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Abstract 
 
A practical alignment service should be flexible enough to handle the varied alignment scenarios that arise in the real world, while 
minimizing the need for manual configuration.  MAPLE, an orchestration framework for ontology alignment, supports this goal by 
coordinating a few loosely coupled actors, which communicate and cooperate to solve a matching task using explicit metadata about the 
input ontologies, other available resources and the task itself.  The alignment task is thus summarized by a report listing its characteristics 
and suggesting alignment strategies. The schema of the report is based on several metadata vocabularies, among which the Lime module 
of the OntoLex-Lemon model is particularly important, summarizing the lexical content of the input ontologies and describing external 
language resources that may be exploited for performing the alignment. In this paper, we propose a REST API that enables the 
participation of downstream alignment services in the process orchestrated by MAPLE, helping them self-adapt in order to handle 
heterogeneous alignment tasks and scenarios. The realization of this alignment orchestration effort has been performed through two main 
phases: we first described its API as an OpenAPI specification (a la API-first), which we then exploited to generate server stubs and 
compliant client libraries. Finally, we switched our focus to the integration of existing alignment systems, with one fully integrated 
system and an additional one being worked on, in the effort to propose the API as a valuable addendum to any system being developed.  
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1. Introduction 

Ontology matching (Euzenat & Shvaiko, 2013) is the task 
of computing an alignment between two (or more) 
ontologies that consists of correspondences between 
semantically related concepts. We consider a broader 
definition of the task, to cover thesauri and datasets, in 
general. We argued (Fiorelli et al., 2019) that a practical 
matching system should be flexible enough to recognize 
different matching scenarios and handle each of them with 
a suitable strategy possibly benefiting from additional 
support resources. Our framework MAPLE1 achieves that 
goal by exploiting explicit metadata about the input 
ontologies and other available resources. MAPLE uses a 
combination of metadata vocabularies, including DCMI 
Metadata Terms2, FOAF3, VoID4, DCAT5 and Lime 
(Fiorelli et al., 2015). The latter is the metadata module of 
the OntoLex-Lemon model6 (McCrae et al., 2017; 
Cimiano, McCrae, & Buitelaar, 2016), which is becoming 
a cornerstone of the growing Linguistic Linked Open Data 
cloud (Chiarcos, Nordhoff, & Hellmann, 2012), moving 
beyond its original focus on ontology lexicons. MAPLE 
uses Lime metadata to determine how lexical information 
is represented (i.e. the so-called lexicalization model), the 
degree of linguistic compatibility of the input ontologies 
(e.g. supported natural languages, relative coverage, 
relative expressiveness, etc.), as well to find suitable 
language resources (e.g. a wordnet) in some natural 
language to support synonym expansion. MAPLE compiles 
a task report that summarizes the characteristics of the 
given matching scenario and hints at possible matching 
strategies. This task report is intended to help a downstream 
matching system configure itself in order to manage the 
given matching scenario as best as possible. In this paper, 
we will refer to such a matching system as an alignment 

 
1 http://art.uniroma2.it/maple/ 
2 https://www.dublincore.org/specifications/dublin-core/dcmi-

terms/ 
3 http://xmlns.com/foaf/spec/ 
4 https://www.w3.org/TR/void/ 

service, meaning a web service for the computation of 
alignments between datasets (in general). The contribution 
of this paper is precisely a REST API (Fielding, 2000) that 
an alignment service shall implement in order to comply 
with MAPLE. We used the OpenAPI7 format to describe 
this API explicitly, ensuring that the produced 
specifications are both machine-readable and human 
friendly. These specifications establish a contract that make 
it possible for a user to invoke any alignment system for 
which a compliant server has been developed. We validated 
our work through the implementation of a sever for one 
alignment system, while planning an analogous one for an 
additional system. 

2. Background 

2.1 LIME: Linguistic Metadata 

LIME is the module of OntoLex-Lemon dedicated to the 
description of lexicalized datasets and language resources 
such as wordnets. LIME extends VoID, by defining 
subclasses of void:Dataset based on the different roles that 
these datasets play form the view point of the ontology-
lexicon interface. 

A lime:LexicalizationSet is a dataset consisting of 
lexicalizations for a given reference dataset in some natural 
language, optionally using a lexicon, and expressed using 
a specific lexicalization model. A lexicalization set can 
describe the fact that an ontology (the reference dataset) 
contains RDFS labels (hence, RDFS is the lexicalization 
model) in English. If the ontology also contains labels in 
Italian, it would be necessary to introduce a second 
lexicalization set. Only if the lexicalization model is 
OntoLex-Lemon, then the lexicalization set shall reference 
a lexicon, providing the (reified) lexical entries. A 
lexicalization set may include metadata such as the number 

5 https://www.w3.org/TR/vocab-dcat-2/ 
6 https://www.w3.org/2016/05/ontolex/ 
7 https://www.openapis.org/ 

http://art.uniroma2.it/maple/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/2016/05/ontolex/
https://www.openapis.org/
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of lexicalizations, the percentage of the reference dataset 
being covered and the average number of lexicalizations 
for the entities in the reference dataset. 

