hypermedia is one of the defining characteristics of the
REST architectural style, which is neglected by
"pragmatic" realizations like ours. The principle is that the
representations of the resources should include links to
other resources and, in general, make it explicit to the
clients the available affordances. The design constraint
HATEOAS (Hypermedia as the Engine of Application
State) requires that any state transition of the applications
should be guided by these links. Without hypermedia, the
usage protocol of the API should be encoded in the clients,
and possibly communicated through an out-of-band
mechanism.

OpenAPI 3 (the version we used to define our API)
introduced the notion of links: these are not implemented
using hypermedia in the API responses, but are expressed
in the API definitions at the operation level. Simplifying, a
link tells how part of the response of one operation can be
used as argument for another operation. In other words,
these links allow for describing (part of) the usage protocol
of the API.

Within our API definitions, for example, we used links to
tell that the ID contained in the response of creation
operations can be used as an argument of operations for
retrieving the details of a resource or for deleting it.

6. Implementation Report

The OpenAPI definition of the alignment services API is
available online13.

In Section 3, we gave the overall picture of our use case,
integrating VocBench, MAPLE and remote alignment
services. Our REST API meets all functional requirements
elicited in that section; however, the VocBench user
interface is not complete yet:

• users can't choose a matcher and specify its
configuration nor can they specify a system
configuration

• the task report generated by MAPLE can't be
inspected or refined by users

The limitations above are clearly deficiencies of the
components using the proposed alignment services API
rather than a problem of the API itself: in fact, the

13 http://art.uniroma2.it/maple/specs/alignment-services-

1.0.0.yaml

http://alignapi.gforge.inria.fr/format.html
http://compling.hss.ntu.edu.sg/omw/
http://art.uniroma2.it/maple/specs/alignment-services-1.0.0.yaml
http://art.uniroma2.it/maple/specs/alignment-services-1.0.0.yaml

58

capabilities of the API (currently) exceed the ability of
other systems to consume them.

We have already implemented a compliant server for the
ontology matching tool GENOMA (Enea, Pazienza, &
Turbati, 2015) using Swagger Codegen. Additionally, we
planned the integration of another matching system called
Naisc14 (McCrae & Buitelaar, 2018).

7. Evaluation

The focus of our research effort is to provide concrete
reusable support to alignment systems, separating the
vertical discovery and exploration of efficient alignment
techniques from the assessment of the alignment scenario
and consequent fine tuning of these techniques to the
situation. While the former is clearly not our goal – and thus
requires no evaluation, as it mostly depends on the specific
considered systems complying with our framework – we
conducted an evaluation of the consistency of our approach
and implementation in terms of specifications and API
validation. Additionally, we provide a qualitative analysis
based on our experiences in applying the API-first
approach to the development of API-compliant
components.

7.1 Verification of the Specifications

We used an online validator15 to verify that our API
definition conformed to the OpenAPI format. A non-
conforming API definition might still be quite useful as a
documentation for humans; nonetheless, this verification
step is necessary to ensure that tooling16 based on the
OpenAPI format (e.g. code generators, testing frameworks,
etc.) correctly process our API definition.

The validator confirmed that our API was valid, but it
warned of not better specified circular references. We
analyzed the API definition and, by revalidating a carefully
edited definition, we ascertained that these circular
references arose in the data model: in particular, in the data
type Schema, which represents a JSON Schema that
describes a system configuration (see Section 5.1.1) or a
matcher configuration (see Section 5.1.2). Indeed, Schema
is defined recursively: i.e. this data type occurs in its own
definition. Let us consider Listing 2, in which the property
configuration holds a Schema object. This schema models
a JSON object that has the properties structuralFeatures
and synonymExpansion. The value of each property is
described recursively through a "nested" JSON Schema. In
the example, the recursion terminates immediately,
because both properties expect a primitive boolean value.
However, a more complex configuration property might
require several levels of nested JSON objects. Another
source of recursion is the definition of array properties,
whose items are modeled recursively with Schema objects.

Currently, we are aware of these negative consequences of
circular references:

• The documentation generated by Swagger UI17
doesn't display recursive data types correctly

14 https://github.com/insight-centre/naisc
15 https://apitools.dev/swagger-parser/online/
16 https://openapi.tools/
17 https://swagger.io/tools/swagger-ui/

• We were reported of problems with the OpenAPI
Generator18. For GENOMA, we used Swagger
Codegen without any issue: since GENOMA does
not support custom configurations yet, there might
be latent problems that we did not discover.

Unfortunately, removing recursion from the definition of
Schema requires some redundancy in its definition and
moreover, sacrificing the support for arbitrary nesting
levels. We need to collect several more examples of
configuration objects (see Section 9) to make an informed
choice about whether the limitations introduced by a non-
recursive definition are acceptable.

