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Abstract
This paper describes our contribution to the Third Shared Task on Translation Inference across Dictionaries (TIAD-2020). We
describe an approach on translation inference based on symbolic methods, the propagation of concepts over a graph of interconnected
dictionaries: Given a mapping from source language words to lexical concepts (e.g., synsets) as a seed, we use bilingual dictionaries to
extrapolate a mapping of pivot and target language words to these lexical concepts. Translation inference is then performed by looking
up the lexical concept(s) of a source language word and returning the target language word(s) for which these lexical concepts have the
respective highest score. We present two instantiations of this system: One using WordNet synsets as concepts, and one using lexical
entries (translations) as concepts. With a threshold of 0, the latter configuration is the second among participant systems in terms of F1
score. We also describe additional evaluation experiments on Apertium data, a comparison with an earlier approach based on embedding
projection, and an approach for constrained projection that outperforms the TIAD-2020 vanilla system by a large margin.
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1. Background
The Third Shared Task on Translation Inference across Dic-
tionaries1 (TIAD-2020) has been conducted in conjunc-
tion with the GlobaLex workshop at the 12th Language
Resources and Evaluation Conference (LREC-2020, Mar-
seille, France). As in previous editions, the objective is
to automatically obtain new bilingual dictionaries based on
existing ones. The evaluation is performed against a blind
test set provided by a commercial partner (KDictionaries,
Tel Aviv), so that a particular challenge is to optimize
against data with unknown characteristics. For this edition,
participants were provided with a test data excerpt to study
its characteristics before the submission of final results.
Our system from TIAD-2019 (Donandt and Chiarcos,
2019) was based on translation inference over bilingual
dictionaries by means of embedding propagation: Given
word embeddings2 for a particular pivot (seed) language,
we extrapolated the embeddings of all languages with trans-
lations into (or from) the pivot language (first generation
languages) by adding the corresponding English language
scores. Where translations into (or from) the seed lan-
guage are missing, translations into (or from) first gener-
ation languages are used to deduce embeddings in the same
manner for second generation languages, etc. In this way,
word embeddings are propagated through the entire dictio-
nary graph. For predicting translations, we then use cosine
similarity between source and target language vectors, con-
strained by a similarity threshold.
This approach is both simple and knowledge-poor; it uses
no other multilingual resources than the ones provided by
the task organizers, and it is particularly well-suited to ad-
dress under-resourced languages as addressed in language
documentation (i.e., languages for which no substantial cor-
pora [neither monolingual, nor parallel] are available, but
the majority of published language data is represented in

1https://tiad2020.unizar.es/
2We used 50-dimensional GloVe embeddings (Pennington et

al., 2014) for English.

secondary resources such as word lists and grammars). The
objective for developing this system was to facilitate lan-
guage contact studies (esp., cognate detection) for the Cau-
casus, and to address semantic similarity for low-resource
language varieties for which only word lists are provided
and where no basis for inducing native word or parallel
embeddings exists. Despite its simplicity and the highly
specialized domain of application it was designed for, our
system performed well among participant systems, being
a high precision system with top F1 score (precision 0.64,
recall 0.22, F1 0.32; the closest competitor system had the
scores: precision 0.36, recall 0.31, F1 0.32). At the same
time, none of the participant systems outperformed the or-
ganizer’s baselines, and we suspected the following rea-
sons:

• The characteristics of the training data (Apertium dic-
tionaries were designed for machine translation, i.e., to
give the most common translation) and the evaluation
data (KDictionaries dictionaries were designed for
language learning, i.e., to give the most precise trans-
lation) may be so different that optimization against
external resources (or the provided training data) does
not improve performance over the evaluation data.

• Participant systems, in particular those based on word
embeddings (by embedding projection or other tech-
niques), are probably effective at capturing the main
sense of a word, but they lose on secondary senses be-
cause these are under-represented in the corpora used
to derive the original embeddings but over-represented
in the evaluation data.