Wordnets are represented in OntoLex-Lemon by mapping: 
i) each synset to an ontolex:LexicalConcept, ii) each word 
to an ontolex:LexicalEntry, iii) each sense to an 
ontolex:LexicalSense. While similar to the one of 
lexicalized datasets, the structure of wordnets is 
characterized by the use of lexical concepts and specific 
properties to bind these to lexical entries thorough lexical 
senses. Therefore, their metadata deserved a dedicated 
class, called lime:ConceptualizationSet, which relates a 
lime:Lexicon (describing the collection of lexical entries) 
to an ontolex:ConceptSet (describing the collection of 
lexical concepts). The description of a conceptualization 
set may include the number of lexical concepts, the number 
of lexical entries, the average ambiguity and average 
synonymy. 

A conceptualization set (and the associated datasets) can be 
used for synonym expansion; given a word: i) find 
matching lexical entries (usually one per POS tag), ii) for 
each matched lexical entry, find the associated lexical 
concepts, and iii) retrieve other lexical entries associated to 
any of these lexical concepts. 

2.2 MAPLE: MAPping architecture based on 
Linguistic Evidences 

MAPLE is a framework facilitating the orchestration of 
different, loosely coupled actors with the aim to support a 
robust matching system. A user defines a matching task as 
a pair of datasets, say 𝐷𝑙𝑒𝑓𝑡  and 𝐷𝑟𝑖𝑔ℎ𝑡 . The purpose of 
MAPLE is to facilitate the configuration of a downstream 
alignment system to solve this task. To this end, MAPLE 
provides an orchestrator that analyzes the input datasets, in 
order to infer the characteristics of the task and hint at 
promising alignment strategies.  

The orchestrator looks up the two datasets in a metadata 
registry to retrieve metadata about them: indeed, the 
descriptions of the two datasets jointly characterize 
(perhaps indirectly) the matching task. 

MAPLE specifies a metadata application profile that a 
compliant registry must obey to, while the actual 
implementation of the registry is part of the integration with 
other systems. In this manner, it is possible to adopt and 
switch different strategies to acquire and store the metadata 
(e.g. automatic profiling, manual addition or retrieval of 
metadata published alongside the datasets). The 
orchestrator and other downstream components in the 
processing chain are completely unaware of the chosen 
strategy. 

The orchestrator uses the metadata about the input 
datasets, to determine which information is available, how 
it is represented, and the extent of overlap between the two 
datasets. 

The orchestrator first determines the nature of the input 
datasets (i.e. their metamodel), identifying whether they are 
ontologies, thesauri and other RDF datasets. This 
knowledge is important to set the goal of the alignment (e.g. 

 
8 http://vocbench.uniroma2.it/ 

matching OWL classes vs matching SKOS concepts), 
while different combinations of dataset types may require 
different matching algorithms or dedicated configurations 
(e.g. taxonomy is encoded by the property rdfs:subClassOf 
in OWL ontologies and by the properties skos:broader and 
skos:narrower in SKOS thesauri). 

MAPLE doesn't commit on any alignment technique, 
nonetheless it makes some assumptions: 

• the seeding role of natural language 
lexicalizations 

•  the possibility to use wordnets for synonym 
expansion (and, in the future, for translation) 

The orchestrator finds the lexicalization sets for the input 
datasets (see Section 2.1) and produces a ranked list of 
pairs of lexicalization sets. The orchestrator also tries to 
construct a synonymizer using a suitable wordnet included 
in the metadata registry. The order of the aforementioned 
list is determined by a complex scoring formula taking into 
account metrics about the lexicalization sets and, if 
available, about the synonymizer. 

The orchestrator will compile a task report with the output 
of its analysis, which can be communicated to the 
alignment system. 

3. Use Case and Requirements 

As a software framework, MAPLE needs to be integrated 
into other systems, which in turn must implement or 
consume interfaces defined by MAPLE. Figure 1 illustrates 
a concrete use case applying MAPLE to VocBench 38 
(Stellato et al., 2017; Stellato et al., in press), an open-
source web application supporting collaborative editing of 
ontologies, thesauri and lexicons, complying with 
Semantic Web representation standards. 