7.2 Validation of the API

The verification process described in the previous section
is about whether we "built it right". However, it does not
tell anything about whether we "built the right thing". With
this regard, we should point out that we implemented (see
Section 6) the use case described in Section 3, allowing the
users of VocBench to actually interact with external
alignment services using MAPLE. This has increased our
confidence that the API we have defined is appropriate for
its purpose. As pointed out in Section 9, we believe that
onboarding of additional alignment systems should not
affect the overall structure of the API, but mainly allow us
to better understand the representation of configuration
objects.

7.3 Qualitative Evaluation of the API-first
approach

Swagger Codegen supports over 20 different languages for
the generation of server stubs and over 40 different
languages for the generation of client libraries.

The variety of server stubs simplifies the integration of
matching systems implemented using different
programming languages. In case of GENOMA (see
Section 6), which is written in Java, we eventually decided
to generate a sever stub utilizing the Spring framework. In
fact, the generated stub provided the complete scaffolding
of the server, leaving us just to provide the implementation
of the operations of the API inside pre-generated methods.
The generated code dealt with mapping of URL paths and
parameters, clearly facilitating conformance to the API.
With this regard, we should mention the automatic
generation of a domain model from the JSON schemas (in
the API definition) that model parameters and response
bodies. This domain model uses standard Java types (e.g.
Strings) instead of more specific types (e.g. RDF4J's IRI).
This is advantageous since the alignment systems may use
different libraries for the same purpose (e.g. RDF4J 19,
Apache Jena20 or OWLAPI21 as RDF middleware).
Initially, we were concerned about losing our
customizations when regenerating the server because of
changes of the API. However, we discovered that the
generator produces a Java interface (which should not be
edited at all) and a class implementing that interface (where
the developer shall place its code). It is possible to
regenerate the sole interface, while the IDE easily identifies

18 https://openapi-generator.tech/
19 https://rdf4j.org/
20 https://jena.apache.org/
21 http://owlcs.github.io/owlapi/

https://github.com/insight-centre/naisc
https://openapi.tools/
https://swagger.io/tools/swagger-ui/
https://openapi-generator.tech/

59

necessary changes to the class (e.g. new methods, changed
method signatures, etc.). Currently, VocBench (see
Section 3) is the only consumer of our API. In this case, we
could not use the code generator precisely because of the
generated domain model, which conflicted with the one
already used for the communication with MAPLE: we
preferred to implement the client manually, while the fact
that the server was generated accordingly acted as a
conformance check.

8. Related Work

Shvaiko and Euzenat (2013) analyzed the results of recent
evaluation campaigns for ontology alignment22, concluding
that future growth of the field requires addressing eight
challenges. Our work focuses on four of those:

• matcher selection combination and tuning: not
explicitly addressed by MAPLE, but the task
report is intended to help the alignment service to
adapt and fine tune itself in order to fit the
characteristics of the given matching scenario;

• user involvement: while striving to automate most
of the configuration, our approach also foresees
human intervention on both the task report and the
configuration of the alignment service, as well as
during the later validation of an alignment;

• explanation of matching results: in fact, our
approach focuses on the visibility into the process
for setting up and configuring the alignment
service for a certain task;

• alignment management: infrastructure and
support: the REST API presented in this paper
and, even more, the overall integration described
in Section 3 deal with the infrastructure
supporting the management aspects, such as
execution of alignment tasks, alignment
validation and storage of links.

The Alignment Server, bundled with the Alignment API
(David et al., 2011), offers a REST API23 that can be
compared to ours. In fact, the API of the Alignment Server
has a wider scope: aiming at managing ontology networks,
the Alignment Server supports computation, validation,
storage and retrieval of alignments. Our API is focused on
supporting the computation of alignments, while the rest is
covered by the overall platform described in Section 3.

SEALS24 (Semantic Evaluation At Large Scale) (Gutiérrez,
García-Castro, & Gómez-Pérez, 2010) and HOBBIT25
(Holistic Benchmarking of Big Linked Data) (Röder,
Kuchelev, & Ngonga Ngomo, 2019) are two European
projects whose outcome is a sustainable infrastructure for
the execution of evaluation campaigns of semantic
technologies in a scalable, systematic, repeatable and
transparent manner. Consequently, their focus is more on i)
unaided execution of heterogeneous systems against shared
tests cases and ii) storage and comparison of test results.
They also describe procedures to package the systems
under test, and they offer a sophisticated platform to
execute the resulting packages. Conversely, we don't deal

22 Such as the ones organized by OAEI (Ontology Alignment

Evaluation Initiative) http://oaei.ontologymatching.org/
23 http://alignapi.gforge.inria.fr/rest.html
24 http://www.seals-project.eu/

with the provisioning of computing resources to the
alignment services, which are assumed to be up and
running on a (remote) machine. Moreover, our approach
prescribes that the alignment service is actively aided by its
clients, which submit a task report and, optionally, a
matcher and some configuration parameters.