Whereas TIAD-2019 was reductionist in that every lexical
entry was represented by a single vector (capturing its main
sense, resp. a weighted average of all its senses), our cur-
rent TIAD-2020 contribution is tailored towards the second
aspect: we aim to preserve the diversity of translations pro-
vided in the training data by propagating lexical concepts
rather than embeddings.

https://tiad2020.unizar.es/
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2. Approach
We assume that a key weakness of the neural approach im-
plemented for TIAD-2019 was that it produces one single
representation for a lexical entry, and that translations are
identified by their distance from that representation. While
this is a robust and reliable strategy for the most frequent
sense of a particular word, we expect it to be less effective
for polysemous or homonymous words, and to fail for rare
and specialized senses. Indeed, identifying and classifying
such senses, e.g., the use of a term in a particular domain of
science, is a core tasks of lexicography, and part of the mo-
tivation for manual labor. We expect that KDictionary data
is substantially richer in that regard that Apertium data.
Hence, instead of projecting embeddings for lexical entries,
we project lexical concepts as identified in monolingual
lexical resources. The most prominent, and widely used
family of resources for this regard are word nets. Our ap-
proach on concept projection is based on WordNet synsets
(Fellbaum, 1998). If source language and target language
use the same synset identifiers (concepts), the target lan-
guage translations of a particular source language word can
be extrapolated from concepts by returning the most repre-
sentative target language words for the concept associated
with the source language. The challenge here is to develop
metrics that express and maintain confidence of the associa-
tion between a word and a concept. Based on these metrics,
thresholds can be used to limit the set of possible concepts
for a lexeme and possible lexicalizations of a concept. We
employ the following core metrics:

• P (concept|lexeme): probability of a concept for a
given lexeme (source or target word)

• P (lexeme|concept): lexicalization probability of a lex-
eme (source or target word) for a given concept

• P (target|source): translation probability of a target
word for a particular source word

• P (source|target): translation probability of a source
word for a particular target word

To initialize these metrics, we do not employ external re-
sources to estimate them, but rather derive them from the
branching factor within a WordNet, resp. a bilingual dic-
tionary:

• P (concept|lexeme) := 1
concepts(lexeme) , where

concepts(lexeme) is the number of concepts for
a particular lexeme.

• P (lexeme|concept) := 1
lexemes(concepts) , where

lexemes(concept) is the number of lexemes for a
particular concept.

• P (target|source) := 1
targets(source) , where

targets(source) is the number of target language
words that the source word can be translated to (for a
particular pair of source and target languages).

• P (source|target) := 1
sources(targets) , where

sources(targets) is the number of source lan-
guage words that the target word can be used for as

translation (for a particular pair of source and target
languages).

1. Initialization: For every (seed language) word that has
a WordNet entry, assign its synset IDs as concepts
as well as P (concept|lexeme) and P (lexeme|concept)
scores.

2. First generation projection: For every source word
without associated concepts that does have a transla-
tion relation to one or more target words (with asso-
ciated concepts), calculate the concept probabilities as
follows:

P (source|concept) :=∑
target

P (source|target) P (target|concept)

P (concept|source) :=∑
target

P (concept|target) P (target|source)

3. Iterate projection (second generation projection), un-
til no more source words with translation relations to
target words with associated concepts can be found.

In second and later generations, this procedure leads to a
large number of low-probability associations between lex-
emes and concepts. To explore whether this has a negative
effect, we also implemented a constrained variant (parame-
ter -constrained): During projection, only those links
between a lexeme and a concept are preserved that have
maximum score (s=source, c=concept):

P (s|c) 7→

{
0 ∃k.P (s|c) < P (s|k)
P (s|c) otherwise

P (c|s) analogously

Using concept and lexicalization probability, translation in-
ference (i.e., prediction pred of a target language word for
a given source language word source) basically boils down
to the following selection procedure:

pred = argmax
target

∑
concept

P (target|concept)P (concept|source)

We deviate from this trivial model as we aim to produce one
prediction per concept, for a number of concepts with high
values for P (concept|source). In many cases, we found
plain probabilities as extrapolated from the graph (we use
no external resources except for concept inventories) to be
indistinctive, so we coupled concept probability and lexi-
calization probability:

pred = argmax
target∑

concept

P (target|concept)P (concept|target)
P (concept|source) P (source|concept)
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The intuition behind this term is that we return translation
pairs that are optimal for every concept in both translation
directions (from source to target language and vice versa).
Algorithmically, we did not return the maximum value, but
multiple translations, so we work directly with score met-
rics for a particular source word source:

score(concept) = P (concept|source)P (source|concept)

Accordingly, the score for a translation candidate target is:

score(target) =∑
concept

P (target|concept)P (concept|target)
P (concept|source) P (source|concept)

For translation prediction, we adopt the following selection
procedure:

1. For translating the word source, retrieve the list of can-
didate concepts C = {concept|P (concept|source) >
0} and the list of candidate translations T =
{target|∃concept ∈ C.P (target|concept) > 0}.