In this use case, the matching task comprises two datasets 
that are managed as two projects in VocBench.  

VocBench provides an implementation of the metadata 
registry that covers locally managed datasets and remote 
ones (which are not associated with a VocBench project). 

The task report produced by the orchestrator provided by 
MAPLE is returned to the user for explanation and 
refinement. The (possibly refined) task report is sent to the 
alignment service for the actual execution of the alignment 
task. The need for accepting the task report as an input 
instead of obtaining it from the orchestrator is motivated by 
the necessity to include the user in the loop. 

In addition to the task report, the alignment service may 
accept some configuration parameters. The configuration is 
split in two: a system configuration that does not depend on 
the (explicit) choice of a matcher, and a matcher 
configuration that is bound to a specific matcher. Matchers 
and configuration schemas are clearly dependent on the 
alignment service, whose interface must include operations 
for retrieving them. 

The computation of an alignment can be a slow task; 
therefore, it should be handled asynchronously without 
blocking the application (and thus the user) who submitted 

http://vocbench.uniroma2.it/
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it. Additionally, the alignment service shall support the 
submission of multiple tasks. 

When an alignment task is completed, the user should be 
able to download the alignment into an alignment 
validation user interface. Validated alignments can then be 
integrated into either the left or right dataset. Moreover, the 
user can store that alignment into an EDOAL project 
dedicated to the alignment between these two datasets. 

4. API Design Methodology 

We designed a resource-centric API without using 
hypermedia (see Section 5.2), which is required by a strict 
compliance to the REST architectural style (Fielding, 
2008). This kind of API, often called “pragmatic REST”, 
comprises a collection of resources associated with 
endpoints (i.e. URLs) that can be operated on through 
standard HTTP verbs (e.g. GET to retrieve the 
representation of a resource, POST to create a new resource 
in a collection, etc.). 

We analyzed the use case described in Section 3 to identify 
the resources, their representation and the verbs supported 
by each of them. 

For the development of our API, we adopted the API-first 
approach: i.e. we started from the specifications of the API 

 
9 https://swagger.io/tools/swagger-codegen/ 

itself using the OpenAPI format rather than from the 
implementation of a reference server. These API 
specifications are a first-class artifact of the development 
process and, as such, they can be version controlled, 
verified, validated and published. Interoperability between 
clients and servers is guaranteed by the compliance to the 
same specifications. In fact, compliance to a given API is 
facilitated by tools that generate client libraries (to 
consume the API) and server stubs (to ease the 
implementation of the API) from the API definition. One 
such tool is Swagger Codegen9, which supports tens of 
different programming languages. Moreover, a lot of API 
tools can be configured for a certain API by simply loading 
its definition in OpenAPI format. 

5. API Definition 

The design of a REST API is focused on the identification 
of the resources in the domain of interest, their 
representations and the HTTP verbs that they support. Each 
kind of resource is often associated with two paths (or 
endpoints): i) the collection of resources of that kind (e.g. 
/matchers), ii) each specific resource of that kind (e.g. 
/matchers/1). We represented the resources and the request 
bodies using JSON, which is currently the de facto standard 
for web APIs. In our API, some resources are read-only, 
because they reflect the capabilities of a specific alignment 

Figure 1: Use case integrating MAPLE, VocBench 3 and an external alignment service 

https://swagger.io/tools/swagger-codegen/
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service or the result of a computation, while others can be 
manipulated.  This distinction manifests in the support for 
verbs other then GET. 

5.1 Resources 

5.1.1 API root 

The path / is the root of the API namespace. Performing a 
GET on this path returns a JSON object like the one in 
Listing 1. 

The object contains metadata about the implementation of 
the alignment service such as its name (service), version, 
compliance to different specs and an optional system 
configuration schema (see Section 5.1.2). The specs 
property is an array of URLs for locating API definitions in 
the OpenAPI format. This array must contain at least the 
URL of the description of our REST API. Humans (e.g. 
developers) interfacing with this service may benefit from 
a reference to the documentation of the service. 

When a sever has been just launched, it is not obvious when 
it is ready to accept requests. An approach to answer this 
question is to first attempt to retrieve the representation of 
the root: it can be assumed that a sever is not ready as long 
the service doesn’t respond at all. Once the representation 
of the root path is returned, the property status tells whether 
the service is starting, active, busy (i.e. no longer accepting 
task submissions), shutting down or failed. 

5.1.2 Matchers 

The design goal of MAPLE is to disburden the user from 
manual configuration of the matching process to the 
maximum extent possible.  However, an alignment service 
may support an option for manually choosing between 
different matchers (i.e. often associated with different 
combinations of matching techniques). 