The integrated architecture described in Section 3 is close
to the architecture of GOMMA, a "generic infrastructure
for managing and analyzing life science ontologies and
their evolution" (Kirsten et al., 2011). With respect to
GOMMA, our whole architecture (including VocBench)
covers storing versions of ontologies and mappings, and the
invocation of alignment services. We do not cover diffing
of ontologies (and mappings) and their evolution yet.

9. Future Work

We represented the resources defined by our API using
JSON (see Section 5), while the schema of the task
submission (see Section 5.1.3) is informally based on Lime
and other metadata vocabularies (i.e. by the use of property
names that match the names of the metadata properties).
We will investigate JSON-LD26 to preserve the use of
JSON, while making that correspondence explicit through
a JSON-LD context (referenced by the responses of our
API).

By disseminating our API, we hope to on-board further
alignment services beyond the two mentioned in Section 6.
We believe that these services shouldn’t require
(substantial) changes to the operations (i.e. path + HTTP
verb), since these are mainly defined from the viewpoint of
client systems (i.e. that invoke the alignment service).
Conversely, additional alignment services will help us to
better understand and improve custom configurations (both
at system level and matcher level), which are specific to an
alignment service. Firstly, as the diversity of custom
configurations increase, we will test the adequacy of the
chosen subset of JSON Schema. Problematic areas include
support for complex property values (e.g. structured values,
polymorphism, etc.) and complex dependencies between
configuration parameters (e.g. mutual exclusiveness
between properties, conditional enablement of
configuration properties, etc.). More varied configuration
schemas will secondly give us the opportunity to
understand if there are recurring patterns that deserve being
part of a (possibly optional) standard configuration.

The use case presented in Section 3 includes manual
evaluation of alignments aimed at improving their quality.
We will investigate automatic alignment evaluation
(performances, quality etc..) as well, even though instead
of reinventing the wheel it could be interesting to see if we
can integrate existing solutions such as HOBBIT.

10. Conclusions

MAPLE addresses the need for robustness in alignment
systems through a metadata-based approach. In this paper,
we concentrated on the interface that an alignment service
should implement in order to comply with MAPLE and

25 https://project-hobbit.eu/
26 https://json-ld.org/

http://oaei.ontologymatching.org/
http://alignapi.gforge.inria.fr/rest.html
http://www.seals-project.eu/
https://project-hobbit.eu/
https://json-ld.org/

60

benefit from its services. Following the API-first
methodology, we started from the specifications of the API
as a machine-readable artifact using the OpenAPI format.
Then, we implemented the API for the alignment system
GENOMA and planned the same for the system Naisc.

11. Acknowledgements

This work has been supported by the PMKI project, under
the 2016.16 action of the ISA2 Programme
(https://ec.europa.eu/isa2/). ISA2 is a programme of the
European Commission for the modernization of public
administrations in Europe through the eGovernment
solutions.

12. Bibliographical References

Bond, F., & Paik, K. (2012). A survey of wordnets and their
licenses. Proceedings of the 6th Global WordNet
Conference (GWC 2012). Matsue, Japan, January, 9-13,
2012, (pp. 64-71).

Chiarcos, C., Nordhoff, S., & Hellmann, S. (Eds.). (2012).
Linked Data in Linguistics. Springer. doi:10.1007/978-
3-642-28249-2

Cimiano, P., McCrae, J. P., & Buitelaar, P. (2016). Lexicon
Model for Ontologies: Community Report, 10 May
2016. Community Report, W3C. Retrieved from
https://www.w3.org/2016/05/ontolex/

David, J., Euzenat, J., Scharffe, F., & Trojahn dos Santos,
C. (2011). The Alignment API 4.0. Semantic Web
Journal, 2(1), 3-10.