2. Sort C for decreasing score(concept), sort T for de-
creasing score(target)

3. Optional: Restrict C to the first m elements (parame-
ter -maxConcepts)

4. Optional: Enforce minimum concept score κ (param-
eter -minConcScore), i.e., eliminate all concepts
from C with score(concept) < κ. The first element
of C is maintained.

5. Initialize the result set R with the maximum lex-
icalization(s), i.e., lexicalizations with scores iden-
tical to that of the first element in T : R =
{target|score(target) = score(t1)}

6. For every element ci in C, and those lexicalizations of
ci that are not R, add the lexicalization target with
maximum P (target|concept) score to R. For can-
didates with identical P (target|concept), return the
target with maximum score(target), i.e., maximum
P (concept|target), the highest degree of specificity.

7. Optional: Enforce minimum lexicalization score
τ (parameter -minLexScore), i.e., eliminate all
predictions target from R with score(target) <
min(τ, score(t1))

8. Iterate in step 6 until no more lexicalizations are be-
ing added. Optional: limit iterations to n (parameter
-maxLexPerConcept)

This procedure has a considerable number of parameters:

• The concept inventory being used

• unrestricted or constrained (-constrained) pro-
jection

• m (-maxConcepts): maximum number of concepts
considered for translation inference

• n (-maxLexPerConcept): maximum number of
lexicalizations per concept

• κ (-minConcScore): minimum score(concept)
for concepts considered during translation

• τ (-minLexScore): minimum score(target) for
possible translations

For every translation target, we return score(target). For
the official evaluation, the task organizers applied an addi-
tional threshold of 0.5 onto these values. As the aggregate
diagram in Figure 1 does, however, show, our systems per-
form best (in terms of F1) without this additional threshold.
For our TIAD submission, this feature space was partially
explored only, and it is likely that the KDictionary dictio-
naries used for evaluation require a different setting from
the Apertium dictionaries that we take as input. As men-
tioned above, the Apertium dictionaries are designed for
machine translation, so they are optimized for capturing the
most frequent translation(s), whereas KDictionaries are de-
signed for educational purposes, so they are optimized for
capturing the most precise definition of words. In conse-
quence, it is possible that a larger m and a lower κ score
lead to better results on KDictionary data than they do on
Apertium data. Our primary goal was thus not to fine-tune
our systems to the Apertium data, but instead, to assess the
contribution of concept inventories on translation inference
across dictionaries.

3. Data & Preprocessing
We use the tab-separated value (TSV) edition of the dictio-
naries provided by the task organizers. Whereas we only
use the languages and language pairs provided in these dic-
tionaries, it would be possible to add more language pairs
to be processed by our approach, as long as they are avail-
able in the TIAD-TSV format. We provide such data for
more than 1,500 language pairs as part of the ACoLi dic-
tionary graph (Chiarcos et al., 2020),3 but this has not been
considered in this experiment.
As for concept inventories, we use WordNet data, and
we expect it to come as TSV data in accordance to the
Open Multilingual WordNet specifications (Bond and Fos-
ter, 2013, OMW),4 i.e., a three-column table containing
synset ID in the first column, the string ‘lemma’ (or other
relation identifiers) in the second column, and the word
form in the third column. As for the word form, we differ
from the OMW format by requiring that it is a Turtle string
with a language tag, e.g., "able"@en instead if able in
the English OMW WordNet. For OMW data, we provide
a script that adds quotes and BCP47 language tags. We
also provide a converter that produces OMW TSV from the
RDF edition of Princeton WordNet 3.1.
A key advantage of OMW data is that it provides cross-
linguistically uniform synset identifiers, so that multiple

3https://github.com/acoli-repo/
acoli-dicts

4http://compling.hss.ntu.edu.sg/omw/

https://github.com/acoli-repo/acoli-dicts
https://github.com/acoli-repo/acoli-dicts
http://compling.hss.ntu.edu.sg/omw/
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Figure 1: Official systems results (F1) per threshold.