The path /matchers is the collection of all available 
matchers, whereas the path /matchers/{id} represents an 
individual matcher. 

Listing 2 illustrates the JSON object describing a matcher, 
which contains its identifier (id), a textual description and 
an optional configuration schema. 

The configuration schema defines the “shape” of the JSON 
object that represents the actual matcher configuration in a 
task submission (see Section 5.1.3). Moreover, the 
configuration schema can be used to produce a suitable user 

 
10 https://json-schema.org/ 

interface to edit the configuration. Instead of reinventing 
the wheel, we adopted a subset of JSON Schema10. 

If the alignment service does not support manual selection 
and configuration of the matcher, this collection should be 
empty. 

5.1.3 Tasks 

The computation of an alignment is managed as an 
asynchronous task, which needs to be modeled explicitly. 

The path /tasks is the collection of all tasks ever submitted 
to the alignment service. The description of individual tasks 
can be obtained from the endpoint /tasks/{id}. Listing 3 
contains a JSON object that exemplifies the representation 
of a task. 

The id identifies this task and it can also be found inside the 
path associated with the task. The properties leftDataset 
and rightDataset reference the two datasets to align. The 
service may differentiate between the submission time, 
when the task was first queued into the system, and the start 
time, when the computation started (pragmatically, when 
the service allocated computing resources for the task). An 
end time is also included when the execution ends. In fact, 
the task status makes it possible to differentiate between a 
task that is just submitted, running, failed or completed. 
When a task is running, its start time is non null and the 
service is computing the alignment. The task will 

{ 

  "id": "example-matcher", 

  "description": "example matcher", 

  "configuration": { 

    "type": "object", 

    "properties": { 

      "structuralFeatures": { 

        "description": "whether to use 

structural features or not", 

        "type": "boolean", 

        "default": true 

      }, 

      "synonymExpansion": { 

        "description": "whether to do 

synonym expansion or not", 

        "type": "boolean", 

        "default": true 

      } 

    } 

  } 

} 

Listing 2: Representation of a matcher 

 

 

 

{ 

  "id": "c27d77380cf4[…]020871d5f95c2", 

  "leftDataset": 

"http://example.org/void.ttl#EuroVoc", 

  "rightDataset": 

"http://example.org/void.ttl#TESEO", 

  "submissionTime": "202-02-

10T18:00:00+01:00", 

  "startTime": "202-02-10T18:00:30+01:00", 

  "status": "running", 

  "progress": 60 

} 

Listing 3: Representation of a task 

 

 

 

{ 

  "service": "Genoma REST API", 

  "version": 1, 

  "status": "active", 

  "documentation": "https://../Home", 

  "specs": [ 

    "http://../alignment-services-

1.0.0.yaml" 

  ], 

  "configuration" : { 

    ... 

  } 

} 

Listing 1: Representation of the root resource 

 

 

 

https://json-schema.org/
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eventually end either by completing the computation of the 
alignment or by failing for some reason. The reason is 
expressed as a JSON object with at least the property 
message, which shall contain a textual description of the 
failure. For a running task, the property progress contains 

the percentage (expressed as an integer between 0 and 100) 
of the task that has been carried on. A completed task is 
associated with an alignment that can be retrieved by means 
of a GET on the path /tasks/{id}/alignment. The response is 

{ 

  "taskReport": { 

    "leftDataset": { "@id": "http://example.org/void.ttl#TESEO", 

      "conformsTo": "http://www.w3.org/2004/02/skos/core#", 

      "uriSpace": "http://www.senato.it/teseo/tes/", 

      "sparqlEndpoint": "http://localhost:7200/repositories/TESEO_core" 

    }, 

    "rightDataset": { "@id": "http://example.org/void.ttl#EuroVoc", 

      "conformsTo": "http://www.w3.org/2004/02/skos/core#", 

      "uriSpace": "http://eurovoc.europa.eu/", 

      "sparqlEndpoint": "http://localhost:7200/repositories/EuroVoc_core" 

    }, 

    "supportDatasets": [{ 

        "@id": " http://example.org/void.ttl#TESEO_it_lexset", 

        "@type": "http://www.w3.org/ns/lemon/lime#LexicalizationSet" 

        "sparqlEndpoint": "http://localhost:7200/repositories/TESEO_core", 

        "referenceDataset": "http://example.org/void.ttl#TESEO", 

        "lexiconDataset": null, 

        "lexicalizationModel": "http://www.w3.org/2008/05/skos-xl", 

        "lexicalizations": 3378, "references": 3378, 

        "avgNumOfLexicalizations": 1, "percentage": 1, 

        "languageTag": "it", 

      }, {  

        "@id": "http://example.org/void.ttl#EuroVoc_it_lexset", 

        "@type": "http://www.w3.org/ns/lemon/lime#LexicalizationSet" 