Enea, R., Pazienza, M. T., & Turbati, A. (2015).
GENOMA: GENeric Ontology Matching Architecture.
In M. Gavanelli, E. Lamma, & F. Riguzzi (A cura di),
Lecture Notes in Computer Science (Vol. 9336, p. 303-
315). Springer International Publishing.
doi:10.1007/978-3-319-24309-2_23

Euzenat, J., & Shvaiko, P. (2013). Ontology Matching (2
ed.). Springer-Verlag Berlin Heidelberg.
doi:10.1007/978-3-642-38721-0

Fielding, R. T. (2000). REST: architectural styles and the
design of network-based software architectures.
University of California. Retrieved from
https://www.ics.uci.edu/~fielding/pubs/dissertation/fiel
ding_dissertation.pdf

Fielding, R. T. (2008, October 20). REST APIs must be
hypertext-driven. Retrieved from Untangled:
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven

Fiorelli, M., Stellato, A., Lorenzetti, T., Schmitz, P.,
Francesconi, E., Hajlaoui, N., & Batouche, B. (2019).
Metadata-driven Semantic Coordination. In E.
Garoufallou, F. Fallucchi, & E. William De Luca (Eds.),
Metadata and Semantic Research (Communications in
Computer and Information Science) (Vol. 1057).
Springer, Cham. doi:10.1007/978-3-030-36599-8_2

Fiorelli, M., Stellato, A., Mccrae, J. P., Cimiano, P., &
Pazienza, M. T. (2015). LIME: the Metadata Module for
OntoLex. In F. Gandon, M. Sabou, H. Sack, C. d’Amato,

P. Cudré-Mauroux, & A. Zimmermann (Eds.), The
Semantic Web. Latest Advances and New Domains
(Lecture Notes in Computer Science) (Vol. 9088, pp.
321-336). Springer International Publishing.
doi:10.1007/978-3-319-18818-8_20

Gutiérrez, M. E., García-Castro, R., & Gómez-Pérez, A. I.
(2010). Executing evaluations over semantic
technologies using the SEALS Platform. Proceedings of
the International Workshop on Evaluation of Semantic
Technologies (IWEST 2010). Shanghai, China: CEUR-
WS.org. Retrieved from http://ceur-ws.org/Vol-
666/paper11.pdf

Kirsten, T., Gross, A., Hartung, M., & Rahm, E. (2011).
GOMMA: a component-based infrastructure for
managing and analyzing life science ontologies and their
evolution. Journal of Biomedical Semantics.
doi:10.1186/2041-1480-2-6

McCrae, J. P., & Buitelaar, P. (2018). Linking Datasets
Using Semantic Textual Similarity. Cybernetics and
Information Technologies, 8(1), 109-123.
doi:10.2478/cait-2018-0010

McCrae, J. P., Bosque-Gil, J., Gracia, J., Buitelaar, P., &
Cimiano, P. (2017). The OntoLex-Lemon Model:
Development and Applications. In I. Kosem, C.
Tiberius, M. Jakubíček, J. Kallas, S. Krek, & V. Baisa
(Ed.), Electronic lexicography in the 21st century.
Proceedings of eLex 2017 conference., (pp. 587-597).

Röder, M., Kuchelev, D., & Ngonga Ngomo, A.-C. (2019).
HOBBIT: A platform for benchmarking Big Linked
Data. Data Science. doi:10.3233/DS-190021

Shvaiko, P., & Euzenat, J. (2013, January). Ontology
Matching: State of the Art and Future Challenges. IEEE
Transactions on Knowledge and Data Engineering,
25(1), 158-176. doi:10.1109/TKDE.2011.253

Stellato, A., Fiorelli, M., Turbati, A., Lorenzetti, T., van
Gemert, W., Dechandon, D., . . . Costetchi, E. (in press).
VocBench 3: a Collaborative Semantic Web Editor for
Ontologies, Thesauri and Lexicons. Semantic Web.
Accepted manuscript at http://www.semantic-web-
journal.net/content/vocbench-3-collaborative-semantic-
web-editor-ontologies-thesauri-and-lexicons-1

Stellato, A., Turbati, A., Fiorelli, M., Lorenzetti, T.,
Costetchi, E., Laaboudi, C., . . . Keizer, J. (2017).
Towards VocBench 3: Pushing Collaborative
Development of Thesauri and Ontologies Further
Beyond. In P. Mayr, D. Tudhope, K. Golub, C. Wartena,
& E. W. De Luca (Ed.), 17th European Networked
Knowledge Organization Systems (NKOS) Workshop.
Thessaloniki, Greece, September 21st, 2017, (pp. 39-
52). Retrieved from http://ceur-ws.org/Vol-
1937/paper4.pdf

https://ec.europa.eu/isa2/

	1. Introduction
	2. Background
	2.1 LIME: Linguistic Metadata
	2.2 MAPLE: MAPping architecture based on Linguistic Evidences

	3. Use Case and Requirements
	4. API Design Methodology
	5. API Definition
	5.1 Resources
	5.1.1 API root
	5.1.2 Matchers
	5.1.3 Tasks

	5.2 Linking

	6. Implementation Report
	7. Evaluation
	7.1 Verification of the Specifications
	7.2 Validation of the API
	7.3 Qualitative Evaluation of the API-first approach

	8. Related Work
	9. Future Work
	10. Conclusions
	11. Acknowledgements
	12. Bibliographical References