WordNets can be combined for concept induction,5 and our
experiments included concept projection from multiple lan-
guages. The submitted system was based on the respective
target language edition of OMW dictionaries (e.g., French
for predicting English translations for French), as our inter-
nal experiments (see Tab. 3 below) indicated that combin-
ing multiple OMW dictionaries can produce worse results.
Aside from projecting WordNet synsets, we also provide a
baseline system that uses target language expressions in-
stead of concepts (i.e., it is initialized with every target
language expression being mapped to itself as a concept).
The objective for doing so is to provide and to evaluate a
knowledge-poor approach and also to evaluate the potential
benefits that WordNet synsets might entail for this task.

4. Evaluation and Extensions
4.1. TIAD-2020 results
Based on the internal parameter optimization, we submit-
ted results for the configurations summarized in Table 1,
with the full Apertium graph as training data. Aiming for a
typical number of translations per pair, we limited our pre-
dictions to the five highest-scoring translations. For achiev-
ing the reported results on precision (P), recall (R), F1 (F)
and coverage (C), the task organizers applied an additional
threshold of 0.5. Aside from the formal evaluation, they
also provide the average results for variable thresholds, in-
dicating that our systems perform better without an addi-
tional threshold (Table 2).

5In principle, OMW synset identifiers can be used to gener-
ate translations without any additional dictionary data, for our
TIAD-2020 contribution, we excluded the respective target lan-
guage WordNet from projection experiments.

Both in our internal evaluation and in the official results,
we found that using WordNet synsets for translation infer-
ence leads to a substantial decrease of translation quality in
comparison to our baseline system that just projects trans-
lations. In terms of F1 measure, and without an additional
threshold, this baseline system performs second among par-
ticipant systems, whereas the WordNet-based system (in all
configurations tested by the task organizers) ranks among
the last three.

This may not be the last word on the usefulness of WordNet
for translation inference across dictionaries, but it indicates
that WordNet synsets are probably too coarse-grained for
this task, so that relevant lexical distinctions are lost.6 This
may be compensated by corpus information about concept
and lexicalization frequency, or, alternatively, by distribu-
tional methods to assess the prototypicality of a lexeme for
a synset, e.g., the cosine similarity between word embed-
dings and synset embeddings as produced by (Rothe and
Schütze, 2017). This approach can be a road to be explored
in the future. For the moment, the intermediate summary is
that projection-based translation inference performs better
when translations are directly projected. It is conceivable
to have better performance when word senses are projected,
rather than synsets, but then, elaborate statistics about word
sense frequencies would be necessary to select among pro-
jected word senses – that we do not possess at the moment.

6As the high coverage of the ACoLi WordNet with threshold
0.0 (Tab. 2) shows, the drop in recall in comparison to the ACoLi
baseline configuration is not the result of insufficient lexical cov-
erage in the respective WordNets.
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source pt pt en en fr fr
target en fr fr pt en pt

ACoLi WordNet, unconstrained, threshold 0.5
WordNet OMW Portuguese OMW English OMW French
m 0.0 0.0 0.0 0.0 0.0 0.0
n 0.0 0.0 0.0 0.0 0.0 0.0
κ ∞ ∞ ∞ ∞ ∞ ∞
τ ∞ ∞ ∞ ∞ ∞ ∞
P 0.67 0.6 0.54 0.59 0.66 0.62
R 0.16 0.12 0.13 0.18 0.2 0.15
F 0.25 0.2 0.21 0.28 0.31 0.24
C 0.34 0.17 0.28 0.34 0.31 0.23