        "sparqlEndpoint": "http://localhost:7200/repositories/EuroVoc_core", 

        "referenceDataset": " http://localhost:7200/repositories/EuroVoc_core", 

        "lexiconDataset": null, 

        "lexicalizationModel": "http://www.w3.org/2008/05/skos-xl", 

        "lexicalizations": 18545, "references": 7282, 

        "avgNumOfLexicalizations": 2.546, "percentage": 1, 

        "languageTag": "it", 

      }, {  

  "@id": "http://.../omw/MultiWordNet-it-lexicon",  

  "@type": "http://www.w3.org/ns/lemon/lime#Lexicon",  

  "sparqlEndpoint": "http://localhost:7200/repositories/OMW_core",  

  "languageTag": "it", "lexicalEntries": 43011  

}, {  

  "@id": "http://.../omw/pwn30-conceptset",  

  "@type": "http://www.w3.org/ns/lemon/ontolex#ConceptSet",  

  "sparqlEndpoint": "http://localhost:7200/repositories/OMW_core",  

  "concepts": 117659  

}, {  

  "@id": "http://.../void.ttl#MultiWordNet_ConceptualizationSet", 

  "@type": "http://www.w3.org/ns/lemon/lime#ConceptualizationSet",  

  "sparqlEndpoint": "http://localhost:7200/repositories/OMW_core",  

  "lexiconDataset": "http://.../omw/MultiWordNet-it-lexicon",  

  "conceptualDataset": "http://.../omw/pwn30-conceptset",  

  "conceptualizations": 63133, "concepts": 35001, "lexicalEntries": 43011,  

  "avgSynonymy": 0.537, "avgAmbiguity": 1.468  

}], 

    "pairings": [{ 

        "score": 0.7836831074710862, 

        "source": {"lexicalizationSet": "http://example.org/void.ttl#EuroVoc_it_lexset" }, 

        "target": {"lexicalizationSet": "http://example.org/void.ttl#TESEO_it_lexset" }, 

        "synonymizer": { 

          "lexicon": "http://example.org/void.ttl#OMW_Lexicon", 

          "conceptualizationSet": "http://.../void.ttl#MultiWordNet_ConceptualizationSet" 

 } 

      }] 

  } 

} 

Listing 4: Representation of a task submission (this example doesn't include neither a matcher nor configurations) 

 

 

 



57

formatted according the format11 of the Alignment API 
(David et al., 2011). 

The submission of a task to the system can be made as a 
POST to the collection path /tasks. The body of the request 
(see Listing 4) represents the submission in terms of a task 
report and, optionally, a system configuration, a matcher 
and (only if a matcher is provided) a matcher 
configuration. 

Let us describe the content of a submission in reverse order, 
starting from the optional parts. If the alignment service 
allows that, the parameter matcher can be used to manually 
specify the matching algorithm (see Section 5.1.2). In this 
case, it is also possible to specify a matcher configuration 
as a JSON object, which shall conform to the configuration 
schema included in the representation of the matcher. 
Independently from the choice of a matcher, the user can 
also provide a system configuration as another JSON 
object, which shall conform to the configuration schema 
included in the representation of the root resource (see 
Section 5.1.1). 

The task report is the only mandatory part of a task 
submission. 

At the beginning of the report, the properties leftDataset 
and rightDataset contain the descriptions of the two 
datasets to match. The descriptions use properties that are 
in most cases eponym for properties defined by widely 
adopted metadata vocabularies. The description of a dataset 
includes its identifier ("@id") (in the metadata registry), 
which is used in the rest of the task report to mention that 
dataset.  The property uriSpace contains the namespace of 
the dataset (corresponding to void:uriSpace), while the 
property sparqlEndpoint contains the address of a 
SPARQL endpoint that provides access to the actual 
content of the dataset (corresponding to 
void:sparqlEndpoint). The property conformsTo 
(corresponding to dcterms:conformsTo) contains the URI 
of a modeling vocabulary that defines the type of the 
dataset (in the example, both datasets are SKOS thesauri).  

The property supportDatasets is an array of JSON objects 
describing other potentially useful datasets.  Like the ones 
above, these descriptions also include further properties 
that are bound to specific dataset types (@type).  

In the example in Listing 4, the first two support datasets 
are lime:LexicalizationSets that provide SKOS-XL labels 
in Italian for each of the input datasets. Indeed, Italian is 
the only natural language shared by these datasets, and 
consequently it is suggested as the basis for a monolingual 
matching scenario. The description of these lexicalization 
sets includes several properties borrowed from Lime to 
represent metrics. 

The other three datasets define a subset of Open 
Multilingual Wordnet12 (Bond & Paik, 2012) for Italian: i) 
the ontolex:ConceptSet describes the set of lexical concepts 
(i.e. synsets), ii) the lime:Lexicon describes the set of words 
in Italian, iii) the lime:ConceptualizationSet describes the 

 
11 http://alignapi.gforge.inria.fr/format.html 
12 http://compling.hss.ntu.edu.sg/omw/ 

bindings between these words and these concepts (i.e. word 
senses).  

At the end of the report, the property pairings contains a 
ranked list of pairs of lexicalizations for each of the input 
datasets. Each pairing suggests a different strategy to 
compare the input datasets from a lexical viewpoint. If 
available (as in the example), the pairing also includes a 
synonymizer describing a strategy for synonym expansion 
(see Section 2.1). 

The response of this HTTP request is the description of the 
task just created: using the identifier contained in this 
description, it is possible to poll the alignment service for 
updates on the status of the task. 

5.2 Linking 

Hypermedia is one of the defining characteristics of the 
REST architectural style, which is neglected by 
"pragmatic" realizations like ours. The principle is that the 
representations of the resources should include links to 
other resources and, in general, make it explicit to the 
clients the available affordances. The design constraint 
HATEOAS (Hypermedia as the Engine of Application 
State) requires that any state transition of the applications 
should be guided by these links. Without hypermedia, the 
usage protocol of the API should be encoded in the clients, 
and possibly communicated through an out-of-band 
mechanism. 

OpenAPI 3 (the version we used to define our API) 
introduced the notion of links: these are not implemented 
using hypermedia in the API responses, but are expressed 
in the API definitions at the operation level. Simplifying, a 
link tells how part of the response of one operation can be 
used as argument for another operation. In other words, 
these links allow for describing (part of) the usage protocol 
of the API. 

Within our API definitions, for example, we used links to 
tell that the ID contained in the response of creation 
operations can be used as an argument of operations for 
retrieving the details of a resource or for deleting it.  

6. Implementation Report 

The OpenAPI definition of the alignment services API is 
available online13. 

In Section 3, we gave the overall picture of our use case, 
integrating VocBench, MAPLE and remote alignment 
services. Our REST API meets all functional requirements 
elicited in that section; however, the VocBench user 
interface is not complete yet: 

• users can't choose a matcher and specify its 
configuration nor can they specify a system 
configuration 

• the task report generated by MAPLE can't be 
inspected or refined by users 

The limitations above are clearly deficiencies of the 
components using the proposed alignment services API 
rather than a problem of the API itself: in fact, the 

13 http://art.uniroma2.it/maple/specs/alignment-services-

1.0.0.yaml 

http://alignapi.gforge.inria.fr/format.html
http://compling.hss.ntu.edu.sg/omw/
http://art.uniroma2.it/maple/specs/alignment-services-1.0.0.yaml
http://art.uniroma2.it/maple/specs/alignment-services-1.0.0.yaml
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capabilities of the API (currently) exceed the ability of 
other systems to consume them. 

We have already implemented a compliant server for the 
ontology matching tool GENOMA (Enea, Pazienza, & 
Turbati, 2015) using Swagger Codegen. Additionally, we 
planned the integration of another matching system called 
Naisc14 (McCrae & Buitelaar, 2018). 

7. Evaluation 

The focus of our research effort is to provide concrete 
reusable support to alignment systems, separating the 
vertical discovery and exploration of efficient alignment 
techniques from the assessment of the alignment scenario 
and consequent fine tuning of these techniques to the 
situation. While the former is clearly not our goal – and thus 
requires no evaluation, as it mostly depends on the specific 
considered systems complying with our framework – we 
conducted an evaluation of the consistency of our approach 
and implementation in terms of specifications and API 
validation. Additionally, we provide a qualitative analysis 
based on our experiences in applying the API-first 
approach to the development of API-compliant 
components.  

7.1 Verification of the Specifications 

We used an online validator15 to verify that our API 
definition conformed to the OpenAPI format. A non-
conforming API definition might still be quite useful as a 
documentation for humans; nonetheless, this verification 
step is necessary to ensure that tooling16 based on the 
OpenAPI format (e.g. code generators, testing frameworks, 
etc.) correctly process our API definition. 