ACoLi Baseline, unconstrained, threshold 0.5
m 0.0 0.0 0.0 0.0 0.0 0.0
n 0.0 0.0 0.0 0.0 0.0 0.0
κ ∞ ∞ ∞ ∞ ∞ ∞
τ ∞ ∞ ∞ ∞ ∞ ∞
P 0.66 0.64 0.48 0.57 0.63 0.63
R 0.26 0.26 0.24 0.3 0.32 0.27
F 0.38 0.37 0.32 0.39 0.42 0.38
C 0.54 0.36 0.51 0.55 0.48 0.42

best-performing participant system per language
Ciclos-OTIC ACoLi Baseline Ciclos-OTIC NUIG ACoLi Baseline Ciclos-OTIC

F 0.53 0.37 0.5 0.49 0.42 0.6
C 0.79 0.36 0.74 0.55 0.48 0.74
baseline OTIC OTIC OTIC OTIC OTIC OTIC
F 0.51 0.72 0.48 0.53 0.48 0.62
C 0.76 0.8 0.68 0.71 0.54 0.72

Table 1: Official TIAD-2020 results per language

system P R F C
better-performing participant systems (wrt. F1 score)

Ciclos-OTIC 0.64 0.47 0.54 0.76
NUIG 0.77 0.35 0.49 0.54
ACoLi baseline, unconstrained (best threshold and official threshold)

0.0 0.37 0.64 0.47 0.96
0.5 0.60 0.28 0.38 0.48
ACoLi WordNet, unconstrained (best thresholds and official threshold)
0.0 0.22 0.64 0.32 0.96
0.1 0.52 0.28 0.37 0.48
0.5 0.61 0.16 0.25 0.28

baselines (with thresholds)
W2V (0.8) 0.48 0.32 0.38 0.59
W2V (0.5) 0.30 0.37 0.33 0.68
OTIC (0.5) 0.69 0.48 0.56 0.71

Table 2: TIAD-2020 evaluation results: Averaged scores for systems with variable threshold

4.2. Constrained concept projection

For the official TIAD evaluation, we submitted systems
with unconstrained concept projection only. In a follow-up
experiment, we also evaluated constrained projection as a
promising direction to counter the weakness of WordNet-

based concept projection. This may indeed be the case,
as we could confirm that constrained projection system-
atically outperforms unconstrained projection of WordNet
synsets. For this evaluation, we replicated the TIAD eval-
uation setting by aiming to predict an Esperanto-English
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dictionary (and excluding it from the training data). Our
evaluation setup differs from TIAD evaluation in that we do
not exclude out-of-vocabulary words (that cannot be pre-
dicted from other dictionaries). Table 3 summarizes the
overall results, but even in this configuration, direct projec-
tion of translation outperformed concept-based translation
inference. As a side-observation, we found that using mul-
tilingual WordNets can have a negative impact on precision,
possibly because of imprecisions in the alignment between
multilingual synsets. We also found that concept projec-
tion from selected dictionaries (here Esperanto-Spanish and
Spanish-English only) may lead to slightly better F1 scores
than projection over the full set of dictionaries. However, it
is not clear whether this represents a factual improvement,
as it is naturally accompanied with a lower degree of cov-
erage (not reported in the table).

4.3. Comparison with embedding projection
Our second objective was to evaluate concept-based trans-
lation inference in comparison with the embedding projec-
tion we provided to TIAD-2019. Unfortunately, the results
are not directly comparable, so that they can be evaluated
only for the internal evaluation setup also applied for con-
strained concept projection.
Our TIAD-2019 system employed a simple technique for
projecting word embeddings from a seed language (or, if
multilingual embeddings are available, from multiple seed
languages) over the translation graph. For a given word in
the source language, with embedding ~s, its translations are
predicted from the cosine similarity between ~s and the vec-
tors of translation candidates ~t1..n in the target languages.
Aside from seed languages and the original word embed-
dings, its main parameters are the number of translation
candidates returned (-maxMatches) and a minimum sim-
ilarity threshold applied to the predictions (-minScore).
We used English as a seed language, with the same vectors
(50-dimensional GloVe embeddings) as in our TIAD-2019
submission.
The results are summarized in Tab. 4: We report the best-
performing configurations for -minSimilarity=0.0
(-maxMatches ∈ {1, ..., 5}), -maxMatches=5
(-minSimilarity ∈ {0.0, 0.1, ..., 1.0}) and
-minSimilarity=0.9 (-maxMatches ∈ {1, ..., 5}).
One important observation here is that the best-performing
configuration is one that limits the number of predicted
translations to 1, indicating that the neural model performs
best for predicting the translations based on the main sense.
In other words, the Apertium dictionaries seem to avoid
additional synonyms for synonymous target language
translations of a given source word, but to provide alter-
native translations to express target language translations
that relate to different source language senses (and are not
synonymous in the target language).
The question is now whether WordNet concepts can be
used in a meaningful manner to provide translations for sec-
ondary senses. In line with the findings of the TIAD-2020
evaluation, the unconstrained WordNet systems basically
fail and are outperformed by direct translation projection
(‘ACoLi baseline’) by a large margin. However, this is not
the case for constrained WordNet systems that reach (or,