The validator confirmed that our API was valid, but it 
warned of not better specified circular references. We 
analyzed the API definition and, by revalidating a carefully 
edited definition, we ascertained that these circular 
references arose in the data model: in particular, in the data 
type Schema, which represents a JSON Schema that 
describes a system configuration (see Section 5.1.1) or a 
matcher configuration (see Section 5.1.2). Indeed, Schema 
is defined recursively: i.e. this data type occurs in its own 
definition. Let us consider Listing 2, in which the property 
configuration holds a Schema object. This schema models 
a JSON object that has the properties structuralFeatures 
and synonymExpansion. The value of each property is 
described recursively through a "nested" JSON Schema. In 
the example, the recursion terminates immediately, 
because both properties expect a primitive boolean value. 
However, a more complex configuration property might 
require several levels of nested JSON objects. Another 
source of recursion is the definition of array properties, 
whose items are modeled recursively with Schema objects. 

Currently, we are aware of these negative consequences of 
circular references: 

• The documentation generated by Swagger UI17 
doesn't display recursive data types correctly 

 
14 https://github.com/insight-centre/naisc 
15 https://apitools.dev/swagger-parser/online/ 
16 https://openapi.tools/ 
17 https://swagger.io/tools/swagger-ui/ 

• We were reported of problems with the OpenAPI 
Generator18. For GENOMA, we used Swagger 
Codegen without any issue: since GENOMA does 
not support custom configurations yet, there might 
be latent problems that we did not discover. 

Unfortunately, removing recursion from the definition of 
Schema requires some redundancy in its definition and 
moreover, sacrificing the support for arbitrary nesting 
levels. We need to collect several more examples of 
configuration objects (see Section 9) to make an informed 
choice about whether the limitations introduced by a non-
recursive definition are acceptable.       

7.2 Validation of the API 

The verification process described in the previous section 
is about whether we "built it right". However, it does not 
tell anything about whether we "built the right thing".  With 
this regard, we should point out that we implemented (see 
Section 6) the use case described in Section 3, allowing the 
users of VocBench to actually interact with external 
alignment services using MAPLE. This has increased our 
confidence that the API we have defined is appropriate for 
its purpose. As pointed out in Section 9, we believe that 
onboarding of additional alignment systems should not 
affect the overall structure of the API, but mainly allow us 
to better understand the representation of configuration 
objects. 

7.3 Qualitative Evaluation of the API-first 
approach 

Swagger Codegen supports over 20 different languages for 
the generation of server stubs and over 40 different 
languages for the generation of client libraries. 

The variety of server stubs simplifies the integration of 
matching systems implemented using different 
programming languages. In case of GENOMA (see 
Section 6), which is written in Java, we eventually decided 
to generate a sever stub utilizing the Spring framework. In 
fact, the generated stub provided the complete scaffolding 
of the server, leaving us just to provide the implementation 
of the operations of the API inside pre-generated methods. 
The generated code dealt with mapping of URL paths and 
parameters, clearly facilitating conformance to the API. 
With this regard, we should mention the automatic 
generation of a domain model from the JSON schemas (in 
the API definition) that model parameters and response 
bodies. This domain model uses standard Java types (e.g. 
Strings) instead of more specific types (e.g. RDF4J's IRI). 
This is advantageous since the alignment systems may use 
different libraries for the same purpose (e.g. RDF4J 19, 
Apache Jena20 or OWLAPI21 as RDF middleware). 
Initially, we were concerned about losing our 
customizations when regenerating the server because of 
changes of the API. However, we discovered that the 
generator produces a Java interface (which should not be 
edited at all) and a class implementing that interface (where 
the developer shall place its code). It is possible to 
regenerate the sole interface, while the IDE easily identifies 

18 https://openapi-generator.tech/ 
19 https://rdf4j.org/ 
20 https://jena.apache.org/ 
21 http://owlcs.github.io/owlapi/ 

https://github.com/insight-centre/naisc
https://openapi.tools/
https://swagger.io/tools/swagger-ui/
https://openapi-generator.tech/
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necessary changes to the class (e.g. new methods, changed 
method signatures, etc.). Currently, VocBench (see 
Section 3) is the only consumer of our API. In this case, we 
could not use the code generator precisely because of the 
generated domain model, which conflicted with the one 
already used for the communication with MAPLE: we 
preferred to implement the client manually, while the fact 
that the server was generated accordingly acted as a 
conformance check. 

8. Related Work 

Shvaiko and Euzenat (2013) analyzed the results of recent 
evaluation campaigns for ontology alignment22, concluding 
that future growth of the field requires addressing eight 
challenges. Our work focuses on four of those: 

• matcher selection combination and tuning: not 
explicitly addressed by MAPLE, but the task 
report is intended to help the alignment service to 
adapt and fine tune itself in order to fit the 
characteristics of the given matching scenario; 

• user involvement: while striving to automate most 
of the configuration, our approach also foresees 
human intervention on both the task report and the 
configuration of the alignment service, as well as 
during the later validation of an alignment; 

• explanation of matching results: in fact, our 
approach focuses on the visibility into the process 
for setting up and configuring the alignment 
service for a certain task; 

• alignment management: infrastructure and 
support: the REST API presented in this paper 
and, even more, the overall integration described 
in Section 3 deal with the infrastructure 
supporting the management aspects, such as 
execution of alignment tasks, alignment 
validation and  storage of links. 

The Alignment Server, bundled with the Alignment API 
(David et al., 2011), offers a REST API23 that can be 
compared to ours. In fact, the API of the Alignment Server 
has a wider scope: aiming at managing ontology networks, 
the Alignment Server supports computation, validation, 
storage and retrieval of alignments. Our API is focused on 
supporting the computation of alignments, while the rest is 
covered by the overall platform described in Section 3. 

SEALS24 (Semantic Evaluation At Large Scale) (Gutiérrez, 
García-Castro, & Gómez-Pérez, 2010) and HOBBIT25 
(Holistic Benchmarking of Big Linked Data) (Röder, 
Kuchelev, & Ngonga Ngomo, 2019) are two European 
projects whose outcome is a sustainable infrastructure for 
the execution of evaluation campaigns of semantic 
technologies in a scalable, systematic, repeatable and 
transparent manner. Consequently, their focus is more on i) 
unaided execution of heterogeneous systems against shared 
tests cases and ii) storage and comparison of test results. 
They also describe procedures to package the systems 
under test, and they offer a sophisticated platform to 
execute the resulting packages. Conversely, we don't deal 

 
22 Such as the ones organized by OAEI (Ontology Alignment 

Evaluation Initiative) http://oaei.ontologymatching.org/ 
23 http://alignapi.gforge.inria.fr/rest.html 
24 http://www.seals-project.eu/ 

with the provisioning of computing resources to the 
alignment services, which are assumed to be up and 
running on a (remote) machine. Moreover, our approach 
prescribes that the alignment service is actively aided by its 
clients, which submit a task report and, optionally, a 
matcher and some configuration parameters. 

The integrated architecture described in Section 3 is close 
to the architecture of GOMMA, a "generic infrastructure 
for managing and analyzing life science ontologies and 
their evolution" (Kirsten et al., 2011). With respect to 
GOMMA, our whole architecture (including VocBench) 
covers storing versions of ontologies and mappings, and the 
invocation of alignment services.  We do not cover diffing 
of ontologies (and mappings) and their evolution yet. 

9. Future Work 

We represented the resources defined by our API using 
JSON (see Section 5), while the schema of the task 
submission (see Section 5.1.3) is informally based on Lime 
and other metadata vocabularies (i.e. by the use of property 
names that match the names of the metadata properties). 
We will investigate JSON-LD26 to preserve the use of 
JSON, while making that correspondence explicit through 
a JSON-LD context (referenced by the responses of our 
API). 

By disseminating our API, we hope to on-board further 
alignment services beyond the two mentioned in Section 6. 
We believe that these services shouldn’t require 
(substantial) changes to the operations (i.e. path + HTTP 
verb), since these are mainly defined from the viewpoint of 
client systems (i.e. that invoke the alignment service). 
Conversely, additional alignment services will help us to 
better understand and improve custom configurations (both 
at system level and matcher level), which are specific to an 
alignment service. Firstly, as the diversity of custom 
configurations increase, we will test the adequacy of the 
chosen subset of JSON Schema. Problematic areas include 
support for complex property values (e.g. structured values, 
polymorphism, etc.) and complex dependencies between 
configuration parameters (e.g. mutual exclusiveness 
between properties, conditional enablement of 
configuration properties, etc.). More varied configuration 
schemas will secondly give us the opportunity to 
understand if there are recurring patterns that deserve being 
part of a (possibly optional) standard configuration. 

The use case presented in Section 3 includes manual 
evaluation of alignments aimed at improving their quality. 
We will investigate automatic alignment evaluation 
(performances, quality etc..) as well, even though instead 
of reinventing the wheel it could be interesting to see if we 
can integrate existing solutions such as HOBBIT. 

10. Conclusions 

MAPLE addresses the need for robustness in alignment 
systems through a metadata-based approach. In this paper, 
we concentrated on the interface that an alignment service 
should implement in order to comply with MAPLE and 

25 https://project-hobbit.eu/ 
26 https://json-ld.org/ 
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benefit from its services. Following the API-first 
methodology, we started from the specifications of the API 
as a machine-readable artifact using the OpenAPI format. 
Then, we implemented the API for the alignment system 
GENOMA and planned the same for the system Naisc.  
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