depending on configuration, beat) the neural baseline. This
indicates that our approach is indeed capable of preserving
lexicographically relevant sense distinctions. The overall
best-performing system is, however, not based on WordNet
concepts, but on direct translation projection.
Furthermore, we find that projection is an effective ap-
proach only if it is limited. Constrained projection gener-
ally produces better results, in particular for WordNet con-
cepts, and the additional filters that κ, τ , n and m provide
can be employed to reach further, substantial, improve-
ments over the vanilla systems we submitted to TIAD-
2020. Although we cannot evaluate on TIAD task data di-
rectly, we see our approach as a promising direction for fu-
ture participation in future tasks. In particular, we substan-
tially outperform the best-performing TIAD-2020 system,
the OTIC baseline provided by the task organizers.7

5. Discussion & Conclusion
In this paper, we described the vanilla implementation we
provided for the Third Shared Task on Translation Infer-
ence Across Dictionaries, as well as a number of subse-
quently developed improvements to this system.
We developed our system in an attempt to address a likely
source of shortcomings of our earlier TIAD-2019 system.
We did not resubmit our TIAD-2019 system, however, be-
cause we expected the evaluation data to be identical. This
is not the case, and the data may have different character-
istics than the 2019 data, as the substantial boost in per-
formance of the organizer baseline system systems indi-
cate. Instead, we performed a comparative evaluation for
our 2019 and 2020 systems on the EO-EN Apertium dic-
tionary.
We assume that our 2019 system, based on the projec-
tion of embeddings for lexical entries over the translation
graph, performs relatively well on capturing the most fre-
quent sense, but that it fails for translation relations of sec-
ondary senses. We thus explored the possibility of project-
ing WordNet synsets over the translation graph, and using
these for translation inference. In order to evaluate the ef-
fectiveness of synsets for this purpose, we also performed
a baseline experiment where we projected translations in-
stead of concepts. To our surprise, This baseline outper-
formed WordNet-based translation inference in all configu-
rations.
This is also confirmed by the TIAD evaluation, albeit our
baseline fares relatively well among the first three systems
(with variable threshold) – the WordNet system does not.
In the internal evaluation, we also compared our 2019 sys-
tem. In its vanilla configuration (with unrestricted projec-

7 As for the comparably poor performance of the OTIC base-
line in our setting in comparison to the TIAD-2020 blind evalua-
tion, this seems to be due to a coverage issue. We ran the evalua-
tion over the entire Esperanto vocabulary in the Apertium graph.
However, when out-of-vocabulary words are excluded from the
evaluation, i.e., words for which no pivot language translation
can be found, OTIC (pivot Spanish, threshold 0.5) yields preci-
sion 0.67, recall 0.62, and F1 0.65, roughly corresponding to the
TIAD-2020 scores of the OTIC system. Another difference in our
evaluation was that we did not distinguish homonyms with differ-
ent part of speech tags.
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constrained κ τ n m WordNet dictionaries P R F
no 0 0 ∞ ∞ none all 0.26 0.32 0.29
yes 0 0 ∞ ∞ none all 0.52 0.25 0.33
no 0 0 ∞ ∞ none EO-ES-EN 0.63 0.22 0.33
yes 0 0 ∞ ∞ none EO-ES-EN 0.68 0.18 0.28
no 0 0 ∞ ∞ en EO-ES-EN 0.10 0.24 0.14
yes 0 0 ∞ ∞ en EO-ES-EN 0.48 0.19 0.27
no 0 0 ∞ ∞ en all 0.03 0.36 0.05
yes 0 0 ∞ ∞ en all 0.34 0.27 0.30
no 0 0 ∞ ∞ all∗ all 0.06 0.43 0.11
yes 0 0 ∞ ∞ all all 0.22 0.33 0.26
∗all WordNets: ca, en, es, eu, gl, it, pt

Table 3: Evaluating constrained projection

system configuration evaluation
ACoLi-neural, GLoVe 6B (TIAD-2019 system)

-maxMatches -minScore seed language embeddings length P R F
1 0.0 en GloVe 6B 50 0.67 0.22 0.33
5 0.9 en GloVe 6B 50 0.58 0.22 0.32
2 0.9 en GloVe 6B 50 0.63 0.22 0.33

translation projection (‘ACoLi baseline’, unconstrained)
m n κ τ WordNet P R F
∞ ∞ 0.0 0 none 0.26 0.32 0.29
3 1 0.3 0 none 0.55 0.47 0.51

translation projection (‘ACoLi baseline’, constrained)
∞ ∞ 0.0 0 none 0.52 0.25 0.34
3 1 0.3 0 none 0.58 0.43 0.49

concept projection (‘ACoLi WordNet’, constrained)
∞ ∞ 0 0 en 0.34 0.27 0.30
3 2 0.3 0 en 0.44 0.44 0.44

ACoLi TIAD-2020 systems (unconstrained)
ACoLi Baseline none 0.26 0.32 0.29
ACoLi WordNet en 0.03 0.36 0.05

OTIC (TIAD-2020 best-performing system, default and best threshold)
configuration pivot language -minScore P R F
default threshold Catalan 0.5 0.65 0.19 0.30
best threshold Catalan 0.2 0.59 0.21 0.31
default configuration Spanish 0.5 0.67 0.21 0.32
best configuration Spanish 0.0 0.64 0.23 0.33

Table 4: Comparing TIAD-2020 baseline, concept projection, translation projection and embedding projection techniques
for predicting the Apertium EO-EN dictionary (best-performing configurations).

tion), the ACoLi baseline also falls behind that. However,
in an extension of our TIAD system that implements con-
strained projection, where only the highest-scoring lexical-
ization and concept probabilities are preserved, lead to bet-
ter F1 scores, and further improvements can be achieved if
concept (translation) projection is limited to a low number
of translation candidates (3) and further confidence thresh-
olds are applied. The improvements bring both concept
projection and translation projection approaches to the per-
formance of original embedding projection technique, and

the overall best-performing system (in our internal evalu-
ation) is a configuration of the translation projection ap-
proach.

Our system is both simple and knowledge-poor. It does not
require any multilingual data beyond bilingual dictionaries,
and it can be applied (apparently with even better results)
without monolingual sense inventories. Obviously, this is
a natural starting point for further extensions. We extrapo-
late translation probabilities, concept probabilities and lex-
icalization probabilities only from the structure of the lexi-
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cal resource(s), but empirical frequency measurements and
other corpus-derived information may provide a much more
accurate picture (for the effective use of a lexeme, at least,
although maybe less so for its lexicographic characteris-
tics). In particular, future directions may include a com-
bination of neural and concept-based approaches. As such,
translation inference from projected synsets may be more
robust and the coverage may improve if lexicalization is not
directly based on WordNet, but if the distributional similar-
ity between target language words and synsets is used as a
measurement of lexical prototypicality of a word for a con-
cept. Such an approach requires synset embeddings that
reside in the same feature space as the corresponding word
embeddings, and indeed, this would be possible with tech-
niques for inducing synset embeddings, e.g., as described
by Rothe and Schütze (2017).
Another possible extension is to combine our approach
with the OTIC baseline. In our internal evaluation, the
OTIC baseline suffered from coverage issues in the pivot
language dictionaries. It was thus outperformed by the
projection-based approach as this takes the entire source
and target language vocabulary provided by the Apertium
dictionary graph into consideration. Future experiments
may adopt OTIC for source language lexemes that do have
a pivot language translations and use concept, translation or
embedding projection for out-of-vocabulay elements.
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